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ABSTRACT: We obtain an exact solution of the Neumann type for a simple mushy zone
model with parameters (v > 0 and 0 < ¢ < 1) for the two-phase Stefan problem for a semi- -
infinite material with mass densities equal in both solid and liquid phases, and constant
initial (6 > 0) and boundary (—D < 0) temperature. We suppose that, without loss
of generality, the phase-change temperature is 0°C. We generalize the Solomon-Wilson-
Alexiades model given for the one-phase Lamé-Clapeyron (Stefan) problem to the two-
phase case.

KEY WORDS: Stefan problem, similarity variable, Neumann solution, phase-change
problem, free boundary problems, exact solutions, mushy zone.

RESUMO: SOLUCAO DO TIPO DE NEUMANN PARA O PROBLEMA BIFASICO
DE STEFAN COM UM MODELO DE ZONA PASTOSA SIMPLES. Obtemos uma
solugéo exata do tipo de Neumann para um modelo de zona pastosa simples com parametro
(v >0 e0 < € < 1) para o problema bifésico de Stefan para um material semi-infinito
com densidade igual em ambas as fases liquidas e sélidas, e constante inicial (6 > 0) e
temperatura de fronteira (—D < 0). Supomos que, sem perda de generalidade, a temper-
atura de mudanga de fase é de 0° C. Generalizamos o modelo de Solomon-Wilson-Alexiades
referente ao problema de uma fase de Lamé-Clapeyron (Stefan) para o caso bifésico.

PALAVRAS-CHAVE: problema de Stefan, similaridade variavel, solugdo de Neumann,
problema de mudanga de fase, problemas de fronteira livre, solugdes exatas, zonas pastosas.
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1. INTRODUCTION

We consider a semi-infinite material with mass density equal in both solid and liquid
phases and the phase-change temperature at 0°C. We generalize the mushy zone model
given for the one-phase Lamé-Clapeyron (Stefan) problem in [6] (see also [10]) to the
two-phase case. Three distinct regions can be distinguished, as follows:

(H,) The liquid phase, at temperature 8; = 6;(z,t) > 0, occupying the region z > r(t),
t>0.

(Hz) The solid phase, at temperature 6, = 8,(z,t) < 0, occupying the region 0 < z < s(¢),
t>0.

(H3) The mushy zone, at temperature 0, occupying the region s(t) < z < r(t), t > 0.

We make the following two assumptions on its structure following the paraffin case
[6, 11 (with experimental results)] (the parameter € and v are characteristics of the phase-
change material):

(a) The material in the mushy zone contains a fixed fraction eh (with constant 0 < £ < 1)
of the total latent heat A.

(b) The width of the mushy zone is inversely proportional (with constant 4 > 0) to the
temperature gradient at the point (s~(2),1).

If the phase-change semi-infinite material is initially in liquid phase at the constant
temperature 6y > 0 and a constant temperature —D < 0 is imposed on the fixed face
z = 0, then we obtain the following results:

(i) An exact solution of the Neumann type for 8,(z,t), 8;(z,t), s(t) and r(t) as func-
tions of the initial and boundary temperature 8y and D, mushy zone parameters € and 7,
and thermal coefficients of the material.

(ii) An analogous property of (i) if we replace in the hypothesis (H3b) the temperature
gradient at the point (s~ (t),t) (i.e. 8, (s(t),?)) by the temperature gradient at the point
(sF(t),t) (i-e. 85, (r(2),2)).

If we replace the constant temperature —D < 0 by a heat flux of type qot"§ (with
go > 0) on the fixed face z = 0, then we obtain the following results:

(iii) There exists an exact solution 8}(z,t),85(z,t),s*(t) and r*(t) of the Neumann
type of the mushy zone model, as functions of 8y, gq,€,7v and the thermal coefficients of
the material, if and only if the coefficient g satisfies the inequality

7 k1
20.2 1’0’

(1)

qo >
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where ng = no(e,7, 60, hy k1, k2,¢2) = 10 (1—’6—"16, ﬁf(‘l—"’;)-) > 0 is the unique positive zero
of a given function G (see definition in eq. (64)). Moreover, for the solution given in (i),
the inequality for g turns into

1/2 i
erf (i)<2Dn0(kﬂcl) , (2)
ay ¥ n k¢
where o > 0 is the coefficient that characterizes the first free boundary s(t) = 20/t of the
two-phase mushy zone model.

(iv) If g0 = 5—'(.71";, then there exists an exact solution for 83(z,t),r*(t) and s*(t) =0
for the corresponding one-phase mushy zone model (the solid phase there does not exist).
H0<gq < 5—".7"";, then there does not exist an exact solution of the Neumann type for
the corresponding mushy zone model. Moreover, for the particular case v = 0, that is
the mushy zone model is identical to the classical Neumann model [2, 5, 9], we find the

inequality g9 > a—""% (8] to obtain a phase-change problem.

A review of the mushy zone model for the unidimensional Stefan problem can be found
in [3].

2. NEUMANN-LIKE SOLUTION FOR THE TWO-PHASE MUSHY ZONE
MODEL WITH TEMPERATURE CONDITION ON THE FIXED CASE z =

Taking into account the hypothesis (H, )-(Hs) we can formulate the following Problem
(P1): Find the free boundaries z = s(t) and z = r(t), defined for ¢ > 0 with s(¢) < (%)
and s(0) = r(0) = 0, and the temperature § = 8(z,t), defined for z > 0 and ¢t > 0 by

O0(z,t) <0 if O0<z<s(t),t>0,
O(z,t)=4¢ 0 if st)<z<r(t),t>0, 3)
O(z,t) >0 if r(t)<=z,t>0,

such that they satisfy the following conditions.

ay by, =6, 0<z<s(t),t>0, 4)
az 0y, =6, r(t)<z,t>0, -3y
3(0) =r(0) =0, (6)
01(s(),t) = 0,(r(2),t) =0, t > 0, )
k1 61,(s(2),t) — ko 02 (r(2),t) = ph[(1 — e)F(2) + € $(2)), t > 0, (8)
01, (s(t),t)(r(t) — s(t)) =7, t > 0, (9)
62(z,0) = 03(+00,t) =6 >0, 2 >0, ¢t >0, (10)

8,(0,t)=-D <0, t >0, (11)
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where h > 0 is the latent heat of fusion, p > 0 is the mass density equal in both solid
and liquid phases, and k; > 0, ¢; > 0, a; = a? = p—";— > 0 are the thermal conductivity,
the specific heat and the diffusion coefficient for the phase i (i = 1: solid phase, i = 2:
liquid phase) respectively. The condition (8) is the Stefan condition (energy conservation)
corresponding to the hypothesis (Hza) and the condition (9) concerns to the hypothesis
(Hsb) [6, 10, 11].

Following the Neumann method [2, 5, 9] we propose for the Problem (P;) the functions

0l(zat) =A; + Blf (2 a::\/t_) ) (12)
02(zat) =Az2+ By f (2 a \/t-) ) (13)
s(t) =2 a\/i, (14)
r(t) = 2wV, ' - (18)

which satisfy condition (4)-(6), where

f(z) = exf (z) = \—/2—; /0 " exp (—t2)dt (16)

is the error function. If we impose the other six conditions (7)-(11), we obtain that the 5
coefficients A;, Az, By, B; and w are given, as functions of the coefficient o, as follows.

A =-D, Bi=—p, (17)
£(z)
1-1(z) 1-£(2)
- 2
oo B (2 () (3). oo
where function W is defined by
W(z)=z+ 72ff(z)exp(zz), z>0. (20)
The coefficient o
eg=—>0 (21)

a
must satisfy the following dimensionless equation.

Fo(z) = Gi(e), =50, | (22)
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where
_ exp(—z?) _ exp(—z?)
Fi(z) = —_m, Fy(z) = i@ (23)
k a :
Fy(z) = \/_ Fg(:l') 216;‘:2 R (iW(z)) ) (24)
G0 =z+ 8 261),7‘/_f(x)exp(x’) —et(-OWE) -a ()
Taking into account that those functions F;, F3,G,, W and F are such that
F1(0+) =1, Fl(+°°) = +o00, Fll >0, (26)
F3(0%) = +oo, Fy(+00) =0, F;<0, (27)
G1(0%) =0, Gi(+0) = +00, G} >0, (28)
w(0+) =0, W(+o0) = +00, W'>0, (29)
Fy(0%) = 400, Fo(+00) = —00, Fy <0, (30)

we deduce that equation (22) has a unique solution ¢; > 0 (that is a unique o > 0), and
therefore we obtain the following result.

Theorem 1. For any data 8y,D > 0, for any mushy zone coefficients 0 < ¢ < 1 and
~ > 0, and for any thermal coefficients of the phase change material p,h, k1, k2,¢1,¢c2 > 0,
Problem (P,) has a unigque solution of the Neumann type (12)-(15) and (17)-(19), where
the coefficient o is given by 0 = a €, and €; > 0 is the unique solution of equation (22).

If we replace in the hypothesis (H3b) the temperature gradient at the point (s~ (t),t)

(i-e. 6;,(s(t),t)) by the temperature gradient at the point (r*(t),t) (i.e. 8z, (r(f),t)), that
is condition (9) is replaced by

b2, (r(1), t)(r(t) = s(t)) =7, t>0, (31)

we can formulate the following Problem (P;): Find the free boundaries z = s(t) and

z = r(t), defined for ¢ > 0 with 0 < s(t) < r(t) and 3(0) = r(0) = 0, and the temperature

0 = 4(z,t), defined for > 0 and t > 0 by (3), such that they satisfy the conditions (4)- (8),_
(10), (11) and (31).

Following the method, given before, we propose for the Problem (P;) the functions
(12)-(15), where the coefficients A,, B; and A, B, are given, as functions of w, by (17)
and (18) respectively, the coefficient o is given by

with the condition o(w) > 0, where
9(z) = exp(z*)(1 - f(z)) =

R
ale) = 2= T (2) (5

(33)
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The equation for the coefficient

w
e=—>0
az

is given, through condition (8), as follows.

Ho(z) = Gg(z‘), gz(t) >0,z>0,

where
_ . _E€ Vi
Gafs) = = - T g(a),
_ D kl Ci1 C2 a_z Co 00
Ho(z) = h p kz Fg (al gg(:x:)) - m FI(I).
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(35)

(36)

(37)

(38)

Moreover, for the trivial condition ¢ = a(w) (i.e. s(t) > 0), we have the following equiva-

lence:
o(w)>0 = g2(e2) >0 = €2 > 72,

where z; > 0 is the unique positive zero of function g, which is such that
g2(0+) = —%'é\/ozr—' < 0’ 92(+°°) = +°°’ 9'2 > 0,
because -

g(0*) =1, g(+00) =0, g’ <O.
Function G; has the following properties.

G,(0%) = —527;{7? <0, G2(+00) = 400, G > 0,

(39)

(40)

(41)

(42)

and therefore it has a unique positive zero y; > 0. Owing to g2(z2) = 0, that is g(z;) =

20022, we deduce that G(z2) = (1 —¢) 2 > 0, i.e.
z2 > Y.
Function Hy is such that
Ho(zF) = +00, Ho(+00) =—00, Hy <0 in (z2,+00),
and therefore equation (36) which is equivalent to

Ho(t) = GQ(.’C), z > Zq,

(43)

(44)

(45)

has a unique solution €2 > z; > 0. Then, we have obtained the following result:
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Theorem 2. For any data 69,D > 0, for any mushy zone coefficients 0 < € < 1 and
v > 0, and for any thermal coefficients of the phase change material p, h, ky,ks,c1,c0 > 0,
Problem (P32) has a unigue solution of the Neumann type (12)-(15) and (17),(18),(32),
where the coefficient w is given by w = azez and €2 > 0 is the unique solution of equation
" (36) or its equivalent (45).

Remark 1. We obtain the same results, given by Theorem 1 (Theorem 2), if we replace
the temperature gradient by the heat flux at the point (s~ (¢),2)((r+(¢),?).

Remark 2. It is an open problem to connect the exact solution, given by Theorem 1 or
2, with the mathematical theory developed in [1, 4] through similarity solutions.

4. EXACT SOLUTION FOR THE TWO-PHASE MUSHY ZONE MODEL
WITH HEAT FLUX CONDITION ON THE FIXED FACE z =0

Following the idea developed in [8], we replace condition (11) by a heat flux of the
type ot~} (with go > 0) on the fixed z = 0, that is

k1 8;,(0,8) = % t>0. (46)

Then we can formulate the following Problem (P3): Find the free boundaries z = s*(t)

and z = r*(t), defined for ¢ > 0 with 0 < s*(t) < r*(¢) and s*(0) = r*(0) = 0, and the
temperature 8* = 6*(z,t), defined for z > 0 and ¢t > 0 by

01(z,t) <0 if O<z<s*(t),t>0,
0*(z,t)=¢ 0 if s*(t)<z<r*t),t>0, (47)
03(z,t)>0 if r*(t)<az, t>0,

such that they satisfy the conditions (4)-(10) and (46).

Theorem 3. There ezists an ezact solution of the Neumann type for the Problem (P3),
determined by the data 6y, qo,c,v and thermal coefficients of the phase change material, if
and only if the coefficient qo satisfies the inequality (1). In this case, the solution is given
by

6i(e.0) = AT + B (52 (48)
65(a,0) = 43 + B3 (527, (49)
s*(t) =20V, : (50)

r*(t) = 2wV, (51)
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where the five coefficients A}, A}, B}, B} and w* are given, as functions of the coefficients
»

o by
e _GQVT (0" s _ 010 VT |
4p= -2 f(al), Bl = — 0 (52)
6 f %
45 = - (w.) Bi= — (59
1-1(%) 1-1(s)
SN 1. S Cach ad |
w —w(a)_a.+2qoexp(a§)—alwl (01)’ (54)
where k
Wl(a:)=:1:-{—2‘7 L Wexp(z?). (55)
do &1

The coefficient 0* > 0 is given by 0* = a,€} and €] > 0 is the unique solution of the
equation

H(z) = Hy(z), z>0, (56)
where
Hi(e) =2+ L7 T Mg, (57)

_ @ o b [Freie a
H) = 2 exp(-a") - 292 R (L W) (58)

Proof. Owing to the method given in [8] and Section II, it is enough to prove that equation
(56) has a unique sotution £} > 0. The function W, H; and H are such that

Wi(0*) = LFL 5o, Wi(+00) = +00, W] > 0, (59)
290 @
+\ (l-ehk _ ' .
H,(0%) = ~——-= >0, Hy(+00) = 00, H; >0, (60)
29001
go 8 kaeyez 1k
{ H(0+)= phay __hl tchc Fl (210 a:)’ (61)
H(400) = —o00, H' <0,
If we define the dimensionless auxiliary variable
7k
= — 62
2 qo az (62)

then equation (56) has a unique solution ¢} > 0 if and only if

HOY) > Hi(0F) <= G(n) <0 <= 0<n<n < ¢ > 2‘1’“” < (i) (63)
2 7o
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where 1o = no(¢,7, 00, h, k1, k2,¢2) =10 (,f("{—fﬁ, ﬁf(‘l—'i‘;’) > 0 is the unique positive zero
of the function G, defined by

_ by c; Tk 1
Gz)=z+ N Fy(z) ThE(-0) 2 (64)
which satisfies the following properties.
G(0%) = —oo, G(4+00) = 400, G'>0. [] (65)
Remark 3. If gy verifies the equality
_ ky
% =3 a2 (66)
then we have k
0*=0, w'=1=uqn, (67)
{
that is,
s*(t) =0, r*(t) = 2 a3 NVt _ (68)

Therefore, there exists an exact solution for 63(z,t),r*(t) and s*(¢) = 0 (the solid phase
there does not exist) for the corresponding one-phase mushy zone model.

Remark 4. If ¢y satisfies the inequalities

7 ki
2azn0’
then there does not exist an exact solution of the Neumann type for the corresponding
mushy zone model. It is only a conduction heat problem for the initial liquid phase.

0<qo < (69)

Remark 5. In the particular case v = 0 (no mushy region), we have

H(0%) =0,  H(OY)= - (qo—f: j;) (70)

that is, the inequality (1) is given now by
kz 90
9 > m,
which is the necessary and sufficient condition for ¢y to obtain the classical phase-change
problem ([8].

(71)

Remark 6. The inequality (1) always implies inequality (71), which has a physical mean-
ing.

Remark 7. The method applied in [7] to obtain the inequality (71) for the classical
two-phase Stefan problem is not applicable for the present mushy zone model because this
method (through an auxiliary heat conduction problem) can not take into account any
mushy zone model. ) '
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4. ANOTHER PROPERTY FOR THE SOLUTION OF PROBLEM (F)

If the coefficient go > 0 in the condition (46) for Problem (P3) satisfies the inequality
(1) and then we consider the boundary temperature (11) on the fixed face z = 0 where D
is given, as a function of gg, by the expression

D= BT gt 5o, (12)
1

we obtain the following result.

Theorem 4. If the coefficient qo > 0 satisfies the inequality (1) then Problem (Py) is -
equivalent to Problem (P3). Moreover, the coefficient o of the free boundary s(t), given by.
(14), corresponding to the Problem (P,) satisfies the inequality (2).

Proof. Following the method developed in [8], it is enough to prove that, after some ma-
nipulations, we have .
() W) = Wi(el),
(ii)  Fo(e1) = H(el),
(iii)  Gi(e]) = Hi(e),
(iv) €1 =¢f,
(v) o=0,
Vi) w=w",
(vi) 6,=06%, 0,=63, s=9*, r=r".

Therefore, under the hypothesis (46) for the coefficient go, Problem (P;) is equivalent to
Problem (P3). Then, inequality (2) is obtained by using (21), (46), (72)and (iv). (0

Remark 8. (Continuation of Remark 5). In the particular case v = 0, the inequality (2)

is given by
o D kl c1 )
erf (al) < % ‘/kz ” (73)

which is obviously a nontrivial inequality when the right hand side is less than 1 [8].
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