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CHAPTER 9 

A SOLUTION TO A ONE-DIMENSIONAL  
TWO-PHASE FRACTIONAL STEFAN-LIKE 

PROBLEM WITH A CONVECTIVE BOUNDARY 
CONDITIONS AT THE FIXED FACE 

DOMINGO ALBERTO TARZIAA 

AUNIVERSIDAD AUSTRAL AND CONICET, PARAGUAY 1950, 
S2000FZF ROSARIO, ARGENTINA 

 
 
 

1. Introduction 

In recent years, some works on the fractional Lamé-Clapeyron-Stefan 
problem (called in the literature as Stefan problem) were published 
(Atkinson, 2012; Ceretani, 2020; Ceretani and Tarzia, 2017; Falcini, Garra 
and Voller, 2013; Jinyi and Mingyu, 2009; Kholpanov, Zhalev and Fedotov, 
2003; Roscani and Santillan Marcus, 2013 and 2014; Roscani, Bollati and 
Tarzia, 2018; Roscani, Caruso and Tarzia, 2020; Roscani and Tarzia, 2014, 
2018a, 2018b, 2018c; Tarzia, 2015; Voller, 2010 and 2014). 

In this paper, a generalized Neumann solution for the two-phase 
fractional Lamé-Clapeyron-Stefan problems for a semi-infinite material 
will be obtained with a constant initial temperature and a convective (Robin) 
boundary condition at the fixed face x 0 . Recently, a generalized 
Neumann solution for the two-phase fractional Lamé-Clapeyron-Stefan 
problem for a semi-infinite material with constant initial temperature, and a 
constant temperature condition at the fixed face x 0  was given in 
(Roscani and Tarzia, 2014), and with a particular heat flux condition at the 
fixed face x 0  was given in (Roscani and Tarzia, 2018a). 

In these problems, the two governing heat equations and a governing 
condition for the free boundary include a fractional time derivative in the 
Caputo sense of order 0 1   . The Caputo fractional derivative was 
defined in (Caputo, 1967) by: 
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Now, we define two functions (Wright and Mainardi functions) which 

are very important in order to obtain explicit solutions in the following 
Sections. 

The Wright function is defined in (Wright, 1933): 
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and the Mainardi function is defined in (Gorenflo, Luchko and Mainardi, 
1999): 
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which is a particular case of the Wright function. Some basic properties are 
given by: 
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In the last decades, fractional differential equations were developed by 
(Gorenflo, Luchko and Mainardi, 1999; Hristov, 2023; Kilbas, Srivastava 
and Trujillo, 2006; Luchko, 2010; Mainardi, 2010; Mainardi, Luchko and 
Pagnini, 2001; Mainardi, Mura and Pagnini, 2010; Podlubny, 1999).  

Moreover, for the classical Lamé-Clapeyron-Stefan problem there exist 
thousands of papers on the subject, for example, the first published papers 
(Lamé and Clapeyron, 1831; Stefan, 1889), the books (Alexiades and 
Solomon, 1996; Cannon, 1984; Carslaw and Jaeger, 1959; Crank, 1984; 
Elliot and Ockendon, 1982; Fasano, 2005; Gupta, 2017; Lunardini, 1991; 
Rubinstein, 1971; Tayler, 1986), and a large bibliography given in (Tarzia, 
2000). A review of explicit solutions with moving or free boundaries was 
given in (Tarzia, 2011).  

The further text of this chapter is organized as follows: In Section 2, we 
will obtain the necessary condition for the coefficient which characterizes 
the convective boundary condition at x 0  to have an instantaneous two-
phase fractional phase-change process. In Section 3, we will obtain a 
generalized Neumann solution for the two-phase fractional Lamé-
Clapeyron-Stefan problem for a semi-infinite material with a constant initial 
condition, and a convective (Robin) boundary condition at the fixed face
x 0 when the necessary inequality obtained in Section 2 is satisfied. When

1 , we also recover the Neumann solution for the classical two-phase 
Lamé-Clapeyron-Stefan problem through the error function when an 
inequality is satisfied for the coefficient that characterizes the convective 
boundary condition, which was previously obtained in (Tarzia, 2017) which 
is of the type given in (Tarzia 1981). 

2. A necessary condition to obtain an instantaneous  
two--phase fractional Stefan problem with a convective 

boundary condition at the fixed face 

To obtain the necessary condition for data to have an instantaneous 
phase-change process to the problem (20) - (27), we will first consider the 
following fractional heat conduction problem of order 0 1    for the 
liquid phase in the first quadrant with an initial constant temperature and a 
convective (Robin) boundary condition at the fixed face x 0 : 

 
      

2 0, 0, 0
xx

D T T x t    (9) 
 

      ( ,0) ( , ) , 0, 0i fT x T t T T x t ,             (10) 
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 is the diffusion coefficient of the liquid phase material. 

Lemma 1. 

The solution to the problem (9) - (11) is given by: 
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Proof:  

The solution to problem (9)-(11) can be obtained by: 
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where the coefficients A and B  must be determined by using conditions 
(10) and (11). First, we can obtain that the gradient of the fractional 
temperature (13), given by: 
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Then, the initial condition (10) is transformed by: 

          
 ( ,0) 1 ( , ,1

2iT T x A B W A B ,             (15) 
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and taking into account that (0, )lT t A , the boundary condition (11) is 
transformed by: 
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Therefore, from the previous two equations (15) and (16), we obtain: 
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and then, the temperature of the problem (9) – (11) is given by (12), and its 
temperature at the fixed face x 0 is given by: 
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which is constant in time. 

Corollary 2. 

We will have an instantaneous fractional change of phase if and only if the 
fractional temperature (12) at the fixed face x 0  is less than the phase-
change temperature fT , that is, (0, )l fT t T  which is equivalent to the 

following inequality for the coefficient 0h , given by: 

 




  




0

( ) 1
( ) (1 )2

i f

f

k T T
h

T T
,  (19) 

which implies that the coefficient 0h must be sufficiently larger to obtain an 
instantaneous fractional change of phase. 
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3. The Two-Phase Fractional Lamé-Clapeyron-Stefan 
Problem (Solidification Process) with a Convective 

Boundary Condition at The Fixed Face 

We consider the following solidification process:  
 
Problem ( FCP ) Find the free boundary  ( )x s t (the phase-change 
interface), and the temperature  ( , )T T x t  such that the following 
equations and conditions must be satisfied (0 1)   : 
 

      
2 0, ( ), 0

xx
D T T x s t t ,              (20) 

     2 0, 0 ( ), 0
xxs s sD T T x s t t ,              (21) 

(0) 0s ,                 (22) 

     ( ,0) ( , ) , 0, 0s s i fT x T t T T x t ,             (23) 

 ( ( ), ) , 0s fT s t t T t ,                (24) 

 ( ( ), ) , 0l fT s t t T t ,                (25) 

        ( ), ( ), ( ), 0
x xs sk T s t t k T s t t D s t t ,             (26) 

    0

2
(0, ) (0, ) , 0

xs s s

h
k T t T t T t

t
,                   (27) 

where 


2 s
s

s

k
c

, 


 




2 k
c

are the diffusion coefficients for the solid 

and liquid phases. 
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Theorem 3  
 
Let   f iT T T  be. 
  
a) If the coefficient 0h  satisfies the inequality (19) then there exists an 

instantaneous phase-change (solidification) process and the problem (
FCP ) has the generalized Neumann explicit solution given by: 
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where the coefficient   0  is the solution of the following equation: 
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b) If the coefficient 0h  satisfies the inequalities 
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then the problem ( FCP ) is a fractional heat transfer problem for the initial 

liquid phase whose solution is given by (12). 
 
Proof. 
 

The solution to the problem (20) - (27) can be obtained by the following 
expressions: 
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where the coefficients , , ,C D E F and   0  must be determined by using the 
boundary conditions (23) - (27). 

From conditions (23) - (25) and (27), we can obtain a system of 4 
equations for unknowns , ,C D E  and F as a function of the coefficient .  
Defining the parameter 
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we can solve that system by obtaining: 
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From expressions (40) - (43), we can obtain the fractional temperatures 
for the solid and liquid phases (28) and (29) respectively. By using now (28) 
and (29) and the fractional Stefan condition (26) we get for   the equation 
(31) which has a solution by using the properties of the real functions given 
in (Roscani and Tarzia, 2014 and 2018a). 
 
Corollary 4. 
 

By considering a similar method to the one developed by Roscani and 
Tarzia (2018a), the inequality (19) for the coefficient 0h  can be transformed 
into an inequality for the coefficient that characterizes the fractional free 
boundary for the fractional two-phase Stefan problem when a temperature 
boundary condition (  0(0, )sT t T ) is assumed at the fixed face  0x . 
Moreover, by equivalence, this inequality is also transformed for the 
coefficient   0  of the free boundary (38), given by the following 
inequality (  0 f iT T T ): 

 

   




   






01 ( , ,1)2
f s
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Theorem 5 
 
 Let   f iT T T  be. If the coefficient 0h  satisfies the inequality (19) then 

the solution of the problem ( FCP ) converges to the classical solution of 

the problem ( 1FCP ) when 1  , and then we recover the classical 

Neumann explicit solution and the inequality for the coefficient 0h  which 

characterized the convective (Robin) boundary condition at x 0  obtained 
for 1   in (Tarzia, 2017), that is: 
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Conclusions 

We have obtained generalized Neumann solutions for two-phase 
fractional Lamé-Clapeyron-Stefan problems for a semi-infinite material 
with a constant initial condition when a convective (Robin) boundary 
condition is imposed on the fixed face x 0 . When 1  , we recover 
the two classical Neumann solutions (which are equivalents among them) 
for the corresponding classical two-phase Lamé-Clapeyron-Stefan problem 
given through the error function, and also the inequalities for the 
corresponding coefficients which characterizes the convective boundary 
condition at x 0 .  
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