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Abstract. A review on explicit solutions of a similarity type to some free boundary
problems for the heat equation for a semi-infinite material is presented. In general, a
heat flux condition of the type got3 on the fixed face x=0 is imposed which depends on
a positive parameter go. That coefficient gomust verify an inequality in order to obtain
an explicit similarity solution for the following free boundary problems:

1) a mathematical model for the two-phase thawing in a saturated porous medium is
considered when change of phase induces a density jump and considering the influence of
pressure on the melting temperature. It has been analysed a heat flux and a temperature
condition on the fixed face. The mathematical analysis is made for the different cases
depending on the sign of three physical parameters .

2) a two-phase Stefan problem for a nonlinear heat conduction equation for materials of
Storm-type with both heat flux and temperature boundary conditions on the fixed face
is analysed.

3) drying with coupled phase change in a porous medium with a heat flux condition on the
fixed face is considered. Moreover, for large Luikov number the temperature of the humid
porous medium reaches a minimum value which is smaller than its initial temperature.

1. Introduction. ‘

We present explicit solutions of a similarity type to some free boundary problems for
the heat-diffusion equation for a semi-infinite material [T'a2]. In general, we impose a heat
flux condition of the type got > [Tal] on the fixed face x=0 which depends on a positive
parameter gy which must verify an inequality in order to obtain an explicit similarity
solution for the following free boundary problems:

1) a mathematical model for the two-phase thawing in a saturated porous medium is
considered when change of phase induces a density jump and considering the influence
of pressure on the melting temperature [FaGuPrRu]. It has been analysed a heat flux
condition on the fixed face in [LoTa] and a temperature condition on the fixed face in
[FaPrTa]. The mathematical analysis is made for the different cases depending on the
sign of three physical parameters;

2) a two-phase Stefan problem for a nonlinear heat conduction equation for materials
of Storm-Type [Ro] with both heat flux and temperature boundary conditions on the
fixed face is analysed in {NaTa];
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3) drying with coupled phase change in a porous medium [Ch, Gu, Lu] with a heat flux
condition on the fixed face is considered in [SaTa|. Moreover, for large Luikov number
the temperature of the humid porous medium reaches a minimum value which is smaller
than its initial temperature.

2. Two-phase thawing in a saturated porous medium.
2.1. Introduction. _

In this part we consider the problem of thawing of partially frozen porous media,
saturated with an incompressible liquid, with the aim of constructing similarity solutions.
More specifically we deal with the following situations (for a detailed exposition of the
physical background we refer to [FaGuPrRu)):

(i) a sharp interface between the frozen part and the unfrozen part of the domain
exists (sharp, in the macroscopic sense) ;

(ii) the frozen phase is at rest with respect to the porous skeleton, which will be
considered to be undeformable ; '

(iii) due to the density jump between the liquid and solid phase, thawing can induce
either desaturation or water movement in the unfrozen region. We will consider the latter
situation, assuming that liquid is continuously supplied to keep the medium saturated.

The unknowns of the problem are a function x =s(t) representing the free boundary
separating @) = {(z,¢) : 0 < z < s(t),t > 0} and Q2 = {(z,?) : s(t) < z,t > 0}
and two functions u(z,t) and v(z,t) defined in @}; and in Q) respectively, representing
the temperature of the unfrozen and of the frozen zone. Besides standard regularity
requirements, s(t), u(z,t) and v(z,t) fulfill the following conditions [FaPrTa):

Uy = A Ugy — bp. S(t) U, ,in Ql (1)
Uy = A Vpe N Qo (2)
u(s(t),t) = v(s(t),t) = dps(t) s(t) , t>0 3)
® ® 2
krvz(s(t), t) — kuuz(s(t), t) = a s(t) +Bps(t) (s(t)) ,t>0, (4)
vu(0,t)=B>0 ,t>0 , (5)
v(zr,0) = v(4+o00,t) =—A<0,2>0,t>0 (6)
s(0) =0 (7)
with X "
a1=a§— U’a2= §= F’b_fpwcw’
Pu Cu PrCF Pu Cu
€y p Pw = Py
d = P = = €p1 A
K p ow P1
_ €Epilew—c)yp _
B = e = edp; (ew — c1),

where € > 0: porosity; p; and py, > 0 : density of water and ice; ¢ > 0: specific heat
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at constant density; ky and kr > 0 : conductivity of the unfrozen and frozen zone; u :
temperature of the unfrozen zone; v : temperature of the frozen zone; u = v = 0 : melting
point at atmospheric pressure; A > 0 : latent heat at © = 0; g > 0 : viscosity of liquid;
v : coeflicient in the Clausius-Clapeyron law; K > 0 : hydraulic permeability; —A < 0
(A > 0): initial temperature; B > 0 : boundary temperature at the fixed face z = 0.

Remark 1. The free boundary problem (1)—(7) reduces to the usual Stefan problem
when dp = 0, since in that case we have the classical Stefan conditions on z = s(1):

u(s(t), t) =v(s(t),t) =0,t > 0, (8)

kr va(8(t), t) — kyua(s(t), t) = 8(t),t > 0. (9)

From now on we suppose that dp # 0. In Section 2.2. we study problem (1)—(7) with
a temperature boundary condition on z = 0 [FaPrTa| and in Section 2.3. we study the
problem (1)—(4), (21), (6), (7) with a heat flux condition on z = 0 [LoTa]. The existence
of a similarity solution depends on the value of three parameters in both cases and an
inequality for gy must be verified for the second case.

2.2 Similarity solutions with temperature boundary condition.

Now, we will look for similarity solutions to problem (1)—(7) by considering different
cases as a function of the sign of the parameters p, 3 and d ( that is 7y ). Our results include
the cases considered in [ChRu, FaGuPrRu).We consider [FaPrTa] where the following
results were obtained.

First of all, we note that the function

T
1) = ®(n) , with n= 10
u(z, t) (m) , with n 2o (10)
is a solution of equation (1) if and only if ® satisfies the following equation :
1 _» bp ¢
30+ (1L sl vE)¥m) =0, (1)
Theorem 1. The free boundary problem (1)—(7) has the similarity solution
s(t) = 2 V2, (12)
m¢? — B /577 2
u(z,t) =B+ —— exp(—7r° + p&r)dr, 13
(, t) 90,6 A p( pér) (13)
%erfc (==2—) + A(erf — erf (==
oz, ) = m{ erfc (;55—) + Alerf(7o€) (3Z7)) (14)

erfc(7,€)

if and only if the coeflicient £ > 0 satisfies the following equation

Ki(B — my )H(p,y) — Ky F(m,y) =6y+vy®, y>0, (15)
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where -
erf(z) = 72—7_‘_/0 exp(—r2)dr, erfe(z) =1 — erf(z), (16)
Y N _ expl(p — 1)
s0.) = [ esplovr — yir , H(p, ) ey ()
- o2y SR(TeYY)
Pm, 1) = (4 + my?) ST (18)

and the constants K, , Ks , v, , 6, p, m, v are defined as follows:

K, =

> 0,K; = =L 50,6 =ao; >0,
2

kr
—=>0
1\/— g/
p=2bp, m=2dpa}, v=20paj
Now we are in position to discuss the solvability of (15), which we rewrite as follows
Kil(y) - KoF(y) = 6y +vy?, y>0. (19)

It will be convenient to denote by ¢;, i = 1,2,... , N the zeroes of the L h.s. of (19),
whenever they exist, i.e.

Kll(q,) - KzF(q;) = 0, Z = 1, 2, N (20)
Then, we have:
Theorem 2. (i) If m > 0 and v > 0, then (19) always admits solutions.
Moreover

(a) if p< 2, there exists a unique ¢ satisfying (19) and £ < ¢ <yo = /2.

(b) if p > 2, there is one and only one solution ¢ in (0, ¢)

(if) If m > 0, v < 0, a solution to (19) exists whenever 22 < (.

(i) If m < 0, v > 0, sufficient conditions for the existence of solutions are the
existence of a root of (20) or

+
v> (Kl (g - 1) + Kzfyo) |m| v/,

where ( )* denotes the positive part of the quantity in bracket.
(iv)If m< 0, v <0, (19) has at least two solutions if (20) has roots and ¢; < 1/

Remark 2. When ¢ # c; the temperature u* = is the intersection of the two

Cr — Cw
lines representing the energy of the solid and the liquid as a function of temperature. We
note that the similarity solution is such that

u(s(t), t) = v(s(t), t) = me>.
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Therefore it seems appropriate to say that a similarity solution is physically acceptable

A
when ¢; > cw , m&2 >
Cr — Cw cr — Cw

2dpald(cr — ew)€? < A

when c¢; <cw

2.3 Similarity solutions with heat flux boundary condition.
If we replace the condition (5) by the following one

kuug(0,t) = —-% >0 (21)

we can consider the problem II given by (1)—(4), (21), (6) and (7) [LoTa] where the
following results were obtained.

Theorem 3. The free boundary problem II has the following similarity solution

s(t) =28Vt , (22)
u(z,t) = m(e") + 222 g(p, ) - 22 = ap(—r? £ g, (29)
_mE )2 + A erf(7€” ) m (€*)? ( )
v, ) o o LA P @4
if and only if the coefficient £* > 0 satisfies the following equation
goexp((p— 1)y®) — KoF(m,y) =6y +vy’,y>0 (25)

or its equivalent
Qo(y) =g,y >0

where (), is defined by the following expression

KyF(m,y) + 6y + vy y
ezp((p—1)y?) ’

Theorem 4. Let m > 0, v > 0 be. Then:
(1) If p < 1, then the problem II has a unique similarity solution if and only if g,
verifies the following inequality

Q.(y) =

> 0. (26)

K rA
az\/_

(ii) If p > 1, then the problem II has a unique similarity solution if and only if ¢,
verifies the following inequality

(27)

0 < g, < maz Qo(y) - (28)
y20
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Remark 3. For p = 0 (then p = 0 without jump of density) the inequality (27) has yet
been found in [Tal].

We have now the following relationship between problems I and II. Let (s, u,v) be the
solution of the problem II given by (22)—(24) where £* is the unique root of the equation
(25). Then u(0,t) is a constant in time which is given by

. 29,
u(0,t) = m(€")’ + S g(p,€) > 0. (29)

Then, we can consider the problem I by impossing this new temperature on the fixed
face x = 0.

Theorem 5. let m > 0, v > 0, p < 1 be. We assume that g, verifies the inequal-
ity (27). If (s,u,v) is the unique similarity solution of the problem II then (s,u,v)
is the unique solution of the problem I where the constant B in the condition (5) is
given by B = T,(¢,,£*(¢,)) where £*(g,) is the unique solution of the equation (25) and
To(q,y) = my* + g%fc—’lg (p, y). Moreover the two solutions are coincidental.

3. Two-phase Stefan problem for Storm’s materials.
3.1. Introduction.

We consider a two-phase Stefan problem for a semi-infinite region x > 0 with phase
change temperature T;. It is required to determine the evolution of the moving phase
separation boundary x = X(¢) and temperature distributions for each phase.

The following free boundary (fusion process) problem is considered [NaTa, Ro, Tr Br}:

penT) e = 5 (MTGE) L X <z <o0, 50 (30)
k()R ~ k(M) 52 = Ip X, 2= X(0) (31)

_ T1=T2=Tf ,:c=X(t) (32)
pcm(Tz)% = % (kz(Tz)%) , 0 <.$ < X(t) , t> 0 (33)
Tl (:c,O) = To < Tf (34)

X(0)=0 (35)

ks (T5(0, t)) 520,8) = —% ,g>0,t>0 (36)

In the above, T;(z,t), cp(T3), k,-(Ti), i = 1,2 represent in turn the temperature distri-
bution, specific heat and thermal conductivity in the two phases, solid and liquid respec-
tively. The density p of the medium is assumed to be constant and L denotes the latent
heat of fusion of the medium. Here —gp/+/? denotes the prescribed flux on the boundary
z = 0 while Ty represents the initial temperature of the medium. It is noted that the
two-phase Stefan problem in linear heat conduction with constant thermal coefficients and
a heat flux of the type (36) was investigated by [Tal]. It was proved in [NaTa] that a
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necessary and sufficient condition in order to have an instantaneous phase-change process
is that an inequality for the coeflicient go should be verified. OQur investigation is confined
to materials for which

!
ng KT . i=12 , Ki>0 (37)
where
T;
<1>,-(T,-)=/ Sio)de .,  S(T)=peu(T) i=12.  (38)
Tos

We remark that if (37) is true then k;(T;) and S;(T;) verify the Storm’s relation

1 d S(T)y 1 .
k,-(:r.-)s,-(:f’.-)z’-’_’e(log ke(’-”i))_\/ﬁ- T (39)

The above condition was originally obtained by Storm [St] in an investigation of heat
conduction in simple monatomic metals There the validity of the approximation (39) was
examined for aluminum, silver, sodium, cadmium, zinc, copper and lead.

We follow now [NaTa] which can be considered as a complement to [Ro]. We prove
in Section 3.2. the existence and uniqueness of solution of problem (30) — (36) if and only
if the positive constant gg is large enough, i.e.

% > VK,G™! (\/;—_I—(TI(;LT)) (40)

©1(To)

where G : (1, 4+00) — (0, 400) is the inverse function of G with

1 exp(—z?)
G(z) = erf(z) + —= i = , z> 0. (41)
which was defined in [BrNaTa] and it was proved that
G(0t) =400 G(+o0)=1 and G'(z)<0 Vz>0. (42)

The inequality (40) for the coeflicient g generalizes the corresponding inequality which
has been obtained for phase-change materials with constant thermal coefficients [T'al]

In Section 3.3. we consider the problem (30) — (35), and the flux condition (36) will
be replace for the following temperature condition :

TQ(O, t) =Tn > Tf . (43)

on the fixed face. We can remark that there exists a relationship between both condition
(36) and (43) on the fixed face £ = 0 which is given by (55) . We prove the existence and
uniqueness of solution of problem (30) — (35) and (43) for all thermal coeflicients.
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3.2. Existence and uniqueness of solution of the free boundary problem with
flux condition on the fixed face.

We obtain that the temperature distributions T} and T3, and the free boundary X(t),
for problem (30) — (36) , are given parametrically by

- - -1 . 1

31 b
T1=<I>1—1 {Alerf <2Kl) {1 +Bl} , £1=1+[1 {Alerf (%I(l) +Bl}d0'
(44)
i ] - 3 v \} .

= -1 — —
T2 - @2 {A2erf (2K ) {2- + B2} 9 52 - [ 2/’7® {Azel“f [(2K2) g + B2} da'

| (45)

X(t)= v/t . (46)

where the unknowns v, A;, B;, A; (¢ = 1, 2) are given by

A1 = Lp+ @3(Ty) — @2(Ty) + Ae (47)

= 1 1 1 1 f(\/;%'\.‘)
A = l_m( ,Kl'\) (h(To) - 01(T,)) By = _eﬂ(\/__h) (h(T, ®,(To) )

(48)
= 1 , 32 — G(ﬁ;) (49)
e ) S el )
and Ay = )\y(7) is given implicitely by the equation
F(v,2) =0 (50)
where F' = F (7, A;) is defined by
F(v,A) = -1+ @ztr,) g&‘:;(’:fg */'\2’")) L7>0, %> 0 (51)
with '
m= G(m)>1 and u(7,/\2)=‘/2K A2 (52)
and ~ must satisfies the equation '
Y(M=Lev”y , 71>0 (53)

where function ¥ is defined by

o _ 2K; ®,(Ty)—91(To) exP(—Ele/\%('Y)) 2K, exP( 2K, /\2('7))
M =-\— +

o et () Y et (4 o)
(54)
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Theorem 6. (i) The equation (50) defines implicitly an increasing function Ay = Ay(7y)

such as F(vy, A2(7)) = 0. Moreover, we have Ay(0%) = 0 and A\y(+00) = &,(T}).

(ii) The free boundary problem (30) — (36) has a Neumann type unique solution if and
only if the coefficient go verifies the inequality (40) . In this case the solution is given by
(46), (44),(45), (48), (49), A2 = Xa() is given by previous part (i), A1 = Ai(7) is given
by (47) and + is the unique solution of the equation (53).

Theorem 6 shows us that when the thermal heat flux input coefficient gy has a lower
bound of the type (40) we obtain an instantaneous phase-change process. On the contrary,
if go does not verify (40) then we only have a heat conduction problem for the initial solid
phase.

In the case where qo verifies the mequahty (40) , we can compute the temperature on
the fixed face z = 0 which is given by

T5(0,t) = Trp = %3 q“‘/:/%Tf ) (\/:::(5)1&3 ¢ ()

which satisfies the condition 73(0,t) > Ty , VYt > 0. Therefore, we can consider the
problem (30) — (35) and (43).

(55)

3.3. Existence and uniqueness of solution of the free boundary problem with
temperature condition on the fixed face.

The temperature distributions T; and T3, and the free boundary X (t) of the problem
(30) — (35) , (43) are given parametrically by

B O (A e R R
(56)

and

T, = {Azerf [(21(2)152 +Bz}—l,€2=/:; {Azerf [(2[(2)%0 + By 3 do

(87)
X(t) =21t (58)
where Ay = Ao+ Lp + &,(Ty) — 2(Ty¥) (59)
A= (et~ aty ) e = (- o,m.)) w0
B, = (F Al) (#l (1) ﬂ(;{;;AI)) , B2 = ¢2(1Tm) (61)
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and Ay = A\y(7) is given implicitely by the following equation
where H = H(~, A;) is defined by

A2 .
H (’)’, /\2) =—1 + A2 (’)’, /\2) /erf ( 5—7{-—-0) do + Bzz\z (63)
v 2
0

and v must be a solution of the equation

AY)=Lovy , >0 (64)
where function A is defined by

A(y) = —\/?3? (¢1(Tgl(~T31(To)) (1 ix:f(g\?—z::gjgo ) +  (65)

_ exp  —52-25(7)
=

Theorem 7. (i) There exist an increasing function Ay = Ay(7y) such as H(y, A\y(7)) =0
for all v and the equation (64) has a unique solution y > 0.

(ii) The free boundary problem (30) — (35) and (43) has a unique solution for all data
A1 = A\ (7) is given by (59) and + is the unique solution of the equation (64).

, ¥>0.

Remark 4. The two boundary conditions on the fixed face (36) , with datum g, and
(43), with datum T;,, are related through the relationship given by (55).

Moreover, all results obtained for the fusion process for the Storm’s type materials
can be also got for the solidification process with the corresponding analogous initial and
boundary conditions.

4. Drying with coupled phase change in a porous medium.
4.1 Introduction.

A semi-infinite porous medium is dried by maintaining a heat flux condition at z =0
of the type —go/v/t, with go > 0 [T'al] . Initially, the whole body is at uniform temperature
~ to and uniform moisture potential ug. The moisture is assumed to evaporate completely
at a constant temperature, evaporation point #,. It is also assumed that the moisture
potential in the first region, 0 < z < s(7), is constant at u,, where z = s (7) locates the
evaporation front at time 7 > 0. It is further assumed that the moisture in vapor form
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does not take away any appreciable amount of heat from the system. Neglecting mass dif-
fusion due to temperature variation, the problem can be expressed as [Ch, Gu, Lu, SaTa] :

%?l(z,r)=a1%;%(z,r), O<z<s(r),7>0 (66)
w=u, 0<z<s(r),7>0 (67)
Oty 3ty | eLem Ouy

ar(z’T)‘“‘asz“ P z>s8(r), 7>0 (68)
%(:B,T)= %2-%2(3:,1'), z>38(r), 7>0 (69)

&1__& _
kla—x—- W at z=0,7>0 (70)
th=ty in >0,7=0 (71)
up=u in z>0,7=0 (72)
ti(s(1),7)=t2(8(7),7)=t, >t at z=3(7) (73)
up (8(r),7) =u2(s(7),7) =, <up at z=s(7) (74)

ot ot .

"kla_; (s(m),7) + k28—z2 (8(1),7)=Q—¢€)pply at z=3(1) (75)

where t; : temperature of the dried porous medium; ¢, : temperature of the humid porous
medium; u, : mass-transfer potential of the humid porous medium; a; (i = 1,2) : thermal
diffusivity of the phase-i; a5 : ratio of thermal diffusivities from phase 1 to phase 2; a, :
moisture diffusivity; ¢, : specific mass capacity; c, : specific heat capacity; k; (i = 1,2) :
thermal conductivity of the phase-i; ko; : ratio of thermal conductivity from phase 2 to
phase 1; Ko = Lep(up—1uy) //¢q(ty—to) : Kossovitch number; L : latent heat of evaporation
of liquid per unit mass; {4 : initial temperature; ¢, : temperature at the phase-change state;
up : initial mass-transfer potential; € : coefficient of internal evaporation; p,, : density of
moisture; L, = a,,,/a; : Luikov number and v = (1 — €) Lp,,a1,/k1(t, — to) > 0.

We follow [SaT'a]. In Section 4.2 we find a solution of this problem, depending on the
value of the Luikov number L, and in Section 4.3 we give a sufficient condition for the
Luikov number L, in order to obtain when the temperature distribution has a minimum
value less than its initial temperature.

4.2 Similarity solution.

We have .
Theorem 8. If the Luikov number is equals to one, and the coefficient go verifies the
condition ka (£ — to)
2\v — WO

then there exists one and only one solution A > 0 of the following equation
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ka1 6—32 [ 2¢ Ky e’ ®

- 2 _ -
TRl et (@) ﬁxl—erf(x)+2€K°z eKo— 2| + -
2\/(1—1110 —z3 _
*r (s — to)e = 2vZ, z>0.
Furthermore, the solution of the problem (66) - (75) is given by :
u (z,7T) =14y, O<z<38(7),7>0 (78) -
- AV _
t1(z,7) 1+k1(t —to) (erfA erf(2\/a_l7)) O<z<s(r), 7>0 (79)
1—erf ( )
_ 2./amT (80)
Uy (2, 7) = T=ef (V) z>s8(r), 7>0
1 —erf( z ) _ ?
()= Koy 2aT) % |4
VT (1 —erf (X)) 1 —erf(X) 2/
(81)
1—erf ( Z )
2\/(117'
+ — , z>s8(1), 7>0
s (1) = 2A\\/a;,T. (82)
For the case L, # 1, that is to say, a,, # a; we define the following functions:
V/Ta1q
b (z) = =5 + P (a) (83)
(tv - tO)
¢ (z) = kaF; (z) + VTkyvz. (84)
where LoeKo, [ 1
u T
P(z) = L..e—lok”(\/f;F‘(\/E) —Fl(a:)), z>0. (85)

Theorem 9. If the Luikov number is different than one, and the coefficient gy verifies

the condition
VvV LuEKo) tv - to
14++L,/) V7a;’

then there exists one and only one solution A > 0 of the equation

g > k2 (1 + (86)

p(@)=p(z), z>0. (87)
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Furthermore, the solution of the problem (66)—(75) is given by (78), (79), (80), (82) and

I I
- . o KoL _1—erf(2 "—_am‘r) +1—erf(2 ’_—al'r)
2 =7 l—erf( ;) ) 1—erf (A

vV Ly
l—erf( z

2 /a7
1—erf) ’

Remark 5. The right side member of the inequality (86) goes to the right side member
of the inequality (76) when L, tends to 1, that is to say, we can study the case L, = 1
considering the limit L, — 1 in the case L, # 1.

4.3 Sufficient condition for the Luikov number in order to obtain the minimum
value of the temperature distribution.

Some results of sample calculations are shown in [SaTa] with Ko = 2,ay =1, ky =1,
and (t, —tp) = 1 where we can see that the temperature distribution t; reaches to a
minimum value which is smaller than the limit value ¢y that the function reaches at +o0,
i.e. the initial temperature. We shall find the values of the coefficient L, for which the
function ¢ has a minimum value which is smaller than its imit value when 7 — +o00.

Theorem 10. If the Luikov number L, verifies the condition

1
eKo+1

- then the temperature distribution ¢» reaches to a minimum value which is smaller than
the initial temperature or its limit value at +o0o0. The minimum value is attained when
the dimensionless variable n = z/2,/a;7 takes the value

(88)

+

z>s(r), T>0.

L, > (89)

B T (ST il | E
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