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D TARZIA

Analysis of a bibliography on moving and
free boundary problems for the heat
equation. Some results for the one-
dimensional Stefan problem using the
Lame—Clapeyron and Neumann solutions

This paper is made up of two parts which are independent of each other. The
first is concerned with a bibliographical analysis of a wide collection of
papers which are of interest ot this International Sympos1um " The second is
concerned with the d1fferent results obta1ned by us1hg the exp11c1t solutions
in the one-dimensional ‘Stefan problem.

1. AN ANALYSIS OF A BIBLIOGRAPHY ON MOVING AND FREE BOUNDARY PROBLEMS FOR
THE HEAT EQUATION. THE STEFAN PROBLEM

A review of a long bibliography on moving and free boundary problems of the
heat equation, particularly regarding the Stefan problem, is presented in
[71]. - The bibliography is analysed and classified into theoretical, numerical
and experimental papers and also those concerning possible applications. The
plan developed in [71] is the following:

I. Moving boundary problems for the heat equation
I.1. One-dimensional case

I.2. Multidimensional case

I.3. Physical applications

1.4, Applications to free boundary problems

II. Free boundary problems for the heat equation

II.1. Free boundary problems of Stefan type

II.1.1. One-dimensional case

I1.1.1.1. One-phase problem (theoretical, numerical methods and applications)
II.1.1.2. Two-phase problem (theoretical, numerical methods and applications)
II.1.2 Multidimensional case

I1.1.2.1. One-phase problem (theoretical, numerical methods and applications)
11.1.2.2. Two-phase problem (theoretical, numerical methods and applications)
I1.1.3. Other generalities

I1.1.3.1. Free boundary problems in a gaseous state
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I1.1.3.2. Experimental works
II.1.3.3 Solid-liquid interphase
I11.1.3.4 Other applications

II.2. Free boundary problems not of Stefan type

II.2.1. Diffusion-consumption of oxygen in absorbing tissue
I1.2.2. Flow of two immiscible fluids in a porous medium

I1.2.3. Movement of a compressible fluid through a porous medium
I1.2.4. Impact of a viscoplastic bar on a rigid obstacle

II1.2.5 Chemical reactions between two substances

I1.2.6 Other free boundary problems for the heat equation
I1.2.6.1 Of an implicit type

11.2.6.2 Of an explicit type.

To avoid confusion between the terms "free boundary" and "moving boundary",
I think it is advisable to point out the difference between them, especially
since both terms are used indiscriminately in the English literature (see,
e.g., the previous International Symposium on this subject [1, 29, 51, 54, 85].
On the other hand, in [18] the author discusses the relationship between
moving boundary problems (parabolic and time-dependent) and free boundary
problems (elliptic and steady state). Because of this definition, approxi-
mately 1% of the references in the long bibliography on free boundary problems
[17] are concerned with heat conduction and diffusion [17, §1.6] (there exist
only 53 references). Our definition follows the one used in the Italian
literature (Florence group). In general, the problems given for the heat or
diffusion equation are classified in the following way: -

fixed

s (___f-moving

) implicit type
free ‘1:: explicit type

boundary problem

The fixed boundary problems for the heat equation are those studied in the
domain (x1,x2) x (0,T), i.e., the classical problems analysed in any basic
course of partial differential equations, such as:
Up = Uyy = f(x,t), Xp <X < X, 0<t<T
(FBP) < u(x,0) = h(x), Xy <X <X, }
ulxqst) = f(t) or u (x,,t) = f,(t), 0<t<T

u(xz,t) = f2(t) or ux(xz,t) = fz(t), 0<t<T
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which are not included in our analysis and classification.

The moving boundary problems for the heat equation are those studied in
the domain {(x,t)/s1(t) <X < sz(t), 0 <t < T} with s1(t) < sz(t), functions
given in (0,T), i.e., the spatial domain of the unknown function varies with
time because of a law of movement, known a priori, such as

4

_.UXX = f(X,t), 51(t) <X < Sz(t), 0<t«<T

Ug

u(x,0) = h(x), 51(0) < x < s5,(0)
(MBP) ‘

u(s1(t),t) f1(t) or ux(s1(t),t) f1§t), 0<t«<T

u(s,(t),t) = f,(t) or u (s,(t),t) = f(t), 0 <t <T.

.

Moreover, the domain can be of the form {(x,t)/x < s(t), 0 <t < T} or
{(x,t)/s(t) < x, 0 <t <T}. All these problems were originally studied in
{6,22,34,35,38-40,44] and in the last decade in [26-28].

The free boundary problems for the heat equation are those in which the
spatial domain of the unknown function varies with time because of a law of
movement not known a priori. The fact of not knowing the boundary or part
of it, determines, of course, the mathematical need to impose new conditions
on the unknown functions, which will depend on the physical problem studied.
In general, the new condition to be imposed on the unknown function is deduced
from the principle of conservation of energy through the boundary. Thus it
follows that this boundary is the complementary unknown of the problem, and
is called the free boundary of the problem under analysis.

Therefore, the essential difference between the moving and free boundary
prob]éms lies in the fact of the existence of a boundary whose law of move-
ment is known in the first case and unknown in the second, the latter being
another unknown of the problem itself.

The free boundary problems for the heat equation are divided into two
classes, the explicit and the implicit types, according to whether the speed
of the free boundary appears explicitly, -in the conditions imposed on this
boundary. That is to say, if the free boundary is given by s = s(t), then
the problem will be of an explicit (implicit) type if s(t) appears (does not
appear) in the condition imposed for x = s(t). An example of a free boundary
problem of explicit type is the classical Stefan problem {9, 11 (Ch. 11), 15
(Ch, 13), 19, 23, 30 (Ch. 8), 49 (Ch, 8-10), 55 (Ch.10), 59] and of one of
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implicit type is the diffusion-consumption of oxygen in a living tissue [16,
45]. In general, free boundary problems of explicit and implicit types are
related to each other [25, 61].

To finish this part, it is important to point out that the subject has
been reviewed in many papers. These include, apart from those already
mentioned, [3,7,50,57,58,62]. A bibliography on moving free boundary problems
with key word index is given in [86]. At the moment, we are compiling a
bibliography with more than 1700 references on this subject.

2. SOME RESULTS FOR THE ONE-DIMENSIONAL STEFAN PROBLEM USING THE LAME-
CLAPEYRON AND NEUMANN SOLUTIONS |

Different results using the explicit solutions in the one-phase or two-phase
Stefan'problem have been obtained, for example, in the following problems:

(i) Relationship between the similarity and inmobilization of domain methods
[60].

(ii) Density jump at the free boundary [11, 13, 14, 59].

(1ii)Coupling of temperature and concentration [59, 64, 78, 84].

(iv) Solidification of alloys [75, 76, 81].

(v) Composite body with simultaneous solidification and melting [24].

(vi) Existence of multiphases [59, 80, 82, 83].

(vii)Phase-change heat and mass transfer process in a porous medium [12,
46-48, 52, 53].

(viii)Oxidation of zirconium [20, 21 (interaction between UO2 and Zr)]'

(ix) Absorption of a gas (oxygen) by a solid [31].

(x) with variable thermal coefficients [13, 77].

(xi) Solidifcation with mushy zone [63].

We present here some results connected with one-dimensional one-phase and
two-phase Stefan problems, which are obtained by using the Lame-Clapeyron
[43] and Neumann [7,11,79] solutions, for example: inequality for the heat
flux on the fixed face for obtaining a phase-change process with a density
jump, inequalities for the coefficient that characterizes the free boundary,
determination of one or two thermal coefficients through a phase-change
experiment (and also including the mushy region model given by Solomon-Wilson-
Alexiades), determination of thermal coefficients through approximate methods
(Stefan's quasi-stationary method, Goodman's integral balance method, Biot's
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variational method) and its comparison with those given through the analytical
solution. Therefore, we shall consider several different problems with their
corresponding results {(we shall assume from now on and without loss of gener-
ality, that the material phase-change temperature is 0°C).

2.1 An inequality for the heat flux on a fixed fate of a one-dimensional
finite material undergoing a steady-state phase-change problem

P(oplem P1 We have a one-dimensional material of finite length Xo > 0,
represented by the interval (O,xo), and we consider the steady-state heat
conduction problem with the following boundary condition: on the face x = 0
we have a temperature B > 0 and on the face x = X, we have an outward heat
flux q > 0. The material loses energy through the face x = X therefore its
temperature will be below the value B; but, in general, the material will not
undergo a phase change. Which inequality should Verify the heat flux q for
the material to undergo a phase change within?

We have the following results:

Property 1 [68] (i) The material will undergo a phase-change within iff
q > k,B/x . Moreover, in such a case the free boundary s € (0,xo) and the
temeprature 6 = 9(x) are given by 1
. k,B
. 2
8(1-'2')1f0<x<s, S-_-—q-—

a(x) = ¢ (1)
| kZB X .
- —ET-(E-- 1) if s<x< X g

\
(ii) If g < kZB/xo’ then we have a steady heat conduction problem only for
the liquid phase.

(iii) If there exists an energy consumption g = g(x) < 0 within the material,
then it will undergo a phase change iff q verifies the following inequality:

k,B X9
q > 7?" + iL- J t g(t)dt. (2)
o o ‘0

Moreover, the free boundary is the only element s € (U,Xo) which satisfies

the equation u(s) = 0, where
X

o X
u(x) = kB + ( JO g(t)dt - q)x - JO (x-t)g(t)dt. . (3)
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2.2. An inequality for the heat flux on the fixed face x = 0 of a semi-
infinite material (initially at uniform temperature) for it to undergo

an evolution phase-change problem

Problem P2 We have a semi-infinite material in solid phase at constant
temperatuke -C < 0. If on the fixed face x = 0 we impose a heat flux of the
form q(t)'= -qo//f (qo > 0) at t > 0, we may ask for which values of 9 will
the material undergo a phase change?

We have the following results:

Property 2 [2, 64, 69] (i) If we consider the density jump at the free
boundary, i.e., Py # P then the material will undergo a phase change
within, iff q, verifies the inequality

Ck p.C.K
4y > —= = € (-1} (4)
a1/F

Moreover, in such case, the free boundary s = s(t) and the temperatures
6, = ez(x,t)'and 6, = 61(x,t) of the 1liquid and solid phases, respectively,
are given by '

61(x,t) = —-—-—-:'—g-—-—--—-[erf(m1 y X ) - erf(gi)], x >s(t), t>0
erfc(w/ao) 2a1/f 0
8,(x,t) 2% [erf(L) f (—2—)J, 0 < x < s(t), t >0 (5)
x,t) = erf(=) - erf (——)], x < s(t),

2 k 3, 2a,/%

a PA=P
s(t) = 2w/t, my = |€|w’ a_ = I , € = g 1

a4 U 1

where w > 0 is the unique solution of the equation

Fo{x) = x, x >0 (6)
with
a L. Ck exp(-xz/ag)
F (x) = T, exp (- =) - . (7)
22

X024 erfc(x/ao)

(i1) If 9, < Ck1/a1/F, there is no solution for the fusion problem P2; we
just have a heat conduction problem in the initial solid phase.
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2.3 1Inequalities for the coefficient o of the free boundary s(t) = 20/t
of the Neumann solution for the two-phase Stefan problem

Since the solution (5) of (P2) verifies the condition By = 8,(0,t) =
azho/F f(w/az)/k2 > 0, we can consider the Neumann problem(on x = 0 the
semi-infinite material has a temperature B > 0) whose solution is given by

91(x,t) . [erf(61 + ) - erf (——J], x >s(t), t>0
erfc(o/a,) 2a1Jf %
erf( )
6,(x,t) = B[1 - ———2——2”] , 0<x<s(t),t>0 (8)
erf (—2)

s(t) = 20/E, 6, =l§|2
1

where o > 0 is the unique solution of the equation

F(x) =x, x>0 ‘ 3 (9)
where ) )
2 2
Bk exp(-x“/a;) Ck, exp(-x“/a%)
F(x) = —2 e - o (10)
szaz/F erf(x/az) 2p2a1JF erfc(x/ao)

Then, we obtain the following properties

Property 3 [2] If inequality (4) is valid and we connect (P2) with Neumann's,
taking B = Bo’ then we obtain

(a) o = w (therefore the two problems are equivalent).
(b) The coefficient o, which characterizes the free boundary of Neumann's
solution, satisfies the inequality

erf(f%) < —-(Eg—g~g)é. (11)

Property 4 [65] For the case Py = Pos the coefficient o of solution (8)
satisfies numerous inequalities, for example:
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Bc2

(1) o <a, 37 (—2—)

(SL+CC1)/1?

-1 B

(i1) o<a, ¥ (—=) (12)

L/ a’

Ck erf(x) exp(- —%-xz)
with J(x) = x erf(x), Y(x) = J(x) + ! a -
pRAZA/T e (Eg x)

1

which are properties that hold for all materials.

2.4 Determination of one or two thermal coefficients of a semi-infinite

material through a one-phase Lame-Clapeyron problem with an over-

specified condition on the fixed face

Let us suppose that one or two of the four coefficients k,2,C,p of a
phase (e.g., liquid) of some given semi-infinite material are unknown. If,
by means of a phase-change experiment (fusion of the material at its melting
temperature) we are able to measure certain quantities, then we shall be
able to find formulas for the determination of the unknown coefficients. We
shall consider a (direct or inverse) one-phase Lame-Clapeyron problem (or
one-phase Stefan problem with constant thermal coefficients) [43] with an
overspecified condition on the fixed face x = 0. This overspecified condition
consists of the specification of the heat flux through the fixed face of
the material undergoing the phase-change process. Other boundary value
problems for the one-dimensional heat equation with an overspecified condi-
tion on a part of the boundary have been analysed [9,10,41,42] (see also
the numerous references in [72] on the determination of thermal coefficients).

Problem P3 (Determination of one unknown thermal coefficient). We shall
find the function s = s(t) > 0 (free boundary), defined for t > 0 with
s(0) = 0; the temperature 6 = 6(x,t) of the 1iquid phase, defined for

0 <x <s(t), t >0, and one of the four coefficients k,%2,c,p of the phase-
change material so that they satisfy the following conditions:
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(i) & = azexx, 0 <x <s(t), t>0
(ii) eo(s(t),t) =0, t >0

(i) -kg (s(t),t) = pis(t), t >0
| \ (13)

(iv) s(0) =

(v) e(0,t) =g, >0, t>0
h
(vi) ko (0,t) =--2 (h_ >0),t>0
X '/f (0]
where h_ >0 characterizes the'héat flux on the fixed face x = 0. We have

Property 5 If the coefficients eo >0 and'ho > 0 are given from experience
of a phase-change material, the results for the four possible cases are
given in [70]. For example, if the data verifies the condition

("pC>1’<1 - (14)

then the coefficient g is determined by

2
- Cy 3 exp(-£7)

L = hO (EF), £ | ’ (15)

where £ > 0 is the unique solution of the equation 

e i

kpcy3 .
erf(x) = = (X2£)2, x > 0, | (16)

ﬁ;’ k&

Problem P4 (Determination of two unknown thermal coefficients) If we

assume that the moving boundary is given by s(t) 20v/%, with o > 0, the
problem is reduced to finding the temperature 0 = e(x t) of the liquid phase,
defined for 0 < x < s(t), t > 0, and two of the four coefficients k,%,c,p
such that they satisfy the conditions (13 (i) - (iii), (v), (vi)). We have

Property 6 If the coefficients eo >0, h0 >0 and o > 0 are determined from
experience of a phase-change material, the results for the six possible cases
are given in [72]. For example, for any data the simultaneous determination
of the coefficients k,2 1is given by
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h 2

_ 0 .2 _ pCo
Q-EGXP(E), k-?- (17)
where £ > 0 is the unique solution of the equation
pcceo
J(x) = , X > 0. (18)
h0 v ,

When the coefficient k is unknoWn; a new variant for the simultaneous
calculation of some of the thermal coefficients of a semi-infinite material
can be stated. '

Problem PS5 This is the same problem P3 or P4 but now considering problem
(13) with the overspecified condition

(13vi bis) 6,(0,t) = 2% ts>0 (H, > 0)
/Tt

instead of (13vi), in which the thermal conductivity k does not appear.
The coefficient H0 characterizes the temperature gradient on the fixed face
x = 0 and may be determined experimentally.

REMARK 1 The results corresponding to problem P5 are given in [73].

REMARK 2 To calculate the coefficient Ho’ we need the experimental deter-
mination of the temperature gradient on the fixed face x = 0 with the
Condition (13v) of constant temperature. On the other hand, according to
Problem P3 or P4 we need the experimental determination of the heat flux

in x = 0 to calculate ﬁheycoefficient hy- It is held that this new variant
may, to some extent, simplify the experimental results required for the
application of the method.

Note that if the coefficient k is known, then the idea of problem P5
coincides with that in problems P3 or P4, through the relation ho = kHo.
REMARK 3 A generalization of problems P3 and P4 through a two-phase Stefan
problem is given in [65], with six cases for the determination of one unknown
thermal coefficient and fifteen for the simultaneous determination of two
unknown thermal coefficients,
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2.5 Determination of unknown thermal coefficients of a semi-infinite
material through the Solomon-Wilson-Alexiades model of a mushy region
for the one-phase Lame-Clapeyron problem with an overspecified condition
on the fixed face |

We consider a semi-infinite material that is initially assumed to be solid
at its melting temperature 0°C. At time t = 0, a constant temperature eo >0
is imposed at x = 0 and then fusion ensues, in which three distinct regions
can be distinguished [63]: '

(H1) Solid, at temperature 0°C, occupying the region x > r(t)

(H2) Liquid, at temperature 6(x,t) > 0, occupying the region 0 < x < s(t),
where s(t) < r(t). ‘

(H3) Mushy region, at temperature 6(x,t) = 0, occupying the region
s(t) < x < r(t). Thus, the mushy region is taken to be isothermal,
and we make the following two assumptions on this structure:

(i) the material contains a fixed fraction €2(0 < € < 1) of the total latent
heat 2, that is,

-k 8 (s(t),t) = of[(1-€)s(t) + er(t)], t > 0. (19)

(ii) its width is inversely proportional to the temperature gkadient, that
is, '

-6, (s(t),t)(r(t)-s(t)) = y > 0, t >0, | (20)

Problem P6 This is the same problem P3 or P4 or P5, but now considering
the conditions (13i-ii-v), (13vi) or (13vibis), (19), (20) and s(0) = r(0) =0.
We have

Property 7 The results corresponding to problem P6 are given in [74]. For
example, if the data verify the conditions '

h
0
ol ] (21)
ho pcceo h0
J(“q°9(aﬁb)) < - < (“q°9(BEE))

(o)

then the coefficients ¢, y and k are determined by
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26

v =20 . yy g expl-g))
VI erf(g)
(22)
" (-£%)
exp(-¢£~) - 1 2
€ = plc » K = £§§~
- - 3
(e)

where ¢ > 0 is the un1que so]ut1on of the equation (18), and w>o >0
characterize the moving boundaries r(t) = 2wt and s(t) ZqJT respectively.

2 6 Determination of unknown thermal coefficients throﬁgb approx1mate
methods in a one-phase Lame-Clapeyron probiem

We want to determine formu]as for the unknown thermal coefficients through
the following approximate methods: Stefan's quasi-stationary method (Q-SM)
[66, 67]), Goodman's balance integral method (BIM) [36, 37] and Biot's varia-
tional method (VM) [4,5,56].

Problem P7 This is the same problem P3 or P4 but now considering the Q-SM,
BIM and VM. ‘

REMARK 4 The results corresponding to problem P7 are given in [33]. More-
over, a comparison of these results with the explicit solutions is also
given with an analysis of the range of temperatures stated in [32].

In conclusion, we can say that Section 2 of this paper can be considered
to represent an interaction between mathematics and engineering.

NOMENCLATURE

N

= thermal diffusivity

specific heat

thermal conductivity

latent heat of fusion

heat flux

position of phase-change location

time

LS
pC

spatial variable
mass density
temperature

D@ D X ¢ O O oo X O D
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Subscripts

96

i=1 solid phase

i=2 liquid phase
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