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D A TARZIA
On Heat Flux in Materials With or Without Phase

Change

1 Introduction

We consider a heat conducting material occupying 2, a bounded domain of IR" (n = 1,2,3
in practice), with a sufficiently regular boundary I' = I'; UT'2 UT'3 (with meas (I';) > 0 and
meas (I'2) > 0). We assume that the phase-change temperature of the material is 0°C. We
impose a temperature b = b(z) > 0 on I'; (or a Newton law with coefficient o > 0) and an
outcoming heat flux ¢ = ¢(z) > 0 on I';; we also suppose that the portion of the boundary
I'3 (when it exists) is a wall impermeable to heat, i.e. the heat flux on I'3 is null.

If we consider in ) a steady-state heat conduction problem, then we are interested
in finding necessary and/or sufficient conditions for the heat flux ¢ on I'; (and/or the
heat transfer coefficient a on I'1) to obtain a change of phase in 2, that is, a steady-state
two-phase Stefan problem in .

We shall consider several cases.

2 Problem I

For constant data b > 0 and ¢ > 0, find a constant go > 0 such that for ¢ > go we have a
two-phase Stefan problem.

The temperature § = 6(z) can be represented in @ = 23 U Qp U £ in the following
way:

0, z€L (free boundary) (1)

61(z) <0, ze€ (solid phase)
b(z) =
O2(z) >0, z€Q (liquid phase)

Denoting by k; > 0 the thermal conductivity of phase ¢ (¢ = 1: solid phase, ¢ = 2: liquid
phase), we define the new unknown function u as follows [3,5,13]

u =kt — k16~ in Q (2)

and we obtain the problem (B = kb > 0):

Ou ou (3)

Au=0, in Q,
U|I‘1 = B, —a_nlrz =gq, '5;'1"3 = 0,

whose variational formulation is given by:

a(u,v —u) = L(v — u), VvEK,} @)

u€ K,
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where

V=HY(Q), K={veV| v, =B},

a(u,v) = / Vu-Vuvdz, L(v)= —/ qudy.
Q

Ty

(8)

Moreover, the element u € K is also characterized by the following minimum problem
[10,15]

u) < J(v), WweK,
J(u) < J(v) € } ®)

u €K,
where J(v) = 1a(v,v) — L(v).

Let u = u4 be the unique solution of the above variational equality for ¢ > 0 and let
f:IR*Y — IR be the real function defined by

1
f0) = I(ug) = galug,ug) + [ ugd. (™)
2 -
Theorem I-1. We have the following properties [16]:

1) There exists a constant C' > 0 such that

a(ug, uq) = qus
C (8)
f(g) = =5 ¢* + B g meas (I’s).
ii) If ¢ > qo(B), then we obtain a two-phase Stefan problem in 2, where
B
go(B) = —= meas (I'9). (9)

C

We remark that the element go verifies f'(go) = fF2 uqo dy = 0.
Let gc > 0 be the critical heat lux which characterizes a two-phase Stefan problem in
Q, that is

g>q & 3 2-phases,} (10)

g < ¢ © 3 1-phase.

Theorem I-2. We obtain some estimates for ¢, [2]:

i) If w is the solution to
Aw=0, in Q
wlr, =B, wlr, =0, g—:|r3 = 0} ()
then we have B

¢i = min(=7-Ir;) < ¢e. (12)
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i) Let d = Sup,er, dist (z,fl) > 0 and let P, € T1, P, € T'; be such that d = dist
(P1, P2). Now let m be an affine function such that

7r(P1) = B, 7r|[‘1 > B

W(Pg) = 0, ’l'l'l[‘2 2 0 (13)
on
. >0
anlra =
then we have
. on
gs = !rfz;x(—gzlrz) > ge. (14)

i) fw#7 (l.e. w < 7) in Q then ¢; < gs.

iv) ¢.(€) is a non-increasing function of 2 in the following sense:

Q) C Q2 with a common I'; and T'3) = ¢(22) < ¢.(1). (15)

3 Problem II1

For the general case b = b(z) > 0 on I'; and ¢ = ¢(z) on 'z, we consider the following
optimization problem: Find ¢ € Q% that produces the maximum total heat flux on I';
without change of phase within Q, i.e. find

max F(q) (16)

where
Q=H'*(T2), §*={ueS|u>0in 0},

S={u€K|Au=0 in Q, —g—;—i—lr3=0},

Qt =TS = (g€ Q|u 20 in O,

f:Q-R|F@)= [ qdn J
Ty

¢ (17)

where the application T : Q — S is defined by T(q) = u where u = u, is the unique
solution of the variational equality (4). We suppose that b € H3/2(T')) and Q is sufficiently
regular to have the reglarity property u € C%(Q) (See, for instance, our three examples).

The problem is solved by using optimization techniques of convex functionals with
restriction [1,4].

Theorem II-1. [8] There exists a unique § € Q% such that

F(g) = max F(q). (18)
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Moreover, the element 7 is defined by

G = ——g%h\z (w 1is given by (11)). (19)

We have other problems related to problem II [8]:

IIi) Find the maximum upper bound for ¢ such that there is no change of phase within
Q, that is:
Find ¢}y >0|ug>0 in Q, Vg=gq(z) < gy on Ty (20)

II-ii) For ¢(z) = @q1(z) on 'y (Q = const. > 0, ¢1 > 0 on I'; given) find the maximum
upper bound for @ such that there is no change of phase within 2, that is:

Find Qu >0 |4, >0 in @, VQ<Qu. (21)

4 Problem III
For the constant case b > 0 and ¢ > 0 we change the condition u|r, = B into the following
Ou
—p., = — 22
2%Ir, = a(u — B) (22)

and then we can pose the same problem I, now with the variables «, ¢, as characterizing
also a two-phase Stefan problem.
The variational equality for u = uq,p is given by [13]

aa(u,v) = Lagp(v), Yv €V } (23)
ueV
where
aq(u,v) = a(u,v) + a/ uv dvy,
k (24)
LogB(v) = —q/ vdy + aB/ vdy.
Ty Ty

Theorem III-1. [12] If ¢ > ¢o (qo is given by (9)), then we have a two-phase Stefan
problem in §2, Va > ag, where

meas(I'z) ¢

ap = ag(q,B) = meas(Ty) B’ (25)
Let g : (IR*)? — IR be the real function defined by
1
9(a,q,B) = é’aa(uan’“an) — LagB(tagp) < 0. (26)
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Theorem III-2. [12] There exists a function A = A(a) > 0, defined for o > 0, such

that:
A(a) Bla
2

9(a,q,B) = — q* + Bqmeas(T';) — — meas(T). (27)

Moreover, A is a decreasing function which verifies

[meas(T;)}? 1

A i =
() > meas(I';) o’ allvl-lfloo Ala) = C, (28)
. 1
allvl-}-loo ad'(a) =0, (ad(a)) = ?a(uaqg,uaqg).
Let ¢gm = gm(a, B) and gy = qp(a, B) be the real functions defined by:
B meas([;) Ba meas(T')
m(a, B) = YR ’ B) =
an(er B) = ZEEAT gy, B) = TEEE (29)

Theorem III-3. [12] If (a,q) € 5(2)(3), then we have a two-phase Stefan problem in
Q, where

$O(B) = {(a,9) € (BRY)? | gm(e, B) < ¢ < qu(a, B)} (B >0). (30)
We consider now the particular case when uqgp verifies the condition

1
q—za(uan, uqqB) = Const. (31)

In this case, necessarily we have that

Const. =C > 0. (32)

Theorem III-4. [12] We have the following properties for this particular case

agB |p. = B — ‘I_HE?iI_‘E)l

* 1 meas(T'y) ’
(33)

A(a) =C+ wl

meas([;) o’
then we obtain a complete description of the set S(2)(B).

Remarks. i) When, because of symmetry, u, is constant on I'y [usqp is constant on
I'; UT;] the sufficient condition in Theorem (I-1ii) [Theorem II-3] becomes also necessary.
ii) We can verify all theoretical results obtained in this paper in three different examples
[14]:
a)
n=2, Q=(0,z0)%x(0,y0), z0>0, yo >0,
rh = {0} X [O’yO]’ [y = {370} X [0, yO], (34)
F3 = (0, xO) X {0} U (0, 1170) X {yO}
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For this case, we obtain

B q
¢ = ToYo, QC=Qi=q.s=q0=;;, aO=E’
4 1 B B (35)
(a) = y0(30 + ';), dm = m, qM = Da,

b)
n=2 0<r <ry P3=@’
Q2 : annulus of radius r; and r2, centred in (0, 0), (36)

I'1(T'2) : circumference of radius r1(r;) and centre (0,0).

c) We take into account the same information of (b) but now for the case n = 3.
iii) The two elliptic variational equalities (5) and (25) appear if we consider the asymptotic
behaviour when the time ¢ — 400 in four parabolic variational inequalities of type II,
defined in [13] for the evolution two-phase Stefan problem. The asymptotic behaviour for
the weak formulation was given in [6).
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