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D A TARZIA .
A steady-state two-phase Stefan—Signorini
problem with mixed boundary data

Abstract. We consider a steady-state heat conduction problem in a multidimensional
bounded domain €2 which has a regular boundary I"' composed by the union of two parts
I'; and I';. We assume, without loss of generality, that the melting temperature is zero
degree centigrade. We consider a source term g in the domain 2. On the boundary
I’ we have a positive heat flux ¢ and on the boundary I'; we have a Signorini type
condition with a positive external temperature b.

We obtain sufficient conditions on data g, g, b to obtain a change of phase (steady-
state, two-phase, Stefan-Signorini problem) in €2, that is a temperature of non-constant
sign in . We use the elliptic variational inequalities theory. We also find that the
solution of the corresponding elliptic variational inequality is differentiable with respect
to the Neumann datum g on I';. Several properties already obtalned for vanatlonal
equalities can also be generalized for variational inequalities. '

Moreover, by using the finite element method, we also obtain sufficient conditions
on data to obtain a steady-state, two-phase, discretized Stefa.n-Slgnorlm problem in
~ the corresponding discretized domain, that is a discrete temperature of non-constant
~ sign in Q.

1. Introduction. N

We consider a bounded domain Q@ C R" with regular boundary I" = I'; UT', with
IT2| = meas(I'z) > 0 and |I';| > 0. We suppose that 'y = Fy; UT,;, with |[['};| > 0 for
1=1,s.

We consider a steady-state heat conduction problem in Q2. We assume, without
loss of generality, that the melting temperature is zero degree centigrade. We consider
a source term g in the domain Q. On the boundary I'; we have a positive heat flux g
and on the boundary I';, we impose a positive temperature b. On the boundary I';,
we have a Signorini type condition with a positive external temperature b. If 8 is the
temperature of the material we can consider the new unkown function in 2 defined
by[Du, Tal]

(1) u ='k20+ — k0™

where k; > 0 is the thermal conductivity of the phase i (i = 1 : solid phase, i = 2 :
liquid phase). Let B = k2b > 0 where b > 0 is the temperature imposed on I'y,.
We consider the followmg steady-state Stefan-Slgnr{nm free boundary problem

(2) —Au = in Q
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3) ~5-/m=g¢ on T,

(4) U/Flt =B on Flt
(5) >B, %50 w-B)=0 o T
b= 5p = on Lo

The goal of this paper is to find sufficient conditions on ¢ = Const.> 0 on I';
to obtain a temperature u of non-constant sign in €2 , that is a steady-state, two-
phase, Stefan-Signorini problem. When I'; =T}, (i.e. '}, = 0) the corresponding free
boundary problem without Signorini boundary conditions was studied in [GaTa]. We
follow a method similar to the one developed in [BoShTa, GaTa, GoTa, Sa, Tal, Ta2,
Ta3).

We shall present some theoretical and numerical (by finite element approximation)
results through variational inequalities and the corresponding related estimates in
terms of the finite element approximation parameter h.

2. Continuous analysis.
The variational formulation of the problem (2)-(5) is given by

a(u,v—u) > L(v—u), Yv€ Kp
(6) { u € Kp -
where
| (V=HQ),
Wo={veV/v/Th, =0v/Th, =0} C Vo={veV/v/T, =0}
() \ Ks={veV/vTs, =B, vTy, >B}=B+K,
Ko={veV/v/Ty,=0,v/Ty, >0} DWW,
and
a(u,v) = /Vu.Vv dz
(8)

L(v) = /gv dx—/ qu dry.

For g € L*(R2), we have a unique solution u = ugp (it will be denoted by u,) of
the variational inequality (6) [KiSt, Tal).
We obtain for u, the following properties:

Lemma 1. We have

) 2

(i)(9) o ”"q2 — Uq "v <a (uq2 — Ugy, Ug, — “qx) < (a1 - ¢) /r‘2 (uq2 - uqx) dy
where o > 0 is the coercive constant of the bilinear form a.
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r
l 2| “'70“ |q |

"uqz Uq, IV =
o -
where vy is the trace operator.
(iii) The function R* = R,

(11) q-— /I-, Uqdy
2
is a continuous and strictly decreasing function. Moreover, we have

(i) (10) 9

|P2 2 70
ol g

L2(l"2) -

Q1 < @2 = ug, < ug in Q and Iy /r‘ ug, dy < / ug, dv .
2 Fz

(iv) There exists u; € V; such that:

(2) ErJ‘Ts—_:—'u—q-—\u;inV—wea,k , when 6 =0

(#) —‘1-—(-5———‘1 — uy in L?(Ty) f‘weak_ ) when J— O. |
and
(13) a(ug, ug) = L(uy) < / gu, dz — q/ u, d'y)

The element u, unique solution of (6), is also characterized by the following mini-
mization problem: :

J(u) < J(v), VveE Kp
(14) { u € Kp |
where
(15) J(v) = Jgg(v) = 30(v.0) — Lgg(v).
We can define the real function f : R* — R in the following way [GaTa, Ta2]
(16) f(g) = J(ug) = a(ug, ug) / gu, dz + q/ u, dy

where u, is the unique solution of the variational inequality (6) for each heat flux q> 0.

Theorem 2. The function f is differentiable. Moreover, f’ is a continuous and strictly
decreasing function, and it is given by the following expression

(17) 7@ = [ udr
2

Proof.- We use (6), (13) and the definition of f'.

Corollary 3. We have the following properties:
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d '
(18) da [/‘; gu, dfy] = /nguq dz

(19) d% (6t )] = 20 (g, )
(20) @ = [ vyd.

Theorem 4. The element u; does not depend on g, that is u, = n € K, where 7 is
the unique solution of the following elliptic variational inequality:

a(TI,'U—TI)Z—/F('U_TI)d’Y, VUEKO
2

n € Ky .

(21)

Moreover, n/r, < 0 with
(22) —/F ndy > a(n,n) 2 alnlf > 0.
2

Corollary 5. We have the following properties :

(i) The element u, can be written by

(23) Ug = Ugp =B+ Uy +qn

where U, is the unique solution of the following elliptic variational equality

a(U,,v) = /ng'v dz, Yve W,

(24)
Ug eW,.
(ii) We have
(25) f(@) = (BIFa| + C,) - Dy, @)= [ ndv
where
(26) | Cy= [ Uy dn, D=-[ ndv>o.
I'2 I
We can define the real function R = R(B, g) in the following way
27) R(B,g) = Bl + Gy
D
Theorem 6. For B > 0 and g € L%(f2), we have:
(28) q > R(B, g) = u is of non-constant sign in 2,

i.e. there exists a steady-state two-phase Stefan-Signorini problem.

Proof. The result (28) is obtained by considering the following equivalence
(29) a> R(B,g) = f'(9) = [ ugdy <0,
2
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3. Numerical analysis.

We suppose that 2 C R" is a convexe polygonal bounded domain. We consider 73,
a regular triangulation of the polygonal domain 2 with Lagrange triangles of type 1,
constituted by affine-equivalent finite element of class C°, where h > 0 is a parameter
which goes to zero. We can take h equal to the longest side of the triangles T € 7,
[BrSe, Ci, GILiTr]. We follow a method similar to the one developed in [Ta3] to obtain
the discrete equivalent of the continuous result (28).

The variational formulation of the continuous problem (6) is given by

I a(un,vn — up) > L(vp — up) , Vv, € Kp,

(30) up € Kp,
where k
( Kp, = B+ Ky, C Kg, P, = set of the polynomials of degree < 1
Ko, = {vn € C°@)/ va/T € Pi(T),¥T € T, vn/r,, = 0,vn/r,, > 0}
B |y, = {vn € C°@)/ va/r € Py(T),VT € T, vn/r,, =0}
\ W, = {vh € C*(Q)/ vn/r € Pi(T),VT € Th,Vn/r1,s Vn/ry, = 0}
with

I’V(),l C I((),l C ‘/oh
(32) Wo, C Wo, Ko, C Ko, Vo, C Vo

For g € L?*(2), the unique solution of the variational inequality (30) will be denoted
by up = up,.The element u, is also characterized by the minimization problem:

J(uh) < J(’Uh) s V’Uh € KB;.
(33) Uup € KB;.-

For each h > 0, we define the real function f; : R* — R in the following way
(34) fn(q) = J(un,) = 3a(uny, un,) — Lg(un,)-

We obtain the following properties for the discrete solution up, of the elliptic vari-
ational inequality (30).

Theorem 7. We have the following properties:
(i) There exists an element u;,_ € V; such that

(35) w — u, in V—weak , when § =0
(36) ﬁﬁ%—_w—'ﬂ — up,  in L*(Tz)—weak , when § — 0
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(37) a(un, uh,) = [ guh, dz—q [ o, dr.

(ii) The function R* - R, ¢ — /r up,dv is a continuous and strictly decreasing
2

function.
(iii) The function f, is differentiable. Moreover, we have the following expressions:
(38) f@=[ wdr . R@=[ u,dr
2 2
(iv) The element u;, can be written as
(39) up, = B+ Un, +qmn , Th = th, € Ko,

where Uy, and 7, are respectively the unique solutions of the variational equality (40)
and inequality (41), that is:

' 'a(Uhg,vh) = /ngvh dz , Vv, € VV(),l

(40) <
Uhg € Woh
’ a(Nh, n — Mp) > —/ (vh —mn) dvy, Vv, € K,
(4) " |
| ™ € Ko, -
(v) We have that 7/, <0 and
(42) _/r amh dy > a(nn, ) > a3 > 0.
2
(vi) Also, we have
(43) f1(@) = (BITz| + Ch,) — Dag, W)= [ mdr<o
2
where
(44) Ch, = /r Un,dy Dy = _/r mh dy > 0.
2 2
(vii) If, for each h > 0, we define the real function
Bl C
(49 Ra(B,g) = 22+ O
h

then we obtain that

(46) g > Ru(B, g) = us is of non-constant sign in Q,

i.e. there exists a discrete steady-state two-phase Stefan-Signorini problem.
Proof. We use a method similar to the one developed'in [Ta3].”

4. Error bounds.

Let II, be the corresponding linear interpolation operator for the finite element
approximation. There is a constant Co > 0 (independent of h) such that [BrSc, Ci]

(47) lv—Molly < Coh™ivll,g »  WweH (@ , r>1
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If we suppose the regularity property:
(48) uy € H™(2) , n € H(Q2)

we obtain the following error estimates.

Theorem 8. We have

(49) lur = u,lly < O(R™)

(50) 0< Cl - Clh =0 (h2r_2) , 0< do,, (B) _ Q()(B) =0 (h2r_2)
(51) Chy — C| =0 (k1)

52) In—mlly <O ( T) . IR(B.9)-R(B,g)|=0 (KT ).
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