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ABSTRACT: A discretized mixed elliptic differential problem with solutions
of non-constant sign, as functions of the Dirichlet and Neumann data, are studied in a
convex polygonal bounded domain Q of R™. An inequality for the heat flux is given in
order to obtain a continuous and a discrete change of phase, that is, a continuous or
discrete solution of non-constant sign in {2 (steady-state, two-phase, continuous or
discretized Stefan problem). A convergence for the two inequalities, as function of the

parameter h of the finite element method, is also obtained.
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[.LINTRODUCTION

The present talk can be considered as a review of the two papers [12,13]. We
consider a heat conducting material occuping €2, a convex polygonal bounded domain
of R" (n= 1, 2, 3 in practice), with a sulfﬁciently regular bounda.rs' r=r,ur,
(with meas(T';) = |T'1|>0, |F2 | > 0) . We assume, without loss of generality, that the
phase-change temperature is 0°C. We impose a temperature b>0 on I'; and an
outcoming heat flux ¢ > 0-on TI',. If we consider in Q a steady-state heat conduction
problem, then we are interested in finding sufficient ahd/or necessary conditions for the
heat flux q on T'; to obtain a change of phase in 2, that is, a steady-state two-phase

Stefan problem in 2 (i.e. the temperature is a function of non-constant sign in ) [10].

Following [9] we study the temperature 6 = 6(x) , defined for x € Q. The
set 2 can be expressed in the form /

where
o ={xeq/om<o},
(2) 92={xeﬂ/0(x)>0},

t={xeq/ox=0},

are, respectively, the solid phase, the liquid phase, and the free boundary (e.g. a
surface in R3) that separates them . The temperature 6 can be represented in § in the

following way :
0,(x) <0, x€Q ,

(3) 0(x) = 0o , xeLl,

6,(x) >0, x€Q, ,

and satisfies the conditions below :
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)A8, =0 inQ (i=12) ,

ii)01=02=0, kl%=k2% on £ ’
(4)
i) 0, | ¢ = b,
96, .
_kzg;lrz.__q if 0|I\2>0 ’
iv)
96, y
_kl-.a_n-lr2_q if 0|r2<0 ’

where ki > 0 is the thermal conductivity of phase i (i = 1 : solid phase, i = 2 : liquid
phase), b > 0 is the temperature given on ', , and q > 0 is the heat flux given on T',.

Problem (4) represents a free boundary elliptic problem (when £ ;é 0) where
the free boundary £ (unknown a priori) is characterized by the three conditions (4ii).
Following the idea of [1, 3, 4, 9] we shall transform (4) into a new elliptic problem but

now without a free boundary. If we define the function u in 2 as follows

(5) u=k 8t~k o- (6=Lut —Lu) @,
. 2 1 :

where 6T and 60— represent the positive and the negative parts of the function 6

respectively, then problem (4) is transformed into
i)Au=0 in D'(Q),

(6) li)UII\1=B,B=k2b>0,

i)~ g, =a

whose variational formulation is given by

105



(7) ueK , a(yv—u)=Lv-u) , Vvek

b

where
V=H®©) , V0={VGV/V|F1=O},
(8) K=KB={v€V/v|F1#B},
a(u,v):JVu.Vu dx , L(v)=Lq(v)=—qud7.

Ly

Under the hypotheses L € V) (e.g. q € L I';) ) and B € n'/?

(T'y), there
exists a unique solution of (7) which is characterized by the following minimization

problem (1, 6]

uy<Iv) , Vvek ,
9
nek ,
where
(10)  I(v) = Iq(v) =% a(viv) — L(v) = L a(vw) + J qvdy .

T,

LEMMA 1.— Ifu=u qB is the unique solution of problem (7) for data q on
I';and B > 0on T, , then we have the monotony property :

(11) B, S_Bz onI',andq, < qqonl, = Uq,B, < u4,B, in Q.
Moreover,
(12) q>oonr2=>qugMaxBin(’2,

1

and function u = u qB satisfies the equality
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(13) a(u—, u=) = ] qu—dy

COROLLARY 2.— From (13), we deduce
(14) u— #0inQ ¢ u—#0onTl,,

whereq > 0and B > 0.

NOTE 1.— We shall denote by (N—n) the formula (n) of Section N and we
shall omit N in the same paragraph. Idem for theorems, lemmas, corollaries, remarks

and notes. 'We shall also omit the space variable x € § for every function defined in .

II. MIXED ELLIPTIC PROBLEMS WITH OR WITHOUT
PHASE CHANGE.

We shall give a problem which are related to the mixed elliptic partial
differential equations (I—6) or (I—7).

Problem P : For the constant case B > 0 and q > 0 , find a constant
Qo =qo(B) >0 such that for q>qo(B) we have a steady-state, two-phase Stefan

problem in 2, that is the solution u of (I—7) is a function of non-constant sign in .

REMARK 1.— From (I—14) we deduce that an answer to problem P is the

element q for which u takes negative values on the boundary T, .

LEMMA 1.— Let u = uq be the unique solution of the variational equalit&
(I—7) for q > 0 (for a given B > 0). Then
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(i) The mappings

(1) q>0—uyqg €V and q>0 — Juqd7 ER
Iy
are strictly decreasing functions.

(ii) For all @ > 0 and § > 0 we have the following estimates :

1/2

® g - g lly < =1eljp, /2,
1

3) | 5 (uq —- “q+5) ”Lz(I‘ ) = <C=Cillrll ,

where 7, is the trace operator (linear and continuous, defined on V), and a@ > 0 is the

coercivity constant on V, of the bilinear a , i.e. :
@  3a>0/awmv=Ivik, 2allvI}  Vvev, .
(iii) For all @ > 0 and § > 0 we have

12
Ty T,

and therefore the functionq > 0 — J uq dy is continuous.
r

2

PROOF .— If U, = ugq, is the solution of (I—7) for q >0 (i = 1, 2), then we
i
have the following equalities :

(6) a(u; — uj,uy; —uy) = (q, — qy) J(“z - uy)dy ,
Ly

(7) a(ug, up) — a(uy, u,) =a(u, + up, uy — uy) =(q;, + q3) J(“l — up)dy,
108
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because we take v=1u, € K in the variational equality corresponding to u,, and
v=u; €K in the one corresponding to u,, and we add up and subtract both

equalities. From (6) and (7) we obtain (2) and (3) [12].
Let f: Rt — R be the real function defined by

@8) f(a) = J(ug) = } a(ug, ug) + J uq d7 -
Ty

REMARK 2.— To solve Problem P it is sufficient to find a value q > 0 for
which we have f(q) < 0 . We shall further see that this technique can still be

improved.

THEOREM 2.— (i) The function f is differentiable. Moreover, f is a

continuous and strictly decreasing function, and it is given by the following.express.ion
) f(@) = [ uqd .
Iy

(1i) There exists a geometric constant C > 0 such that

(10) a.(uq, uq) =Cq’,

(11) f@=-Sa+BITsla.
(iii) If

(12) q > q¢(B) ,

then we obtain a two-phase, steady-state Stefan problem in Q (i.e. uq is a function of

non-constant sign in §2), where
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(13) qo(B) = 22l

(iv) Constant C = C(2, I';, [';) > 0 is given by

(14) C = a(uz, ug) = I uz dv,
Ly

where ug is the solution of the variational equality

(15) uz € Vo, a(“a,V)=JVd7aVV€Vo,
T,

PROOF.— See [12]

REMARK 3.— The sufficient condition f(q) <0, to solve Problem P, was
improved by the condition f’ (q9) <0, which is optimal (see examples more later). In
the case where, because of symmetry, we find that the function uq is constant on T';,
the sufficient condition, given by (12), is also necessary to have a steady-state, two-

phase Stefan problem.

III. NUMERICAL ANALYSIS OF MIXED ELLIPTIC PROBLEMS
WITH OR WITHOUT PHASE CHANGE

Now, we consider T} » @ regular triangulation of the polygonal domain 2 with
Lagrange triangles of type 1, constituted by affine-equivalent finite element of class
C°, where h > 0 is a parameter which goes to zero. We can take h equal to the longest

side of the triangles T€ Th and we can approximate Vg by [2] :

(1) th{vh€C°(S—2)/vhITEPI(T),VTerh,thPl-_—:O},
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where P, is the set of the polynomials of degree less than or equal to 1. Let Hh. be the
corresponding linear interpolatation operator. Then, we can consider that there exists

a constant Cy > 0 (independent of the parameter h) such that

2 Nlv—Tvily SCoh™ vl . YveH(R) ,withl1 <r<2.

We consider the following finite dimensional approximate variational problem,

corresponding to the continuous variational problem (I-—-7), given by :
a(uh, vh) = L(vh) , Vvh € Vh ,

(3)

and we can obtain the following results.

LEMMA 1 .— We have

(4) lim || u —““V‘—"o’
h—ot h
where u is the unique solution of the variational equality (I—7).
PROOQF .— Since meas(I’;) > 0, we have that the bilinear form a is coercive over V,
and therefore || . ||v0 and || . ||y are two equivalents norms in V, . We conclude the

proof by following a method similar to the one developed in [2].

COROLLARY 2 .— If we define

(5) 0—-1—uz-—-l—{l—lul’1" €ev, 8

i
.5‘1"‘
=

+
|
[

=

|

m
<

then, we have
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(6) lim+||0h—0||H=0,
h—20
where H = L¥(Q).
PROOF .— See [13]

The goal of this part is to consider the discrete équivalent of the inequality
(IT—12). We study sufficient (and/or necessary) conditions on the constant heat flux q
on I', to obtain a change of phase (steady-state, two-phase, discretized Stefan problem)
in the corresponding discretized domain, that is a discrete temperature of non-constant
sign in 2. We obtain that (similérly to the continuous problem) :

(i) there exists a constant Ch > 0 (which depends only of the geometry of the
domain 2 for each h >0, and which is characterized by a variational problem) such
that, if > qqp (B) = B|T';|/C;, then the steady-state discretized problem presents two
phases.

(ii) we have the estimations C, < C and qo(B) < qq},(B), where C and qo(B) are
given for the continuous problem respectively by (II—14) and (II—13) .

(iii) we deduce error bounds for C— Gy, and qqp(B) —qo(B) as functions of the

parameter h.

In other words, we obtain for the mixed elliptic discretized problem, defined by

uy, analogous conditions to the ones obtained for the corresponding continuous

problem [12], defined by u .

For each q > 0 we consider the functions u(q) € K and u(q) € Kh ,
respectively, as the unique solution of the variational equalities (I—7) (continuous
problem) and (3) (discrete problem). For each h >0, we define the real function fy :
R+ — R, in the following way

() @) = Iqy(@) = § a(uy(@), u(@) +a [ @y , a>0.
i
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We obtain the following properties :

THEOREM 3.— (i) If u; = up(q;) is the solution of (3) for q; > 0 (i = 1,

2), then we have the following relations:

(8) a(u; — vy, uy —uy) =(q; — qy) I (uy — uy) dy,
Ty

(9)  alugy ua)— aluy, w)= 3l uyy up— w)=(ar+ a7) (w = uy) d -

Iy
(ii) For all real numbers q > 0 and é such that (q + 6) > 0, we obtain the following
estimations :
10 |} s <, = el |,/
(10) slup(@) — uy(a + )]V— 1= & T,
¥y - S U = Uy 1700
(11) I Ly (@) — up(a + 6)]| < Dy = D ol

L*(r,)

where v, is the linear and continuous trace operator defined over V. Moreover, the

function R+ —R

(12) q — Juh(q)d‘reR,
Iy

is a continuous and strictly decreasing function.
(1ii) The function fy =1} (q) is differentiable. Moreover, fh' is a continuous and strictly

decreasing function given by the following expression

(13) f/(@) = | uy(@) dy .
F2
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PROOF .— (i) If we take v=uy —u; € Vy in the variational equality corresponding to
u; and  v=u;—u; €V, in the one corresponding to uy, é.dd and subtract the
resulting relations, then we obtain, respectively (8) and (9) .

(ii) Taking into account (II—4), the Cauchy-Schwarz inequality, and the continuity of
the operator v4, we deduce (14). From (14) and the continuity of v, we have (11).

Thercfore, we have (12) because

(14) | [ lap@) = upta + 9 ay 1 <D, 1,76
i,

Moreover, the monotony property is a consequence of (8).

(iii) From (7) and elementary computations, we deduce

(15) bty @+ 9 - @] = | u,@ + ula + ) a7,
I

that is (13), by using (12).

THEOREM 4 .— (i) The element w =y (q) € V), can be written as
(16) u(q) =B —q uy

where u ah is the unique solution of the variational equality
a(U3h 9 Vh) = I Vh d‘y 3 V Vh' e Vh s
(17) T,
U3h € Vh .
(i) There exists a constant C; > 0 such that

(18) fy(@ =aB|T;| - 3Cia* ,Va>0,

(19) a(up(9) , up(@)) =Cpa®, Va>0.
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where the constant Ch is given by

(20) Cp = alug, . ug, ) = J _
r,
(iii) If
(21) q > qo (B) ,

then problem (3) represents a discretized steady-state two-phase Stefan problem (i.e.

uh(q) is a function of non-constant sign in §2), where

(22) a0, (®) = 252l

PROOQF.— (i) It follows from (3), (7) and (16) by uniqueness of the variational
equalities (3) and (17);

(ii) It follows from (7) and (16);

(iii) It follows taking into account
! —
(23) f,(a0, (B) =0,

and the monotony property of the function fh' .

THEOREM 5 .— (i) We have the following equality :
(24) a(u(q), up(q)) =Cp ¢*, Vq > 0.

(ii) Also, we have the following inequaliti‘es‘:
(25) (8) G, <C, (b) q9(B) < qq, (B) .

PROOF.— (i) If we take v=u,(q) €Ky =B+ V,CB+Vo=K in the variational
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equality (I—7), and we take into account the expressions (II—10) and (18), then we
obtain (24).
(ii) On the other hand, from (I1—4) and (24) we have

(26) o || u(q) —uy(q) IIV2 < a(u(q) —up(q), u(q) —uy(q)) = (C-Cy) a*,

that is (25a). Moreover, (25b) follows from (I1—13), (22) and (25a).

Now we shall use the interpolation result (2) for the function uy €HY(Q), as a
hypothesis of regularity of the continuous problem (I —7) (in general, 1 <r < g 5. 7,
8]). In [11], we present three examples with explicit solution were presented. Iu those

caseév u(q), ug € COO(Q)';

THEOREM 6 .— We have the following relations and estimations :
(27) a(u(q) —uy(q), vy)) =0, Vv, €V,

(28) (C — Cy) a* = a(u(q) — uy(q), u(a) — uy (@) <

< Inf a(u(q) - vh ’ L'l((]) - vh) ’

(29) 0<C-C, <C} R0
r,2
— -0 2

PROOF . — See [13].

REMARK 1 .— If we only have u(q) € V (i.e. ug € V), we can obtain
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(M)0<c—%s$num—mm@m;=n%—mmg%,

where the second term converges to zero when h—o0t [2] , but we cannot give an

order of convergence.

REMARK 2.— If the constant heat flux on I', verifies the inequality
q>q0h(B), then both the discrete and continuous problems represent steady-state,

two-phase, Stefan problems, that is, their temperatures are of non-constant sign in 2.

REMARK 3.— When the function uy {q) is constant on I', (as a function of
ht 2
x € I'y), then the sufficient condition given by (21) is also necessary in order to have a.

two-phase discrete problem, because

(32) I w(g)dy <0 & uh(q) <0 on Iy.
Ly

THEOREM 7.— If we let h, B> 0, and 0<e€g <1 (€¢ is a parameter to be

chosen arbitrarily), then we have the following estimations :

(33) %w)<%gmsq“m and  Cp >C ¢, Vh < hi(eo),

€o

C<2) l“s lz

(34) 0<dqo, (B) —qo(B) < ——— n By b2k < (e,
where |
(35) he(eo) = (%ﬁf;—)ﬁ )2(r——1) |

r,Q
PROOF .— From (30) we deduce
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(36) A(h) QOh(B) < qo(B),

where
(37) A(h) =1 — - l(;U3 l:’Q 112(r—1) <1.
If we consider, for each €g, 0 < ¢¢ < 1, the following equivalence :
(38) 0<e <Ah)<1l © 0<h< he(e),

then we deduce the inequalities (33) and (34).

COROLLARY 8 .— If B > 0, then we have the following limit

(39) lim a0, () = qo(®).

REMARK 4.— Everything we proved in this paper is still valid if the

boundary I' of the bounded domain 2 is represented by the union of three portions

(I' =T, UT,UT;) having the following characteristics :

(i) T'; and T'; have the same conditions as the ones previously described in (I—4),

(ii) I'y is a wall impermeable to heat, i.e. we have g-—-g | p.=0in (I-4) and
3

Jdu 0 e (T
therefore n | r,~= 0 in (I—6).

Moreover, the first example considered (see below) verifies this condition.

We shall give three examples in which the solution is explicitly known [11] so

that we can verify all the theoretical results obtained in this work.

Example 1.~ We consider the following data
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n=2,Q=(0,x0)x(0,y0) »x0>0»YO>01
(40) r = {0} x [0, y()] y Iy = {xo} X [07 YO] ’

I's = (0, xo) x {0} U (0, xp) x {yo} -

Example 2.— Next we consider
n=2 ,0<l'1<1'2 1F3=¢,

Q : annulus of radius r, and r, , centered at (0, 0) ,
(41) I'; : circumference of radius r, and center (0, 0) ,

I', : circumference of radius r, and center (0,0) .

Example 3.— Finally, we take into account the same information of Example

2 but now for the case n = 3.
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