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We consider a material Q < #" with regular boundary I'=T", UT, and we assume that the melting
temperature is 0°C. We apply a temperature b>0on I'; and a heat flux g>0onT,. We prove that
there exists a constant g, >0 such that, for g>gq,, we have a steady-state two-phase Stefan
problem. This result is verified numerically, by using Modulef, with two cases with analytical

solutions.

1. INTRODUCTION

We consider a material , a bounded domain of #" (n=
1,2,3 for the applications), with a sufficiently regular
boundary I'=T",uI’, (with measure (I';)>0) and we
assume that the phase-change temperature is 0°C. We
apply a constant temperature b> 0 on I'; and a constant
(outcoming) heat flux g>0 on I',. If we consider in  a
steady-state heat conduction problem, from the physical
point of view, we arrive at the following conclusions:

i) If g is small, then the temperature in Q will be
positive, and so a change of phase in the material will
not occur. In this case, the resulting problem will be
one of conduction, only for the liquid phase.

(i) If g is large, then the temperature in Q will take
positive and negative values, and so a change of
phase in the material will occur.

In this paper, we shall find for g a sufficient condition
for the occurrence of a change of phase in €, i.e., we shall
prove that there exists g, > 0 so that for all g>g, we can
have a steady-state two-phase Stefan problem in Q.
Moreover, in two examples where the sufficient
conditions is also necessary!, we shall compute
numerically the constant g, through a simulation process
by using the Modulef software (Finite Elements
Modules).

2. MATHEMATICAL FORMULATION OF THE
PROBLEM

Following? we study the temperature 0 = 6(x), defined
for xe Q. The set Q can be expressed in this form

Q=Q,uQ,uUL 1)
where

Q,={xeQ/0(x)<0} Q,={xeQ/0(x)>0}
L={xe Q/f(x)=0} )
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are the solid phase, the liquid phase and the free boundary
that separates them respectively.

The temperature 6 can be represented in Q in the
following way:

0,(x)<0 xe ),
f(x)= 0 xeL 3)
0,(x)>0 xeQ,

and satisfies the following conditions

AB;=0 inQ; (i=1,2)
00, 0,
= = k _— _—
0,=0,=0 ' 5n k, n on L 4)
92/F1=
20
—k,—2| =q sif/.>0
on |, 2
o0
—k; | =q sif/,<0
on |r,

where k;> 0 is the thermal conductivity of phase i (i=1:
solid phase, i=2: liquid phase), b>0 is the constant
temperature given on I';, and g> 0 is the constant heat
flux given on I',.

If we define the function u in Q as follows

u=k,0* —k,0- inQ %)
where 6% and 0~ represent the positive part and the

negative part of the function 0 respectively, then problem
(4) is transformed into

Au=0  in D'(Q)
u/r‘l = bo Ekzb
ou
_a—n r, =q (6)
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whose variational formulation is given by

a(u,v—u)=—qf (v—u)dy veK
r,

uek )
where

V=HY(Q) Vo={ve V/v/r =0}
K={veV/v/r,=bo}

a(u,v)=J Vu-Vvdx (8)
Q

Moreover, the solution of (7) is characterized by the
following minimum problem3;

Ju)<J@ vekK
{ W<J(©) o)
ueK
where
1
J(v)=§a(v,v)+qf vdy (10)
r,
Remark 1
The inverse transformation of (5) is given by
1 e
0=k—12—u+—Eu‘ in Q (5 bis)

3. PROPERTIES

Let u, be the unique solution of the variational equation
(7) for g> 0 (Ref. 2).

Property 1
We have the following expression
au; ,u;)=q f ug dy (11)
Iy

Proof. It is enough to choose v=u, € K in (7) to obtain
(11).

Remark 2
From (11) and from the fact that u, € V,, we deduce the
equivalence

u, #0 en Q<>u, #0 sobre T, (12)

from which, for a given value of g, we have that there will
be a change of phase in Q (4, or 0, take positive and
negative values in Q) iff the function u, takes negative
values on the boundary I',. In other words, the function
u, will begin to take negative values on I',. (This fact will
be taken into account when we carry out the numerical
simulation for the computation of the coefficient ¢, .)

Property 2

If u;=u,, is the solution of (7) for g; (i=1,2), then we
have the following equalities:
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@) a(uz—ul,uz—ul)=(q1—qz)Jr (up—uy)dy
(ii) a(uz,uz)—a(ul,u1)=a(u2+u1,;2—u1)
=(ql+qz)f (uy —uy) dy
; (13)

Proof. If we take v=u, € K in the variational equality
corresponding to u;, and v=wu,€K in the one
corresponding to u, and we add up and subtract both
equalities, then we obtain (13i) and (13ii) respectively.

Property 3
If u;=u,; is the unique solution of (7) for g; (i=1,2),
then we have the following properties:

(i) If g,<gq, then

(a) u;<u, InQ (b)f uldySJ.
r,

r

u,dy (14)
2
(ii) The applications g— u, and g— r, u, d, are strictly
decreasing functions. i.e.,

(@) u; <uy, u, #Fu, InQ

(b)f uldv<f u, dy
r; r,

Proof. (i) Condition (14b) follows directly from (13i).
To prove (14a) we shall take into account the following
equivalence:

42<q;= (15)

{uISuz inQeW=0 inQ (16)

where W= (u,—u,)”
Since WeV,, then, if we use v=u,+ WeK in the
variational equality corresponding to u,, and v=

u; + WeK in the one corresponding to u, and we later
add them up, we have

0<(ql—qz)f Wdy=a(u,~u,, W)= —a(W,W)<0
r,

(17)
that is, W=0in Q.
(ii) To prove (15a,b) we use the following results:
(A) uy=u, inQ=gq,=4q, or f (ug—u;)dy=0

r;
(18)
(Bi) u,=u; inQ

B (u,—u,)d =O=>{ . 19
(B) J;_z 2 1)ay (Bii) ¢, =4, (19)

Condition (A) results directly from (13i) and condition
(Bi) is deduced from (13i) and from the fact that
u, —u, € V,. Taking into account (B)’s hypothesis, the
result (Bi) and the variational equalities corresponding to
u, and u,, we obtain



—q, J (v—u)dy=alu,,v—u,)=alu,,v—-u,)
P’

=—‘12J‘ (U—uz)d)’=_‘12f (v—u,)dy vek
r, I,

ie.,
(ql—Qz)L(v—ul)d)'=0 veK (20)

Taking one element vye V, so that (- v, dy#0 and
choosing v=u, + v, K, from (20) we deduce (Bii).

Let f:R*—R be the real function, defined in the
following way:

1
f(q)=J(uq)=§a(uq,“q)+qj u, dy (21)

I,

Remark 3

To find the element g, (see Introduction), and taking
into account (12), (15b) and function f, it will be enough
to find a value g> 0 for which we have f(g) <0. We shall
further see that this technique can still be improved.

Property 4
For all g>0 and h such that g+h>0, we have the
following estimations:

1
'};(uq+h-uq)

(@) ’ <Cy E”—ZOJ [meas(l",)]' (22)
_ v 0

<C,=C4 |yl (23)

(ii)

1
(g —ug )
1" T ey

where y, is the trace operator (linear and continuous,
defined on V), and a,> 0 is the coercivity constant on V,,
of the bilinear form g, ie.,

alv,v)Zalvl|t  veV, (24)

Proof. (i) Taking into account (24), (13i) with g, =q+h
and g,=g¢q, the Cauchy-Schwarz inequality and the
continuity of y, we obtain (22). (ii) Taking into account
(22) and the continuity of y,, we deduce (23).

From (15b) and (23) we deduce the following

Corrollary 5
From all g>0 and h>0 we have

0<j uqdy—J Uy dy<Cih (25)
T, T,

and therefore the function g— [, u, dy is continuous.
Property 6
Function f is derivable. Moreover, f’ is continuous

and strictly decreasing function, and it is given by the
following expression

f’(q)=f u, dy (26)

Proof. From (13ii) we obtain
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flg+h—flg 1 1
— = l—zuqdy+§ 5 u i pdy (27)
and the expression (26) is deduced from (25) and (27).
Property 7
For all g> 0 we have the following expressions
) Ou,
() a(ugu,)=kyb a—dy—q u,dy (28
r, on I,
. Ou,
(ii) F dy =q meas(I',) (29)
r, on
1
(iii) f(g)=k,b meas(I';)g— 3 a(ug, u,) (30)

(iv) ;—q [a(u,, u)]= 2[k2b meas(T',) —f u, dy]
=§ a(ug, ug) | (31)

Proof. Expressions (28) and (29) are obtained by
multiplying the differential equation of (6) by u, and 1
respectively, by integrating on Q and by using Green’s
formula. Expression (30) is deduced from (21), (28) and
(29). Expression (31) is obtained by deriving (30) with
respect to q and by using (26).

Property 8
For all ¢>0, we have the following expressions
N 1
(i) f'(q)=k,b meas(I’ z)—aa(uq,u‘,) (32
2 " 1
(i) f"(@)= 7 a(ug,u,) <0 (33)

Proof. Expression (32) is deduced from (26), (28) and
(29), and expression (33) is obtained by using (31) and by
deriving (32) with respect to q.

Property 9
There exists a constant C >0 such that

alug, u)=Cq? (34)

Proof. Let the real function be
1
Y(‘I)=Ea(“q, uq) (35)

defined for g¢>0. Function Y satisfies the following
Cauchy problem:

1 1
Y(g=—-f ”(q)=q—2a(u,,, uq)=a Y(q)
Y(0*)=lim Z[kzb meas(l",) — j u, dy]: 0 (36)
q-0 r,

The solution of (36) is given by
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Y(q)=Cq with C> 0 (constant) (37

and therefore we obtain (34).

Remark 4
Constant C> 0 has the following physical dimension

[C]=(cm)" (38)
where n is the dimension of the space R" in question.

From (30) y Property 9, it follows:

Corollary 10
Function f, defined by (21), is given by

f@=1 ¢+ kabmeas(T;)g (9)

Theorem 11
For all g> g, problem (7) is a two-phase one, where

k,b
q,= % meas(I',) (40)

Proof. Since f'(q,)=0, the result follows from (12) and
(26).

Property 12

In the case where, because of symmetry, we find that
function u, is constant on I',, the sufficient condition,
given by Theorem 11, is also necessary for problem (7) to
be a two-phase one.

Proof. Since u,/T",=constant, the property follows

from the following equivalence

f u,dy=0<>u,/T,=0 (41)
r, .

Remark 5

Every thing we proved in this paper is still valid if the
boundary I' of the bounded domain Q is represented by
the union of the three portions (I'=T",uI',UT;) such
that they have the following characteristics:

(i) T, and I', have the same conditions as the ones
previously described in (4).

(ii) T isa wall impermeable to heat, i.e., we have 86/0n|
I'3;=0in (4) and therefore ou/on|T ;=0 in (6).

Remark 6

An analogous problem to the one posed in this paper
but for the evolution case has been solved in Ref. 6 for a
semi-infinite material which is initially in solid phase, at
constant temperature, and which receives a heat flux of
the form —hgy/./t (hy>0) on its fixed face x=0.

4. NUMERICAL RESULTS

We shall next see the numerical results obtained by using
Modulef”® in two cases for which Property 12 is valid and
the solution is explicitly known®.
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Example 1
We consider the following data

n= 2’ Q= (0’ xo)x(os yO)
I ={0}x[0,y0], T'2={x0}x[0,y,]
I'3=[0, x0]x{0} U [0,xo]x{yo} (42)
The solution of (6) or (7) is given by
uy(x,y)=k,b—gx (43)

and then we obtain

C=x0y0 91=—— (44)

The numerical resuits which are below exposed were
obtained by doing a simulation process of problem (6) or
(7), with the following data:

xo=1[cm] y,=1[cm] b=5[°C]
cal

k,=0.0014 ——
2 [cm seg °C

] (thermal conductivity of water)
(45)

and by using the following triangulation®%: 100 2-
rectangles of type 1 and 121 vertexes.

cal
q 2
cm? seg

u/l"z(const)[ cal ]

cm seg
0.0071 —0.0188679
0.00705 —0.00943398
0.007001 ~0.000188704
0.00700001 —0.00000191009
0.007 —0.0000000234828
0.0069999998 —0.0000000234828
0.0069999995 —0.0000000234828
0.0069999994 +0.000000627643
0.0069999993 +0.000000627643
0.006999999 +0.000000669955
0.00699999 +0.00000707206
0.0069999 +0.0000713957
0.006999 +0.000714244
0.006998 +0.00142851
0.0699 +0.00714280

We take for g, the following approximate value

41 approx. = 0.00699999945 + 0.00000000005 46)
Since the exact value for q, is given by

41 exace = 0.007 “47)

the error made, by defect, is bounded by

_ cal
0 < 41 exact — ql approx. < 6 ' 10 ! O[sz seg:| (48)

Example 2
We consider the following data:

n=2 O<ry<r,



Q : annulus of radius r, and r,, centred in (0, 0)
I'; : circumference of radius r; and centre (0, 0)

I',: circumference of radius r, and centre (0, 0)

(49)
The solution of (6) or (7) is given by
ug(x, ) =ksb—grylog = r=(x+y?)!" (50)
1
and then we obtain
C=2nr3log 2 meas(T,)=2nr,
ry
kob
g=—" (51)
r, log 2
,

1

The numerical results which are exposed below were
obtained by doing a simulation process of problems (6) or
(7), with the following data:

ri=1[cm] r,=2[cm] b=5[°C]
k, =0.0014[ cal - ] (thermal conductivity of water)
cmseg °C

(52)

Owing to the symmetry of the problem, it was solved
for a quarter of the annulus (the one corresponding to the
first quadrant), bearing in mind that in this case a new
portion of the boundary I'y appears, which is given by

T, ={0}x[1,2]u[1, 2]x{0} (53)

Therefore the values for meas(I",) and C are modified in
a 1/4factor, but the expression of g, which is the value of
our interest, does not vary.

We have used in the new domain the following
triangulation®1°: 100 2-quadrilateral (two of its sides are
segments of lines and the other two are portions of
circumferences) of type 1 and 122 vertexes, and we have
obtained:

cal
Ll )
cm* seg

cal
u/l', (const)[ ]

cm seg
0.004 +0.00147440
0.005 +0.0000930041
0.00505 +0.0000239342
0.00506 +0.0000101201
0.0050673 +0.00000597593
0.0050674 —0.000000102207
0.0050675 —0.000000240374
0.0050677 — 0.000000516654
0.005068 —0.000000931046
0.00507 —0.00000369387
0.0051 —0.0000451358
0.0052 —0.000183276
0.00535 —0.000390486
0.0055 —0.000597696
0.006 —0.00128840
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which gives us for g, the following value

41 approx. = 0.00506735 + 0.00000005 (54)
Since the exact value for g, is given by
0.007
41 exact = 2_10g_2‘ = 000504943 (55)

the error made, by excess, is bounded by

_ cal
0<ql approx. —q, cxact<2' 10 s[m] (56)
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