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Ruta 36 Km 601, 5800 Ŕıo Cuarto, Argentina

Abstract. We consider a heat conduction problem S with mixed boundary
conditions in a n-dimensional domain Ω with regular boundary Γ and a family

of problems Sα, where the parameter α > 0 is the heat transfer coefficient

on the portion of the boundary Γ1. In relation to these state systems, we
formulate simultaneous distributed-boundary optimal control problems on the

internal energy g and the heat flux q on the complementary portion of the

boundary Γ2. We obtain existence and uniqueness of the optimal controls, the
first order optimality conditions in terms of the adjoint state and the conver-

gence of the optimal controls, the system and the adjoint states when the heat

transfer coefficient α goes to infinity. Finally, we prove estimations between
the simultaneous distributed-boundary optimal control and the distributed op-

timal control problem studied in a previous paper of the first author.

1. Introduction. We consider a bounded domain Ω in Rn, whose regular boundary
Γ consists of the union of the two disjoint portions Γ1 and Γ2 with |Γ1| > 0 and
|Γ2| > 0. We denote with |Γi| = meas(Γi) (for i = 1, 2), the (n − 1)-dimensional
Hausdorff measure of the portion Γi on Γ. Let [0, T ] a time interval, for a T > 0.
We present the following heat conduction problems S and Sα (for each parameter
α > 0) respectively, with mixed boundary conditions (we denote by u(t) to the
function u(·, t)):

∂u

∂t
−∆u = g in Ω u

∣∣
Γ1

= b − ∂u

∂n

∣∣∣∣
Γ2

= q u(0) = vb (1)

∂u

∂t
−∆u = g in Ω − ∂u

∂n

∣∣∣∣
Γ1

= α(u− b) − ∂u

∂n

∣∣∣∣
Γ2

= q u(0) = vb (2)

where u is the temperature in Ω × (0, T ), g is the internal energy in Ω, b is the
temperature on Γ1 for (1) and the temperature of the external neighborhood of
Γ1 for (2), vb = b on Γ1, q is the heat flux on Γ2 and α > 0 is the heat transfer
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coefficient on Γ1, which satisfy the hypothesis: g ∈ H = L2(0, T ;L2(Ω)), q ∈ Q =

L2(0, T ;L2(Γ2)), b ∈ H 1
2 (Γ1) and vb ∈ H1(Ω).

Let u and uα the unique solutions of the parabolic problems (1) and (2), whose
variational formulations are given by [16, 17]:{

u− vb ∈ L2(0, T ;V0), u(0) = vb and u̇ ∈ L2(0, T ;V ′0)
such that 〈u̇(t), v〉+ a(u(t), v) = L(t, v), ∀v ∈ V0,

(3){
uα ∈ L2(0, T ;V ), uα(0) = vb and u̇α ∈ L2(0, T ;V ′)
such that 〈u̇α(t), v〉+ aα(uα(t), v) = Lα(t, v), ∀v ∈ V, (4)

where 〈·, ·〉 denote the duality between the functional space (V or V0) and its dual
space (V ′ or V ′0) and

V = H1(Ω) ; V0 = {v ∈ V : v
∣∣
Γ1

= 0} ; Q = L2(Γ2); H = L2(Ω) ;

(g, h)H =

∫
Ω

ghdx ; (q, η)Q =

∫
Γ2

qηdγ ;

a(u, v) =

∫
Ω

∇u∇vdx ; aα(u, v) = a(u, v) + α

∫
Γ1

uvdγ ;

L(t, v) = (g(t), v)H − (q(t), v)Q; Lα(t, v) = L(t, v) + α

∫
Γ1

bvdγ,

∃λ0 > 0 such that a(v, v) ≥ λ0||v||2V , ∀v ∈ V0.

We consider H = L2(0, T ;H), with norm ||.||H and internal product

(g, h)H =

T∫
0

(g(t), h(t))Hdt,

and the space Q = L2(0, T ;Q), with norm ||.||Q and internal product

(q, η)Q =

T∫
0

(q(t), η(t))Qdt.

For the sake of simplicity, for a Banach space X and 1 ≤ p ≤ ∞, we will often
use Lp(X) instead of Lp(0, T ;X).

If we denote by ugq and uαgq the unique solution of the problems (3) and (4)
respectively, we formulate the following simultaneous distributed-boundary optimal
control problems P and Pα on the internal energy g and the heat flux q, as a vector
control variable, respectively [11, 16, 24]:

find (g, q) ∈ H ×Q such that J(g, q) = min
g∈H,q∈Q

J(g, q) (5)

find (gα, qα) ∈ H ×Q such that Jα(gα, qα) = min
g∈H,q∈Q

Jα(g, q), (6)

where the cost functionals J and Jα are given by

J(g, q) =
1

2
||ugq − zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q (7)

Jα(g, q) =
1

2
||uαgq − zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q, (8)

with zd ∈ H given and M1, M2 positive constants.
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In [10], the authors studied boundary optimal control problems on the heat flux
q in mixed elliptic problems and they proved existence, uniqueness and asymptotic
behavior of the optimal solutions, when the heat transfer coefficient goes to infinity.
Similar results were obtained in [11] for simultaneous distributed-boundary optimal
control problems on the internal energy g and the heat flux q in mixed elliptic pro-
blems. In [17], convergence results were proved for non-stationary heat conduction
problems in relation to distributed optimal control problems on the internal energy
g as a control variable. In [7] and [8], were studied control problems on the source
g and the flux q respectively, for parabolic variational inequalities of second kind.
Other papers on the subject are [12, 13, 14, 18, 19, 20, 21, 25, 26, 27]. Our inte-
rest is the convergence when α → ∞, which is related to [4, 22, 23]. Variational
inequalities was popular in the 70′s, most of the main techniques for parabolic vari-
ational inequalities can be found in [5]. It is well know that the regularity of the
mixed problem is problematic when both portions of the boundary Γ1 and Γ2 have a
nonempty intersection, e.g. see the book [15]. Sufficient conditions (on the data) to
obtain a H2 regularity for an elliptic mixed boundary condition are given in [3], see
also [1], among others. Numerical analysis of a parabolic PDE with mixed boundary
conditions (Dirichlet and Neumann) is studied in [2], while a parabolic control pro-
blem with Robin boundary conditions is considered in [6, 9]. In the present paper,
in Section 2 and Section 3, we study simultaneous distributed-boundary optimal
control for heat conduction problems (1),(5) and (7), and (2), (6) and (8), respec-
tively. We obtain existence and uniqueness results of the optimal controls and we
give the first order optimality condition in terms of the adjoint states of the systems.
In Section 4, we prove convergence results of the optimal controls, and the system
and adjoint states corresponding to the problems (2), (6) and (8), when the heat
transfer coefficient α goes to infinity. In Section 5, we study the relation between
the solutions of the distributed optimal control problems given in [17] and the first
component of the simultaneous distributed-boundary optimal control problems (5)
and (6). Finally, we give a characterization of the simultaneous optimal controls by
using fixed point theory.

2. System S and its corresponding distributed-boundary optimal con-
trol problem. Here, we prove the existence and uniqueness of the simultaneous
distributed-boundary optimal control (g, q) for the optimal control problem (5) and
we give the optimality condition en terms of the adjoint state pg q.

Following [11, 16, 17], we define the application C : H×Q → L2(V0) by C(g, q) =
ugq−u00 where u00 is the solution of the problem (3) for g = 0 and q = 0. Moreover,
we consider Π : (H×Q)× (H×Q)→ R and L : H×Q → R defined by

Π((g, q), (h, η)) = (C(g, q), C(h, η))H +M1(g, h)H +M2(q, η)Q,

L(g, q) = (C(g, q), zd − u00)H, ∀(g, q), (h, η) ∈ H ×Q
and we give the following result.

Lemma 2.1. i) C is a linear and continuous application.
ii) Π is a bilinear, symmetric, continuous and coercive form.

iii) L is a linear and continuous application in H×Q.
iv) J can be write as:

J(g, q) =
1

2
Π((g, q), (g, q))− L(g, q) +

1

2
||u00 − zd||2H, ∀(g, q) ∈ H ×Q.
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v) J is a coercive functional on H × Q, that is, there exists N > 0 such that
∀(g2, q2), (g1, q1) ∈ H ×Q, ∀t ∈ [0, 1]

(1− t)J(g2, q2) + tJ(g1, q1)− J((1− t)(g2, q2) + t(g1, q1))

=
t(1− t)

2

[
||ug2q2 − ug1q1 ||2H +M1||g2 − g1||2H +M2||q2 − q1||2Q

]
≥ Nt(1− t)

2
||(g2 − g1, q2 − q1)||2H×Q.

vi) There exists a unique optimal control (g, q) ∈ H ×Q such that (5) holds.

Proof. (i) Following [17], we obtain that there exist different positive constants K
such that

||∇C(g, q)||H ≤ K||(g, q)||H×Q.
||C(g, q)||L∞(H) ≤ K||(g, q)||H×Q.[∫ T

0

∣∣∣∣∣∣∣∣ ddtC(g, q)(t)

∣∣∣∣∣∣∣∣2
V ′0

dt

]1/2

≤ K||(g, q)||H×Q.

Therefore, C : H × Q → {v ∈ L2(V0) ∩ L∞(H) : v̇ ∈ L2(V ′0)} is a continuous
operator.

(ii)- (v) It follows from the definition of J , Π and L and a similar way that [11].
(vi) It follows taking into account [11, 16].

We define the adjoint state pgq corresponding to problem (3) for each (g, q) ∈
H ×Q, as the unique solution of the variational equality{

pgq ∈ L2(V0), pgq(T ) = 0 and ṗgq ∈ L2(V ′0)
such that − 〈ṗgq(t), v〉+ a(pgq(t), v) = (ugq(t)− zd, v)H , ∀v ∈ V0.

(9)

Lemma 2.2.

i) The adjoint state pgq satisfies the following equality

(C(h, η), ugq − zd)H = (h, pgq)H − (η, pgq)Q.

ii) J is Gâteaux differentiable and J ′ is given by: ∀(g, q), (h, η) ∈ H ×Q
〈J ′(g, q), (h− g, η − q)〉

= (uhη − ugq, ugq − zd)H +M1(g, h− g)H +M2(q, η − q)Q
= Π((g, q), (h− g, η − q))− L(h− g, η − q).

iii) The Gâteaux derivative of J can be write as: ∀(h, η) ∈ H ×Q

〈J ′(g, q), (h, η)〉 = (M1g + pgq, h)H + (M2q − pgq, η)Q.

iv) The optimality condition for the problem (5) is: ∀(h, η) ∈ H ×Q

〈J ′(g, q), (h, η)〉 = (M1g + pg q, h)H + (M2q − pg q, η)Q = 0.

Proof. (i) Following [17], if we take v = C(h, η)(t) ∈ V0 in (9) and we integrate
between 0 and T , we have

− (ṗgq, C(h, η))H +

∫ T

0

a(pgq(t), C(h, η)(t))dt = (ugq − zd, C(h, η))H.

On the other hand, taking v = pgq(t) in (3), for g = 0, q = 0 and g = h, q = η, we
obtain

(u̇hη(t)−u̇00(t), pgq(t))H+a(uhη(t)−u00(t), pgq(t)) = (h(t), pgq(t))H−(η(t), pgq(t))Q
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and integrating between 0 and T , we have

(u̇hη − u̇00, pgq)H +

∫ T

0

a(C(h, η)(t), pgq(t))dt = (h, pgq)H − (η, pgq)Q.

Therefore

(C(h, η), ugq − zd)H = −
∫ T

0

d

dt
(pgq(t), C(h, η)(t))H dt+ (h, pgq)H − (η, pgq)Q

and by using that pgq(T ) = 0 and C(h, η)(0) = 0, we have (i).
(ii) It follows in similar way that [11, 17].
(iii) From (i) and (ii), we obtain

〈J ′(g, q), (h, η)〉 = (M1g + pgq, h)H + (M2q − pgq, η)Q, ∀(h, η) ∈ H ×Q.

(iv) From (iii), we have

(M1g + pg q, h)H + (M2q − pg q, η)Q = 0, ∀(h, η) ∈ H ×Q.

3. System Sα and its corresponding distributed-boundary optimal con-
trol problem. We will prove, for each α > 0, the existence and uniqueness of
the simultaneous distributed-boundary optimal control (gα, qα) ∈ H × Q for the
problem (6) and we will give the optimality condition in terms of the adjoint state
pαgαqα . For this purpose, following [11, 16, 17], we define Cα : H×Q → L2(V ) given

by Cα(g, q) = uαgq−uα00, where uα00 is the solution of the variational problem (4)
for g = 0 and q = 0, and Πα : (H ×Q) × (H ×Q) → R and Lα : H ×Q → R are
defined by

Πα((g, q), (h, η)) = (Cα(g, q), Cα(h, η))H +M1(g, h)H +M2(q, η)Q,

Lα(g, q) = (Cα(g, q), zd − uα00)H ∀(g, q), (h, η) ∈ H ×Q.

Lemma 3.1.

i) Cα is a linear and continuous application.
ii) Πα is a bilinear, symmetric, continuous and coercive form.

iii) Lα is linear and continuous in H×Q.
iv) Jα can be write as

Jα(g, q) =
1

2
Πα((g, q), (g, q))− Lα(g, q) +

1

2
||uα00 − zd||2H, ∀(g, q) ∈ H ×Q.

v) Jα is a coercive functional on H × Q, that is, there exists N > 0 such that
∀(g2, q2), (g1, q1) ∈ H ×Q, ∀t ∈ [0, 1]

(1− t)Jα(g2, q2) + tJα(g1, q1)− Jα((1− t)(g2, q2) + t(g1, q1))

=
t(1− t)

2

[
||ug2q2 − ug1q1 ||2H +M1||g2 − g1||2H +M2||q2 − q1||2Q

]
≥ Nt(1− t)

2
||(g2 − g1, q2 − q1)||2H×Q.

vi) There exists a unique optimal control (gα, qα) such that (6) holds.

Proof. This results in a similar way that Lemma 2.1 and the proof is omitted.
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We define the adjoint state pαgq corresponding to (4) for each (g, q) ∈ H×Q, as
the unique solution of{

pαgq ∈ L2(V ), pαgq(T ) = 0 and ṗαgq ∈ L2(V ′)
such that − 〈ṗαgq(t), v〉+ aα(pαgq(t), v) = (uαgq(t)− zd, v)H , ∀v ∈ V

(10)

and for each α > 0, we obtain analogous properties to Lemma 2.2, whose proof will
be also omitted.

Lemma 3.2.

i) The adjoint state pαgq satisfies the following equality

(Cα(h, η), uαgq − zd)H = (h, pαgq)H − (η, pαgq)Q.

ii) Jα is Gâteaux differentiable and J ′α is given by ∀(g, q), (h, η) ∈ H ×Q

〈J ′α(g, q), (h− g, η − q)〉
= (uαhη − uαgq, uαgq − zd)H +M1(g, h− g)H +M2(q, η − q)Q
= Πα((g, q), (h− g, η − q))− Lα(h− g, η − q).

iii) The Gâteaux derivative of Jα can be write as, ∀(h, η) ∈ H ×Q

〈J ′α(g, q), (h, η)〉 = (M1g + pαgq, h)H + (M2q − pαgq, η)Q.

iv) The optimality condition for the problem (6) is, ∀(h, η) ∈ H ×Q

〈J ′α(gα, qα), (h, η)〉 = (M1gα + pαgα qα , h)H + (M2qα − pαgα qα , η)Q = 0.

4. Convergence of simultaneous distributed-boundary optimal control
problems when α → ∞. For fixed (g, q) ∈ H × Q, we can prove estimations for
uαgq and pαgq and we obtain the strong convergence to ugq and pgq, respectively,
when α goes to infinity.

Proposition 1. For fixed (g, q), if uαgq is the unique solution of the variational
equality (4), we have

||u̇αgq||L2(V ′0) + ||uαgq||L∞(H) + ||uαgq||L2(V ) +
√

(α− 1)||uαgq − b||L∞(L2(Γ1)) ≤ K, (11)

for all α > 1, with K depending of ||u̇gq||L2(V ′0 ), ||u̇gq||L2(V ′), ||∇ugq||H, ||ugq||L2(V ),
||ugq||L∞(H), ||g||H, ||q||Q and the coerciveness constant λ1 of the bilinear form a1.

Proof. Taking v = uαgq(t)− ugq(t) ∈ V in the variational equality (4), taking into
account that ugq

∣∣
Γ1

= b, and by using Young’s inequality, we have

〈u̇αgq(t)− u̇gq(t), uαgq(t)− ugq(t)〉+
λ1

2
||uαgq(t)− ugq(t)||2V

+ (α− 1)

∫
Γ1

(uαgq(t)− ugq(t))2dγ

≤ 2

λ1
||g(t)||2H +

2

λ1
‖γ0‖2||q(t)||2Q +

2

λ1
||∇ugq(t)||2H +

2

λ1
||u̇gq(t)||2V ′

where γ0 is the trace operator on Γ. Next, integrating between 0 and T , and using
that uαgq(0) = ugq(0) = vb, we obtain
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1

2
||uαgq(T )− ugq(T )||2H +

λ1

2
||uαgq − ugq||2L2(V ) + (α− 1)||uαgq − b||2L2(L2(Γ1))

≤ 2

λ1
[||g||2H + ‖γ0‖2||q||2Q + ||∇ugq||2H + ||u̇gq||2L2(V ′)]

=
2

λ1
A,

where A = ||g||2H + ‖γ0‖2||q||2Q + ||∇ugq||2H + ||u̇gq||2L2(V ′). From here, we deduce

√
(α− 1)||uαgq − b||L2(L2(Γ1)) ≤

√
2

λ1
A, (12)

||uαgq||L2(V ) ≤
2

λ1

√
A+ ||ugq||L2(V ). (13)

||uαgq||L∞(H) ≤
2√
λ1

√
A+ ||ugq||L∞(H). (14)

Next, taking v ∈ V0 in the variational equality (4) and subtracting with variational
equality (3), we have

(u̇αgq(t)− u̇gq(t), v)H + a(uαgq(t)− ugq(t), v) = 0, ∀v ∈ V0.

Therefore

(u̇αgq(t)− u̇gq(t), v)H ≤ ||ugq(t)− uαgq(t)||V ||v||V0
∀v ∈ V0, (15)

taking supremum for v ∈ V0 with ‖v‖V0 ≤ 1 and integrating between 0 and T , we
obtain ||u̇αgq − u̇gq||L2(V ′0 ) ≤ ||ugq − uαgq||L2(V ) and therefore

||u̇αgq||L2(V ′0 ) ≤
2

λ1

√
A+ 2||ugq||L2(V ) + ||u̇gq||L2(V ′0 ). (16)

Finally, from (12), (13), (14) and (16), the thesis holds.

Proposition 2. For fixed (g, q), if pαgq is the unique solution of the problem (10),
then we have

||ṗαgq||L2(V ′0 ) + ||pαgq||L∞(H) + ||pαgq||L2(V ) +
√

(α− 1)||pαgq||L2(L2(Γ1)) ≤ K, (17)

for all α > 1, where K is depending of ||ṗgq||L2(V ′0 ), ||ṗgq||L2(V ′), ||g||H, ||q||Q,
||∇pgq||H, ||pgq||L2(V ), ||pgq||L∞(H), ||zd||H, ||u̇gq||L2(V ′), ||∇ugq||H, ||ugq||L2(V ),
||ugq||L∞(H) and the coerciveness constant λ1.

Proof. From the variational equality (10) and with an analogous reasoning to Propo-
sition 1, we obtain the estimation (17) as in [17].

Theorem 4.1. For fixed (g, q) ∈ H ×Q, when α→∞, we obtain:

i) if ugq and uαgq are the unique solutions to the variational problems (3) and
(4) respectively, then uαgq → ugq strongly in L2(V )∩L∞(H) and u̇αgq → u̇gq
strongly in L2(V ′0).

ii) if pgq and pαgq are the unique solutions to the variational problems (9) and
(10) respectively, then pαgq → pgq strongly in L2(V )∩L∞(H) and ṗαgq → ṗgq
strongly in L2(V ′0).
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Proof. (i) For fixed (g, q) ∈ H×Q, we consider a sequence {uαngq} in L2(V )∩L∞(H)
and by estimation (11), we have that ||uαngq||L2(V ) ≤ K and ||u̇αngq||L2(V ′0 ) ≤ K,
therefore, there exists a subsequence {uαngq} which is weakly convergent to wgq ∈
L2(V ) and weakly* in L∞(H) and there exists a subsequence {u̇αngq} which is
weakly convergent to ẇgq ∈ L2(V ′0). Now, from the weak lower semicontinuity of
the norm, we have that wgq = b on Γ1 and therefore wgq − vb ∈ L2(V0).
Next, taking into account that wgq satisfies the following variational problem{

wgq − vb ∈ L2(V0), wgq(0) = vb and ẇgq ∈ L2(V ′0)
such that 〈ẇgq(t), v〉+ a(wgq(t), v) = L(t, v), ∀v ∈ V0,

and by uniqueness of the solution of the problem (3), we have wgq = ugq.
Therefore, when αn →∞ (called α→∞), we get

uαgq ⇀ ugq in L2(V ), uαgq
∗
⇀ ugq in L∞(H) and u̇αgq ⇀ u̇gq in L2(V ′0).

Now, we have

1

2
||uαgq(T )− ugq(T )||2H + λ1||uαgq − ugq||2L2(V ) + (α− 1)||uαgq − ugq||2L2(L2(Γ1))

≤
T∫

0

{L(t, uαgq(t)− ugq(t))− a(ugq(t), uαgq(t)− ugq(t))

− 〈u̇gq(t), uαgq(t)− ugq(t)〉}dt

and by using the weak convergence of uαgq to ugq, we prove the strong convergence
in L2(V ) and the strong convergence in L2(L2(Γ1)). Now, from the variational
equalities (3) and (4), we have as in (15), that

(u̇αgq(t)− u̇gq(t), v)H ≤ ||ugq(t)− uαgq(t)||V ||v||V0
, ∀v ∈ V0

then

||u̇αgq − u̇gq||2L2(V ′0 ) ≤ ||ugq − uαgq||
2
L2(V ) → 0, when α→∞,

and we have that u̇αgq is strongly convergent to u̇gq in L2(V ′0).
(ii) For fixed (g, q) ∈ H × Q we prove that there exists a sequence in L2(V ) ∩

L∞(H) and ηgq ∈ L2(V ) ∩ L∞(H) such that pαngq ⇀ ηgq weakly in L2(V ) and
weakly* in L∞(H) and ṗαngq ⇀ η̇gq weakly in L2(V ′0). Next, we obtain that ηgq
verifies the variational problem (9), and by uniqueness of the solution we have that
ηgq = pgq. Here, when α→∞, we obtain that

pαgq ⇀ pgq in L2(V ), pαgq
∗
⇀ pgq in L∞(H) and ṗαgq ⇀ ṗgq in L2(V ′0).

Finally, the strong convergence of pαgq to pgq in L2(V )∩L∞(H) and of ṗαgq to ṗgq
in L2(V ′0) is obtained in a similar way that (i).

Now, in the next theorem we prove the strong convergence of the optimal controls,
the system and the adjoint states of the optimal control problems (6) to the optimal
control, the system and the adjoint states of the optimal control problem (5), when
α→∞.

Theorem 4.2. a) If ug q and uαgαqα are the unique system states corresponding to

the simultaneous optimal control problems (5) and (6) respectively, then we get

(i) lim
α→∞

||uαgαqα − ug q||L2(V ) = 0, (ii) lim
α→∞

||u̇αgαqα − u̇g q||L2(V ′0 ) = 0. (18)
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b) If pg q and pαgαqα are the unique adjoint states corresponding to the simultaneous

optimal control problems (5) and (6) respectively, then

(i) lim
α→∞

||pαgαqα − pg q||L2(V ) = 0, (ii) lim
α→∞

||ṗαgαqα − ṗg q||L2(V ′0 ) = 0. (19)

c) If (g, q) and (gα, qα) are the unique solutions from the simultaneous distributed-
boundary optimal control problems (5) and (6) respectively, then

lim
α→∞

||(gα, qα)− (g, q)||H×Q = 0. (20)

Proof. We will do the proof in three steps.

Step 1. From the estimation (11) for uαgq with g = q = 0, there exists a constant
K1 > 0 such that ||uα00||H ≤ ||uα00||L2(V ) ≤ K1, ∀α > 1. From the definition of Jα
and since Jα(gα, qα) ≤ Jα(0, 0), we have:

1

2
||uαgαqα − zd||

2
H +

M1

2
||gα||2H +

M2

2
||qα||2Q ≤

1

2
||uα00 − zd||2H.

Therefore, there exist positive constants K2, K3 and K4 such that

||uαgαqα ||H ≤ K2, ||gα||H ≤ K3 and ||qα||Q ≤ K4.

Now, by estimation (11) in Proposition 1, we obtain that, for all α > 1 there exists
K5 > 0 such that

||uαgαqα ||L2(V ) + ||u̇αgαqα ||L2(V ′0 ) +
√

(α− 1)||uαgαqα − b||L2(L2(Γ1)) ≤ K5 (21)

and by estimation (17) in Proposition 2, there exists a positive constant K6 such
that

||pαgαqα ||L2(V ) + ||ṗαgαqα ||L2(V ′0 ) +
√

(α− 1)||pαgαqα ||L2(L2(Γ1)) ≤ K6. (22)

From the previous estimations, we have that there exist f ∈ H, δ ∈ Q, µ ∈ L2(V ),
µ̇ ∈ L2(V ′0), ρ ∈ L2(V ) and ρ̇ ∈ L2(V ′0) such that

gα ⇀ f ∈ H, qα ⇀ δ ∈ Q
uαgαqα ⇀ µ ∈ L2(V ), u̇αgαqα ⇀ µ̇ ∈ L2(V ′0),

pαgαqα ⇀ ρ ∈ L2(V ), ṗαgαqα ⇀ ρ̇ ∈ L2(V ′0).

Step 2. Taking into account the weak convergence of uαgαqα to µ in L2(V ) and

the estimation (21) we obtain in similar way to Theorem 4.1 (i), that µ = ufδ.
Moreover, for the adjoint state, we have that pαgαqα is weakly convergent to ρ in

L2(V ) and from estimation (22) we obtain in similar way that Theorem 4.1 (ii),
that ρ = pfδ. Therefore, we have

uαgαqα ⇀ ufδ in L2(V ) and pαgαqα ⇀ pfδ in L2(V ).

Now, the optimality condition for the problem (6) is given by

(M1gα + pαgαqα , h)H + (M2qα − pαgαqα , η)Q = 0 ∀(h, η) ∈ H ×Q
and taking into account that

pαgαqα ⇀ pfδ in L2(V ), gα ⇀ f ∈ H, qα ⇀ δ ∈ Q
we obtain

(M1f + pfδ, h)H + (M2δ − pfδ, η)Q = 0 ∀(h, η) ∈ H ×Q
and by uniqueness of the optimal control we deduce that f = g and δ = q. Therefore
ufδ = ug q, pfδ = pg q, u̇fδ = u̇g q and ṗfδ = u̇g q.
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Step 3. We have, for all (g, q) ∈ H ×Q

J(g, q) =
1

2
||ug q − zd||

2
H +

M1

2
||g||2H +

M2

2
||q||2Q

≤ lim inf
α→∞

[
1

2
||uαgαqα − zd||

2
H +

M1

2
||gα||2H +

M2

2
||qα||2Q

]
≤ lim sup

α→∞

[
1

2
||uαgαqα − zd||

2
H +

M1

2
||gα||2H +

M2

2
||qα||2Q

]
≤ lim sup

α→∞
Jα(g, q)

= lim
α→∞

[
1

2
||uαgq − zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q

]
=

1

2
||ugq − zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q = J(g, q).

By taking infimum on (g, q), all the above inequalities become equalities and there-
fore we get

lim
α→∞

[
1

2
||uαgαqα − zd||

2
H +

M1

2
||gα||2H +

M2

2
||qα||2Q

]
=

1

2
||ug q − zd||

2
H +

M1

2
||g||2H +

M2

2
||q||2Q,

that is

lim
α→∞

||(
√
M2qα,

√
M1gα, uαgαqα − zd)||

2
Q×H×H

= ||(
√
M2q,

√
M1g, ug q − zd)||

2
Q×H×H.

The previous equality, the convergence qα ⇀ q inQ, gα ⇀ g inH and uαgαqα ⇀ ug q
in L2(V ), imply that (qα, gα, uαgαqα)→ (q, g, ug q), when α→∞, then (20) holds.

Finally, if we take v = uαgαqα(t)− ug q(t) ∈ V in (4) for uαgαqα , we have

〈u̇αgαqα(t)− u̇g q(t), uαgαqα(t)− ug q(t)〉+ λ1||uαgαqα(t)− ug q(t)||
2
V

+ (α− 1)

∫
Γ1

(uαgαqα(t)− ug q(t))
2dγ

≤ (gα(t)− u̇g q(t), uαgαqα(t)− ug q(t))H − (qα(t), uαgαqα(t)− ug q(t))Q
− a(ug q(t), uαgαqα(t)− ug q(t)).

If we call zα = uαgαqα − ug q, from the previous equality, we obtain

λ1||zα(t)||2V ≤ (gα(t)− u̇g q(t), zα(t))H − (qα(t), zα(t))Q − a(ug q(t), zα(t)),

and integrating between 0 and T , we have

λ1||zα||2L2(V ) = λ1

T∫
0

||zα(t)||2V dt

≤
T∫

0

[
(gα(t)− u̇g q(t), zα(t))H − (qα(t), zα(t))Q − a(ug q(t), zα(t))

]
dt.
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Since zα ⇀ 0 weakly in L2(V ), qα → q strongly in Q and gα → g strongly in H we
obtain, when α→∞

T∫
0

[
(gα(t)− u̇g q(t), zα(t))H − (qα(t), zα(t))Q − a(ug q(t), zα(t))

]
dt→ 0,

then (18 i) holds.
From the variational equalities (3) and (4), we have

〈żα(t), v〉+ a(zα(t), v) = (gα(t)− g(t), v)H + (q(t)− qα(t), v)Q, ∀v ∈ V0,

and therefore there exists a positive constant K7 such that

||żα||2L2(V ′0 ) ≤ K7

[
||zα||2L2(V ) + ||gα − g||2H + ||q − qα||2Q

]
.

Since qα → q strongly in Q, gα → g strongly in H and uαgαqα → ug q strongly in

L2(V ) when α→∞, we can say that żα → 0 strongly in L2(V ′0), that is u̇αgαqα →
u̇g q strongly in L2(V ′0), then (18 ii) holds.

In similar way, we prove that (pαgαqα , ṗαgαqα)→ (pg q, ṗg q) strongly in L2(V )×
L2(V ′0), when α→∞.

5. Estimations between the optimal controls. In this Section, we study the
relation between the solutions of the distributed optimal control problems given in
[17] with the solutions of the simultaneous distributed-boundary optimal control
problems (5) and (6). Moreover, we give a characterization of the solutions of these
problems by using the fixed point theory.

5.1. Estimations with respect to the problem P . We consider the distributed
optimal control problem

find g ∈ H such that J1(g) = min
g∈H

J1(g) for fixed q ∈ Q, (23)

where J1 is the cost functional defined in [17] plus the constant M2

2 ||q||
2
Q, that is,

J1 : H → R+
0 is given by

J1(g) =
1

2
||ug − zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q (fixed q ∈ Q),

where ug is the unique solution of the problem (3) for fixed q.

Remark 1. The functional J defined in (5) and the functional J1 previously given,
satisfy the following elemental estimation

J(g, q) ≤ J1(g), ∀q ∈ Q.

In the following theorem we obtain estimations between the solution of the dis-
tributed optimal control problem (23) and the first component of the solution of
the simultaneous distributed-boundary optimal control problem (5).

Theorem 5.1. If (g, q) ∈ H×Q is the unique solution of the distributed-boundary
optimal control problem (5), g is the unique solution of the optimal control problem
(23), then

||g − g||H ≤
1

λ0M1
||ug q − ug q||H. (24)
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Proof. From the optimality condition for g, with q = q, we have (M1g+ pg q, h)H =

0,∀h ∈ H, and taking h = g − g, we obtain

(M1g + pg q, g − g)H = 0. (25)

On the other hand, if we take η = 0 ∈ Q in the optimality condition for (g, q) we
have (M1g + pg q, h)H = 0,∀h ∈ H, next, taking h = g − g, we obtain

(M1g + pg q, g − g)H = 0. (26)

By adding (25) and (26), we have
(
M1(g − g) + pg q − pg q, g − g

)
H

= 0. Here, we

deduce that

||g − g||H ≤
1

M1
||pg q − pg q||L2(V ).

Next, by using the variational equality (9) for g = g and q = q, and for g = g and
q = q, respectively, we obtain

− d

dt
||pg q(t)− pg q(t)||

2
H + λ0||pg q(t)− pg q(t)||

2
V ≤

1

λ0
||ug q(t)− ug q(t)||

2
H .

By integrating between 0 and T , and using that pg q(T ) = pg q(T ) = 0, we deduce

||pg q(0)− pg q(0)||2H + λ0||pg q − pg q||
2
L2(V ) ≤

1

λ0
||ug q − ug q||

2
H,

then

||pg q − pg q||L2(V ) ≤
1

λ0
||ug q − ug q||H,

and therefore (24) holds.

Now, we will give a characterization of the solution of the simultaneous optimal
control problem (5) by using the fixed point theory. For this, we introduce the
operator W : H×Q → H×Q, defined by

W (g, q) =

(
− 1

M1
pgq,

1

M2
pgq

)
.

Theorem 5.2. There exists a positive constant C0 = C0(λ0, γ0,M1,M2) such that,
∀(g1, q1), (g2, q2) ∈ H ×Q

||W (g2, q2)−W (g1, q1)||H×Q ≤ C0||(g2, q2)− (g1, q1)||H×Q,

and W is a contraction if and only if the data satisfies the following condition

C0 =
2

λ2
0

√
1

M2
1

+
||γ0||2
M2

2

(1 + ||γ0||) < 1. (27)

Proof. First, we prove the following estimates, ∀(g1, q1), (g2, q2) ∈ H ×Q

||ug1q1 − ug2q2 ||L2(V ) ≤
√

2

λ0
(||g2 − g1||H + ||γ0|| ||q2 − q1||Q) , (28)

||pg1q1 − pg2q2 ||L2(V ) ≤
1

λ0
||ug1q1 − ug2q2 ||H. (29)
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In fact, for the estimation (28), we consider the variational equation (3) for g = g1

and q = q1, and for g = g2 and q = q2, respectively. Next, we obtain

1

2

d

dt
||ug1q1(t)− ug2q2(t)||2H + λ0||ug1q1(t)− ug2q2(t)||2V

≤ ||ug1q1(t)− ug2q2(t)||V (||g1(t)− g2(t)||H + ||γ0|| ||q1(t)− q2(t)||Q) .

Now, by Young’s inequality and integrating between 0 and T , we deduce (28). If
we consider the variational equality (9) for g = g1 and q = q1, and for g = g2 and
q = q2, respectively, we obtain (29).
Finally, using the estimations (28) and (29), we obtain

||W (g2, q2)−W (g1, q1)||H×Q ≤ 2
λ2
0

√
1
M2

1
+ ||γ0||2

M2
2

(1 + ||γ0||) ||(g2, q2)−(g1, q1)||H×Q,

and the operator W is a contraction if and only if (27) holds.

Corollary 1. If the data satisfy that C0 < 1, then the unique solution (g, q) ∈ H×Q
of the optimal control problem (5) can be characterized as the unique fixed point of
the operator W , that is

W (g, q) =

(
− 1

M1
pg q,

1

M2
pg q

)
= (g, q).

Proof. When C0 < 1, the operator W is a contraction defined on H × Q. Next,
there exists a unique (g∗, q∗) ∈ H ×Q such that

W (g∗, q∗) =

(
− 1

M1
pg∗q∗ ,

1

M2
pg∗q∗

)
= (g∗, q∗),

o equivalently

(M1g
∗ + pg∗q∗ ,M2q

∗ − pg∗q∗) = (0, 0).

Here, (g∗, q∗) verifies the optimality condition for the problem (5), therefore the
unique fixed point of W is the solution (g, q) ∈ H×Q of this simultaneous optimal
control problem.

5.2. Estimations with respect to the problem Pα. For each α > 0, we consider
the following optimal control problem

find gα ∈ H such that J1α(gα) = min
g∈H

J1α(g), for fixed q ∈ Q (30)

where J1α : H → R+
0 is given by

J1α(g) =
1

2
||uαg − zd||2H +

M1

2
||g||2H +

M2

2
||q||2Q (fixed q ∈ Q),

that is, J1α is the cost functional given in [17] plus the constant M2

2 ||q||
2
Q and uαg

is the unique solution of the problem (4) for fixed q.

Remark 2. For each α > 0, the functional Jα defined in (6) and the functional
J1α previously given satisfy the following estimate

Jα(gα, qα) ≤ J1α(gα), ∀q ∈ Q.

An estimation between the solution of the distributed optimal control problem
(30) with the first component of the solution of the simultaneous distributed-
boundary optimal control problem (6) is given in the following theorem whose prove
is omitted.
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Theorem 5.3. If (gα, qα) ∈ H × Q is the unique solution of the simultaneous
optimal control problem (6), gα is the unique solution of the optimal control problem
(30), then

||gα − gα||H ≤
1

λ1 min{1, α}M1
||uαgαqα − uαgαqα ||H.

In similar way to Theorem 5.2, we give a characterization of the solution of the
problem (6) proving that the operator Wα, which is defined after, is a contraction.
This result is presented in the following theorem, whose prove is omitted.

Let the operator Wα : H×Q → H×Q, for each α > 0, defined by the expression

Wα(g, q) =

(
− 1

M1
pαgq,

1

M2
pαgq

)
.

Theorem 5.4. Wα is a Lipschitz operator on H×Q, that is, there exists a positive
constant C0α = C0α(λ1 min{1, α}, γ0,M1,M2), such that ∀(g1, q1), (g2, q2) ∈ H×Q

||Wα(g2, q2)−Wα(g1, q1)||H×Q ≤ C0α||(g2, q2)− (g1, q1)||H×Q
and Wα is a contraction if and only if the data satisfy the following inequality

C0α =
2

λ2
1(min{1, α})2

√
1

M2
1

+
||γ0||2
M2

2

(1 + ||γ0||) < 1.

Corollary 2. If the data satisfy the condition C0α < 1, then the unique solution
(gα, qα) ∈ H×Q of the problem (6) can be obtained as the unique fixed point of the
operator Wα, that is

Wα(gα, qα) =

(
− 1

M1
pαgαqα ,

1

M2
pαgαqα

)
= (gα, qα).
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