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Abstract

We consider a bounded domain Q — R" whose regular boundary
I'=0Q =17 UTI, consists of the union of two disjoint portions

I7 and T, with positive measures. The convergence of a family
of continuous Neumann boundary mixed elliptic optimal control
problems (P, ), governed by elliptic variational equalities, when the
parameter o of the family (the heat transfer coefficient on the portion
of the boundary TI7) goes to infinity was studied in Gariboldi-Tarzia
[15], being the control variable the heat flux on the boundary I'p. It

has been proved that the optimal control, and their corresponding

system and adjoint system states are strongly convergent, in adequate

functional spaces, to the optimal control, and the system and adjoint
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states of another Neumann boundary mixed elliptic optimal control

problem (P) governed also by an elliptic variational equality with a

different boundary condition on the portion of the boundary I73.

We consider the discrete approximations (P,,) and (P,) of the
optimal control problems (P,) and (P), respectively, for each

h >0 and for each a > 0, through the finite element method with
Lagrange’s triangles of type 1 with parameter / (the longest side
of the triangles). We also discrete the elliptic variational equalities
which define the system and their adjoint system states, and the
corresponding cost functional of the Neumann boundary optimal
control problems (7,) and (P). The goal of this paper is to study the
convergence of this family of discrete Neumann boundary mixed
elliptic optimal control problems (P,,) when the parameter a. goes to
infinity. We prove the convergence of the discrete optimal controls,
the discrete system and adjoint system states of the family (B,,) to
the corresponding discrete Neumann boundary mixed elliptic optimal
control problem (P,) when o — o for each % > 0, in adequate
functional spaces. We also study the convergence when 2 — 0 and

we obtain a commutative diagram which relates the continuous and
discrete Neumann boundary mixed elliptic optimal control problems

(Pho)s (Py), (B,) and (P) by taking the limits # — 0 and

o — 4o, respectively.
I. Introduction

The goal of this work is to do the numerical analysis of the convergence
of the continuous Neumann boundary mixed optimal control problems with
respect to a parameter (the heat transfer coefficient) given in [15]. For
distributed optimal control problems, we can see [14].

We consider a bounded domain Q — R" whose regular boundary

['=0Q =T; UT, consists of the union of two disjoint portions I7 and T}
with meas(I7) > 0 and meas(I’,) > 0. We consider the following family

of continuous Neumann boundary optimal control problems (£, ) for each
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parameter o > 0, where the control variable is the heat flux ¢ on I',, that is:
For each a > 0, find the continuous Neumann boundary optimal control

da,, € O = I2(T,) such that:

Problem (7,) : Ja(q%p) = minJ,(q), (1)
qeQ

where the quadratic cost functional J, : O — Ry is defined by the following
expression [2, 23, 30]:
1 2 M, 2
Ja(f])=§|| Uog — 24 "H +7"Q”Q 2
with M >0 and z; € H given, u,, €V is the state of the system defined

by the elliptic variational equality [21]:

ay(ugyy, v)=(g,v)y —(q,v), + OLI bvdy, Vv eV,
w " ¢ n 3)
Ugg €V

and its adjoint system state p,, €V is defined by the following elliptic

variational equality:

{a(x(paqa V) = (uaq - Zd) V)) VV € V, (4)

Pag €V,

where the bilinear, continuous, symmetric and coercive forms a, and a are

given by:

ag(u, v) = au, v) + OLJ.F uvdy, a(u, v) = IQ Vu - Vvdx,

1
(u: V)H = IQ uvdx, (q: V)Q = -[Fz qvdy, Q)

where A, = A min(l, &) >0, A >0 and A > 0 are the positive coercive

constants of a,, a; and a, that is, [21, 26]:
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Ll v||12, <ag(v,v), YveV and A|v ||12, <a(v,v), YveV,, (6)
and the functional spaces are:
H=1*Q), Vv=H(@Q) 0=I[T),
Vo={veV,v/[; =0}, K={veV,v[}=b=b+V,. (7)

In (3), g is the internal energy in Q, b = Const. is the temperature of

the external neighborhood on I, ¢ is the heat flux on I’ and a > 0 is the
heat transfer coefficient on I7. The system (3) can represent the steady-state

two-phase Stefan problem for adequate data [26, 27].

We also consider the following continuous Neumann boundary optimal

control problem (P), where the control variable is the heat flux ¢ on T3,
that is: Find the continuous Neumann boundary optimal control g,, € O

such that:

Problem (P):  J(q,,) = miIQlJ(q), (8)
qe

where the quadratic cost functional J : 9 — Ry is defined by the following
expression [2, 23, 30]:

1 2 M 2
J(@) =3l ug =z Iy + 5l alp ©)

with M >0 and z; € H given, u, € K is the state of the system defined
by the following elliptic variational equality [21]:

a(uqa V) = (g’ V)H - (q’ V)Q, Vv e VO)
U, € K

(10)

and its adjoint system state p, € V' is defined by the following elliptic

variational equality:
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a(p,, v) =, —z4, )y, Yvev,
{ I a " (11)

Pq € Vo

In [15], the limit of the optimal control problem (1) when o — o was

studied and it was proven that:

oclinoo " u“ﬂtxop ~ Yap ”V =9, alinoo " po‘qaop ~ Pagp ”V =0

qlgnoo I Qo,, ~ 9op ”Q =0. (12)

We can summary the conditions (12) saying that the Neumann boundary

optimal control problems (P, ) converge to the Neumann boundary optimal

control problem (P) when o — +oo,

Now, we consider the finite element method and a polygonal domain
Q c R" with a regular triangulation with Lagrange triangles of type 1,

constituted by affine-equivalent finite element of class c? being /4 the
parameter of the finite element approximation which goes to zero [4, 10].
Then, we discretize the elliptic variational equalities for the system states (3)
and (10), the adjoint system states (4) and (11), and the cost functionals (1)
and (8), respectively. In general, the solution of a mixed elliptic boundary

problem belongs to H'(Q) with 1< 7 <3/2-¢(¢>0) but there exist

some examples which solutions belong to H'(Q) with 2 < r [1, 22, 25].

Note that mixed boundary conditions play an important role in various

applications, e.g., heat conduction and electric potential problems [16].

The goal of this paper is to study the numerical analysis of the
convergence (12) of the continuous Neumann boundary elliptic optimal
control problems (B,) to (P) when o — oo. The main result of this paper

can be characterized by the following result:
We have the following commutative diagram which relates the

continuous and discrete Neumann boundary mixed optimal control problems
(Pro)> (By), (B,) and (P) by taking the limits # — 0 and o — +o0 as
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follows:
Problem (P,) Problem (P)
AR (¢ = +0) Gppstly, D,
———
(h—0) (h—0)
Nl o D (@ = +x) Gy, s Uy > P,
' S ———
Problem (2,) Problem (7))

where uha?haop and ph(Whaop are, respectively, the system and the adjoint

system states of the discrete Neumann boundary mixed optimal control
problem (P,,) for each 2 >0 and o > 0. Moreover, we obtain error
estimates for the convergence when # — 0 between the solution of problem

(B, ) with respect to problem (B,) for each o >0, and between the
solution of problem (P, ) with respect to problem (P), respectively.

The study of the limit # — 0 of the discrete solutions of optimal control
problems can be considered as a classical limit, see [3, 5-9, 11-13, 16-20, 24,
28, 29, 31, 32] but the limit o — +co can be considered as a new one.
Moreover, the main result given by the above commutative diagram is, from
our point of view, a new and original relationship among discrete and
continuous Neumann boundary mixed elliptic optimal control problems
being the discrete and continuous optimal controls characterized as fixed
points of certain operators.

The paper will be organized in the following manner:

In Section II, we give a complement to the continuous Neumann
boundary optimal control problems (P) and (P,) [15] by defining two
contraction operators ¥ and W, which allow to obtain the optimal controls

qop and o, 353 fixed point, respectively.
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In Section III, we define the discrete elliptic variational equalities for the
state systems uy, and uy,,, we define the discrete Neumann boundary cost
functional J;, and Jj,, we define the discrete Neumann boundary optimal
control problems (B,) and (P,,) and we define the discrete elliptic
variational equalities for the adjoint state systems pj, and pjq, for each
h >0 and o > 0. We obtain properties for the optimal control problem
(B,): for system state up, and adjoint system state py,, for the discrete
cost functional Jj, and its corresponding optimality condition. We define a

contraction operator ¥, which allows to obtain the optimal control qh,, as 2
fixed point.

We also obtain properties for the optimal control problem (P, ) : for
system u,,, and adjoint system states pj,,, for the discrete cost functional
Jpo and its corresponding optimality condition. We also define a
contraction operator Wy, which allows to obtain the optimal control ha,
as a fixed point.

In Section IV, we study the classical convergence of the discrete elliptic
variational equalities for ujg, Uy, Ppg and ppog as b — 0 when g is
fixed (for each a > 0). We study the convergences of the discrete optimal
control problem (B,) to (P) and (B,,) to (B,) when A — 0 (for each
o > 0). We also study the explicit error estimates for the optimal control

problems (P,) and (P,,) (for each a > 0).

In Section V, we study the new convergence of the discrete Neumann
boundary optimal control problems (B, ) to (P,) when o — +oo for each
h > 0 and we obtain a commutative diagram which relates the continuous

and discrete Neumann boundary mixed optimal control problems (B, ),

(P,), (P,) and (P) by taking the limits # — 0 and o —> +oo.
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In Section VI, we study the convergence when 4 — 0 of the discrete

cost functional J;, and Jj,, corresponding to the discrete Neumann boundary

optimal control problems (B,) and (P, ) respectively, Va > 0.

II. A Complement to the Continuous Neumann Boundary Optimal
Control Problems (7, ) and (P) through Fixed Points

The unique continuous Neumann boundary optimal controls g,, and

q can be characterized as a fixed point on Q of suitable operators W and
Qop

W, over their optimal adjoint system states Payp and Pag,, . [15] for each
op

parameter o > 0, defined by:
1
W0 > 0/W(q) = 37 v0(py), (13)

1
Wo:0— Q/Woc(‘I) = VVO(p(xq): (14)
where v is the trace operator.

Lemma 1. We have that:

(i) W is a Lipschitzian operator, that is:

2
W) - Walp < 80 -l Y0 a9

(i1) W is a contraction operator if and only if data M verifies the
inequality

(16)

(i) If M verifies the inequality (16), then the continuous Neumann

boundary optimal control q,, € O can be obtained as the unique fixed point

of the operator W, that is:
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1
dop = WYO(pqop) < W(qop) = Yop- (17)
Proof. We use the definition (13), Lemma 3 and Corollary 5 of [15]. O

Lemma 2. We have that:

(1) W,, is a Lipschitzian operator, that is:

2
[ Wala2) - Wala) lp <20y gyl Ve ;e 0. 18)
M2

(i) W is a contraction operator if and only if data M verifies the
inequality

(19)

2
}\’(X
(iii) If M verifies the inequality (19), then the continuous Neumann

boundary optimal control 9o,y € O can be obtained as the unique fixed

point of the operator W, that is:

1
‘](xop = VVO(Paq%p ) < Wa(‘](xop) = ‘J(xop~ (20)

Proof. We use the definition (14), Lemma 8 and Corollary 10 of [15]. O
II1. Discretization by Finite Element Method and Properties

We consider the finite element method and a polygonal domain Q < R”

with a regular triangulation with Lagrange triangles of type 1, constituted by

affine-equivalent finite element of class C 0 being /4 the parameter of the
finite element approximation which goes to zero [4, 10]. We can take / equal

to the longest side of the triangles 7 € t; and we can approximate the sets

V, Vo and K by:
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{Vh = {v, € C°(Q)/v4/T € R(T), VT € 1}, 1)

Von = {vi € Vi/vi/T1 = 0F Ky = b+ Vo,
where A is the set of the polynomials of degree less than or equal to 1. Let

ny, 1 V' — V}, be the corresponding linear interpolation operator. Then there

exists a constant ¢ > 0 (independent of the parameter /) such that [4]:

{(a) v =m0y < coh| v, Vve H'(Q),1<r<2, o)

(b) | v -y ()] < coh” v, Vv e H(Q),1<r<2.

We define the discrete cost functional J, : Q — R{ by the following

expression:

1 2 M, 2
In(@) =5l ung = za Iy + 5l ally, (23)

where u,,, is the discrete system state defined as the solution of the following

discrete elliptic variational equality [21, 28, 29]:

{a(uhq: vi) = (& vi)y = (@ vi)g> Vv € Vons 24

upg € Kj

and its corresponding discrete adjoint state pj,, is defined as the solution of

the following discrete elliptic variational equality:

{a(Phq, vi) = (upg = 2a> vi)y> Vi € Vons 25)

Phq € Von-

We define uy, as the solution of the discrete elliptic variational equality

(24) for the particular case g = 0.

The corresponding discrete Neumann boundary optimal control problem

consists in finding h,p € O such that:

Problem (P,):  Ju(q, )= MinJj(q). (26)
T qeQ
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Lemma 3. (i) There exist unique solutions uy, € K;, and py, € Vo,
of the elliptic variational equalities (24), and (25), respectively, Vg € H,
Vge@Q, b>0onIj.

(i) The operator q € Q — up, €V is Lipschitzian, i.e.,

” uhqz - uhql "V S "’Y—{)"” ‘12 - QI "Qa vqla q2 € Qa Vh > O (27)

(iii) The operator q € Q —> py, € Vo, is Lipschitzian and strictly

monotone, i.e.,

~(v0(Phgy ) = Y0(Phgy 1 42 — @1)g

=l ttpgy —ttng, I3 2 0. Va1, 42 € O, Vh >0, (28)

1
| Pagy = Pigy Iy < 51 gy =gy lly
A

< 1(2) P lo- Ya1. 42 € Q. Yh>0. (29)

Proof. We use the Lax-Milgram theorem, the variational equalities (24)

and (25), the coerciveness (6) and following [15, 23]. O

Theorem 4. (i) The discrete cost functional J, is a Q-elliptic and

strictly convex application, that is:
(1= 0)J5(gq2) + /5 (q1) — Tp(tqy + (1 - 1)g2)

t(1—1 2 t1—t 2
= Dy~ By + 0 D g - I

2Mt(l

—t
4 - van a2 < 0. vi < [0.1] (30)

(i) There exists a unique optimal control ah,, € QO that satisfies the

optimization problem (26).
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(iii) Jy, is a Gdteaux differentiable application and its derivative J}, is

given by the following expression:
Ji(q) = Mg —vo(ppq), Vg €0, Vh>0. @31
(iv) The optimality condition for the problem (26) is given by:

' 1
Ji(an,,) =0 = ap,, = _VYO(phqhop ). (32)

(v) The operator J}, is a Lipschitzian and strictly monotone one, i.e.,
, , vo I
| 7i(a2) = Tia) |y <| M v l92 = a1llg: V1. 92 € Q. VA >0, (33)

, , 2 2
Ji(a2) = Tila): a2 = a1) = | ung, = Pagy Iy + Ml a2 — a1 Il

> Mgy - a1l Va1, 92 €0 Vh>0. (34)

Proof. We use the definition (23), the elliptic variational equalities (24)
and (25) and the coerciveness (6) following [15, 23]. The discrete cost

functional (23) can be written as:
1 1 2
In(9) = 56n(q> 9) = Ly(9) + 5| upo = za ly> Ya€Q (39

and the functional Jj, is given by:

(il 1) = tim PHEDZIND G 1y 1,(1). va. £ 0. G6)

t—0 t

where the operators G, : O xQ > R, C, : QO > Vyp, and L, : O —> R are
defined by:

Gula, )= (Cula), Ch(f Ny + M(a. g, Cnlq) =upg —upo, (37

Ly(q) = (Cp(q), 24 —upo)y (38)
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and satisfy the following property:

a(png> Ci(f)) = (ung = za, Co(f Ny = ~(f> 10(Png))g> Va. f € 0. (39)
L]

We define the operator

Wi+ 0 = 0/Wy(4) = 5 o(Piy). (40)

Theorem 5. We have that:

(1) Wy, is a Lipschitzian operator, that is:

2
IWia2) - Wikl = 2L 2 - 1. vare 2 0. wh> 0

(i1) Wy, is a contraction operator if and only if M is large, that is:

(42)

(i) If M verifies the inequality (42), then the discrete Neumann

boundary optimal control ah,, < Q can be also obtained as the unique fixed

point of the operator Wy, that is:

1
Thoy = 37 Phan,, < W (9h,,) = 4,y (43)
Proof. We use the definition (40) and the properties (29) and (32). g

We define the discrete cost functional J,, : O — Ry by the following

expression:

1 2 M 2
T10@) = 2 g~ za B + 2 a1 (44)

where uy,, is the discrete system state defined as the solution of the

following discrete elliptic variational equality [21, 28, 29]:
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ao (Uhogs vi) = (& vy — (4, vi)g + OLJH bvpdy, Vvy €V, 45)

uhaq € Vh

and its corresponding discrete adjoint system state pjq, is defined as the

solution of the following discrete elliptic variational equality:

{%(Phaq, vi) = Whog = 24> Vi) Vi €V, 46)

Phag € Vi

The corresponding discrete Neumann boundary optimal control problem

consists in finding ha,, € QO such that:
Problem (Ph(x) b e (qh(xop ) = Mig Jh(x(q)- (47)
qe

Lemma 6. (i) There exist unique solutions uyq, € V), and ppoq € V), of

the elliptic variational equalities (45) and (46), respectively, Vg € H,
VgeQ, b>0onlj.

(ii) The operator q € Q — upq, €V is Lipschitzian, ie.,

" u/’lOqu - uh(qu "V s "10 " " ‘12 - ql ”Qa V‘ha 42 € Qa Vh > 0 (48)
a

(iii) The operator q € Q —> pyqy € V), is Lipschitzian and strictly

monotone, i.e.,

~(Phag, = Phag» 92 = d1)g

= | thagy — tthag 177 = 0. Va1, g2 € O, Vh >0, (49)

1
I Phogy ~ Phag ”V = K" Uhoagy — Uhagq "V

< ”;1{20 I la — "Q’ Yqi, ¢2 € O, Vh > 0. (50)
a
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Proof. We use the Lax-Milgram theorem, the variational equalities (45)

and (46), the coerciveness (6) and following [15, 23]. O

Theorem 7. (i) The discrete cost functional Jy, is a Q-elliptic and

strictly convex application, that is:
(1= 0)ha(@2) + Tpo (1) = T et + (1= ) q2)

_ -9 t(1-1)

2 2
5 ” Unog, — Uhag, ”H +M D) ” 9 — 491 "Q

11—t
2 M%” 90— q ||2Q Va1, g2 € Q. Vi e[0,1]. Sy

(i1) There exists a unique optimal control oy € QO that satisfies the
optimization problem (47).

(iii) Jj is a Gdteaux differentiable application and its derivative J}

is given by the following expression:
Jha(q) = Mq = 1o(Phag): Vg €O, Vh>0. (52)
(iv) The optimality condition for the problem (47) is given by:
, 1
Jho(Tha,, ) = 0 < Gha,, = ﬁYo(Phaqh%p ). (53)

(V) The application J},, is a Lipschitzian and strictly monotone one,

ie.,

2
| Tha(q2) = Thalan) g < [M+M+"]|| 92~ llg» Va1, 92 €0, Vh>0,(54)

o
, , 2 2
(Jha(a2) = Tha(@1): 42 = 1) = | uhag, = thag, Iy + M a2 = a1 [g

> Mgy - a1 [ Yar. 42 € Q. Vh > 0.(55)

Proof. Similarly to Theorem 4, we use the definition (44), the elliptic
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variational equalities (45) and (46) and the coerciveness (6) following

[15, 23]. The discrete cost functional (44) can be written as:
1 1 2
Jhal9) = 5 Ghal9> @) = Lna(@) + 5| oo = 2a [, V4 €@ (56)
and the functional Jj,, is given by:

, o i@+ 1) = Jha(4)
(halg). f) = lim “hood 22l

t—0

= Gh(x(q’ f) - Lh(x(f)9 Vg, f €0, (57)

where the operators G, :Ox0 > R, Cpo : QO >V and L, : O > R
are defined by:

Gho (g5 1) = (Cra(@)s Cho (N +M(q. [, Chalq) = tipag = tpao> (58)

Lo () = (Cha (@) 2a — unao) gy (59)
and satisfy the following property:

aa(ph(xqa Cha(f)) = (uhaq — 24> Chcx(f))[—[

= (/> 10(Phag)g> V4 [ € 0. (60)
L]

We define the operator
Wha : © = O/Wha(4) = 2 Y0(Phag). (61)

Theorem 8. We have that:

(1) The operator Wy, is Lipschitzian, that is:

2
1 Wia(g2) = Wi (1) [l < %II 0 —alg. Va1, 42 € Q. Vh>0.(62)

a
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(i1) The operator W), is a contraction if and only if M is large, that is:
2
[vo
=

M > (63)

(i) If M verifies the inequality (63), then the discrete Neumann

boundary optimal control ha,, € O can be also obtained as the unique

ixed point of the operator Wi, , that is:
p /4 ho

1
qh(xop = ﬁ Y0 (Phaqh%p ) = Wha (qhaop) = qh(xop . (64)
Proof. We use the definition (61) and the properties (50) and (53). ]

IV. Convergence of the Discrete Optimal Control Problems
(P, ) and (P,) when 2 — 0

We can divide the study # — 0 in two parts.

IV.1. Relationship between Neumann boundary optimal control
problems (P,) and (P)

We obtain the following error estimations between the continuous and
discrete solutions:

Lemma 9. (i) Vg € O (fixed), we have the following properties:

a(uq —Upg> vp) =0, Vv, € Vo, (65)
alug = upg, g ~upg) < alug = vy, ug =vy), Yvy € Ky, (66)
1
lug = ung ly <5 Inf Jug = vy . (67)
vy eKy,

(ii) If the continuous system state has the regularity u, € H "(Q)

(1< r <2), then we have:

C, _
|ty = upg Iy < T(i" ug ||Lh"7Y, vge 0, h>o0. (68)
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(iil) We have the following convergence:
im, | ug = ung Iy =0, Vg0 (69)
Proof. We use the variational equalities (10) and (24), v, = m,, (ug) in
the variational equality (24), the coerciveness (6) and the estimations (22). [
Lemma 10. Ygq € O (fixed), we have the following properties:
(®)
a(pg = Phg> ©h(Pg) = Pag) = (g — g, 74 (Pg) = Pig)- (70)

(i) If the continuous system state and the adjoint system state have

the regularities u, € H'(Q), p, € H'(Q) (1 <r <2), then we have the

estimations:
| g = g I} < cill 2y = pag lph™™ + 2™ (71)
with
R L L R e SR L I P
and
| Py = ag ly <csh’™', Vh<1 (73)
with

c3 =4 012 + 2¢;. (74)

(iii) We have the convergence:

lim || p, — py =0, VgqeO. (75)
ot " q q ”V

Proof. We use the variational equalities (11) and (25), v; = 1,(pg) in

the variational equality (25), the coerciveness (6) and the estimations (22). [J
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Theorem 11. [f the continuous system state and adjoint system state have

the regularities u, e H"(Q), Pq,, € H"(Q) (1<r<2), then we have

dop

the following limits:

hll>n$+ " Qhop ~Yop ”Q =0, hll)rng " uhqhop B uqop ”V =0,

hli>n(;r ” phqhop - pqop ”V =0 (76)

Proof. We can divide the proof in the following steps (note that C’s are

positive constants independent of 4):

(1) By using the variational equality (24) for ¢ = 0, we get
1
luno = ol <5l glly> YA >0 and [uyl, <C, (77)
and therefore by using the definition of the cost functional (23), we obtain
1 2 M 2 1 2
3 ttngy,, = 2a Ity + 51 dny, o < 51 uno =24 iy < €.

that s,
ltng, Ly <C. Nan, lg <C. v >0 78)
(i1) By using the variational equality (24), we have
thg,, =5l <5 lely +lalglroll< . vh>0.
and then
| uhqhop Iy <C, Yh>0. (79)

(ii1) By using the variational equality (25), we have

I
| Pray,, I <50 thgy, = 2a |y < C. VA >0. (80)
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(iv) From the above estimations, we have that
(a) 3f € Q/qhop — fin Q weak as h — 07,
(b)In e V/”hqhop — nin ¥ weak (in H strong) as & — 0%, (81)
(c) It e V/phqh — & in V weak (in H strong) as & — 07,
op

(v) By using the above three weak convergences, we can pass to the

limit as 7 — 0%, and we obtain by uniqueness of the variational equalities
(24) and (25) that: N =uy, €= py and [ = q,,.

(vi) On the other hand, by using (6) and the variational equality (24), we
have

2
}\‘" uhqh()p — uqop ”V < (g, uqop - uhqhop )H + (Qhop - qop, uhqhop - b)Q
~ (op- ug,, = uhqhop )Q —>0ash—>0

and therefore we deduce that

Jim s, =ty =0 &

By using (6) and the variational equality (25), we have

2
?\‘” phqhop - p%p ”V < (uhqhop - uqop B phqhop )H

- al(pg,, Phay,, ~ pqu) —0ash—0"
and then we deduce that

| P, = iy Iy =0 ®

(vii) By using the definition (23), we can pass to the limit as 7 — 0"
and we deduce that

1 gy, lo =1 40 lg (34)
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(viii) From the weak convergence (90) and the property (84), we deduce
that

}}1_1;110 ” Qhop ~Yop ”Q =0, (85)

and all the limits (76) hold. O

Remark 1. If M verifies the inequality (42), we can obtain that f* = g,,

by using the characterization of the fixed point (43), and then we obtain
f= % py when h — 0. By uniqueness of the optimal control ¢,, € O,
we deduce that /= g,,.

Theorem 12. If M verifies the inequality (42) and the continuous system

state and adjoint system state have the regularities u, € H'(Q), Pg,p €

dop

H"(Q) (1 < r £ 2), then we have the following error bonds:
-1
I Ghep ~ dop ”Q <Ch',

-1 -1
gy, = a0y Iy <N | Phgy, = Pyyy Iy < CH"7 (86)

where C’s are constants independent of h.

Proof. By using the fixed point property (43), we have

Y
Lty 400 o < 2001y, = phgy, by +1 Py, = Py, ]

-1 1
M I:C3hr + k—2|| qhop ~ Yop ||Q:|9
that is,

}\,263
qh,, — 4 <
" hop op ”Q ”y ” M)LQ .
*NTvol

Wl vhe(0,1). (87)
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By using the variational equalities (10) and (24), we have
a(tng,, = Ugy,» Vi) = by, =~ dop Vi)g: VVh € Von- (88)
Therefore, by using (6) and (88), we get:
M “han,, ~ “dop ”12/ < “(”hqhop = Yaop> Yhap,, ~ Ug,,)
= "(”hqhop ™ Ugop> Uhay,, ~ Th (g, )+ (g, ) = tg,,)

< ” uhqhop ~ Uqqp ”V(” Ghyp ~ Qop ”Q + ” Th (uqop ) - Ugop "V)

+ ” qhop - QOp ”Q ” Ty (qup ) - qup ”Q

7"203 r—1 r—1
<V, =g | ol o
2
Ivo |
7\,203 r—1 r
P e g, |
5=
7o |
-1 2r-1
=| Ungp,, ~ Ydop lyAeah” ™ + hesh™ ",
that is,
2 -1 2r-1
" ”hqhop - ”qop ”V < c4" ”hqhop _”qop ”Vhr +csh ", (39)
where
— 037“ €0 _ C37n
Cq = M}\lz + T" uqop "r, C5 = WCQ” uqop "r

-1 —
2 2
Ivol lvol
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Therefore, from the above inequality (89), we deduce that
-1 : 2
I Ungp,, ~ Udop Iy <ceh”, Vh <1 with ¢g =4/ci +2¢c5.  (90)
By using the variational equalities (11) and (25), we have:
a(Phqhop = Pgopo Vn) = (uhqhop ~ gy VW)> YVi € Vop- O

If we take v, = 7, (pqop) = Phgy,, € Vop in (91), in a similar way to the

previous result, we can deduce
2 -1 2r—1
” phqhop - pqop ”V < C7|| phqhop - p‘]op ”Vhr + CSh s , Vh<1 (92)

with the constants

el g, o

¢
¢7 = . G %) pg,, |
A A D

and therefore we obtain the inequality

I Phg, ~ ~ Pq, I, < c9hr_1, Vh <1 with ¢g = \/c% + 2¢g, (93)
op P

and the thesis holds. OJ

IV.2. Relationship between Neumann boundary optimal control
problems (P, ) and (P,)

Following the above section, we can obtain the following error
estimations between the continuous and discrete solutions of the Neumann

boundary optimal control problems (B, ) and (B,).

Lemma 13. (i) If the continuous system state and adjoint system state
have the regularities uy, € H"(Q), py, € H (Q)(1<r<2), then Yo > 0,

Vq € O, we have the estimations:

-1 -1
” Uphag — Uagq ”V < ch’ > ” Phag ~ Pag ”V < ch’ > (94)

where the constants c’s are independent of h.
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(ii) We have the following limits:

hli)rng ” Upog —Uog ”V =0, hl_l)nol+ " Phag ~ Pog ”V =0, Va >0, Vg e Q. (95)

Proof. In a similar way to the one developed in Lemmas 9 and 10 and by
using the variational equalities (3), (4), (45) and (46), the thesis holds. O

Theorem 14. (i) If the continuous system state and adjoint system state

have the regularities u s Pag, € H'(Q)(1<r<2) and the inequality
op

O“Iaop
M3
2
Ivol
Vg € Q:

> 1 is verified, then we have the following estimations VYo > 1,

_1 -1
" Thagy ~ o, ”Q <, | uhOWhaap _uaq(lop ”V <ch'™,

r—1
" phocqhaop - paqaop ”V <ch (96)
where the constants ¢’s are independent of h.
(i) We have the following limits:
lim - =0 lim || u —u =0
0t ” qhaop qaop ”Q ’ 0t ” h(thaop %o, "V >

hli>n(}4r ” phaqhaop - paqaop ”V =0 Vol ©7

Proof. In a similar way to the one developed in Theorems 11 and 12, and

by using the variational equalities (3), (4), (45) and (46), the thesis holds. [

Remark 2. The restriction o > 1 can be replaced by oy < a for any

OL0>O.

V. Convergence of the Discrete Optimal Control Problems

(B,y) when o — +oo

For a fixed 4 > 0, we have:
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Lemma 15. For a fixed q € Q, we have the following limits:

lim | upqy —tigq ly =0, Vg €0, Yh>0, (98)
0—>+00

lim || Phag ~ Phg Iy =0, VgeQ, Vh>0. (99)
0L—>+00

Proof. For fixed ¢ € O, & > 0, and by using the variational equalities

(3) and (45), and by splitting the bilinear form a,, when o > 1, by [26, 29],
ag(u, v) = aj(u, v) + (o — 1) L_ uv dy, (100)
1
we obtain the following estimations:

2
| uhag = ting Iy < ¢ (a=1) JF (upag = D) dy < ¢, Va>1. (101)
1

From the above inequalities (101), we deduce that:

Upag —> Mhg 0V weak (in H strong) as o — +o,

102
Mg /T = b. (12

EInhq € V/{

By using the variational equality (45), we can pass to the limit when
o — +oo, and by uniqueness of the variational equality (24), we obtain that

Nhg = Upg- By using the above properties, and the variational equalities (3)

and (45), we deduce that:

Upgg —> Upg In Vstrong as o — +oo. (103)

Finally, by using a similar method developed before for the discrete
system state, we can obtain the limit o@ — +oo for the discrete adjoint system

state, i.e., (99) holds. O

Theorem 16. We have the following limits:

agl’iloo ” uhaqhaop - uhqhgp ”V =0, Vhi>0, (104)
(xl—ig—loo " phqqhaop - phqhop ”V =0 Vh=0, (105)
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hriloo | Doty ~ Uy "Q =0, Vh>0. (106)

oa—>

Proof. From now on, we consider a fixed parameter 2 > 0 and we also
consider that ¢’s represent positive constants independent of o > 0. If we

use the variational equality (45) for the particular case ¢ = 0 and we splitting

the bilinear form (100), then we obtain the following estimations:
2
| neo — tno "V <ec, (a-1) -[F (Upoo —b) dy <c, Ya>1. (107)
1

From the definition of the discrete optimal control problem (44), we

obtain the following estimations:
1 2 M 2 _ 1 2
2 thogya,, = 2a I + 5 N anay, lo < Fhhao =24 Iy <. V>0

and therefore we deduce the estimations:

| ”hWIhaop Iy <ec | oty "Q <c, Va>0. (108)

Now, by using the variational equality (45) for the optimal state system
and splitting the bilinear form (100), we get the estimations:

2
| thagha,,, ~Hhay,, Iy < (@=1) I 1 Wiy, b)Yy <ec, Va>1.(109)

In a similar way by using the variational equality (46) for the discrete

adjoint state system, we deduce the following estimations:
2
— < — <
| Phodgpa,, ~ Phas,, Iy <e, (a—1) IF] phaqh%p dy <c, Ya >1.(110)

Then, from the above properties, we have that

3/ € H/qh%p — f;, in Q weak as a. — +o0, (111)

Uhagy, . —> Mp in ¥V weak (in H strong) as o —> +oo,
In, eV/ op 112
/T = b,
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Phagy,. — & in V weak (in H strong) as o — +o,
Elah € V/ op (113)
&,/Th = 0.

By using the three above weak convergences, we can pass to the limit
o — +oo, and by uniqueness of the variational equalities (24) and (25), we

get that n;, = Upfy » &y = Pif,- By using (23) and (44), we can pass to the

limit oo — +oo, and by uniqueness of the discrete optimal control problem

26), we have f; = . Therefore, we deduce that
( h = dh,,

M = Uty =Ygy, > Sh = Phfy = Phay,, (114)

By using the variational equalities (3) and (45) for the discrete system
state, and the variational equalities (4) and (46) for the discrete adjoint
system state, we obtain the following strong convergences:

li _ -
Jim I Uhagya,, ~ han,, Il =0,

lim J " —b)Y2dy =0, Vh>0 115
dtoo F1( ha%aop ) Y ( )

and

(xl—1>n-:00” ph(thaop - phqhop "V =0,

lim J' . pfmqhaop dy =0, Vh>0. (116)

o—>+00

On the other hand, we can pass to the limit o« — +oo in the discrete cost
functional (23) and (44), and we obtain:

i gy, lo =L an, low >0 117)

From this result (117) and the weak convergence of the discrete optimal
controls, we obtain the strong convergence of the optimal control, that is:

lim | 4y, = an,, lg = 0. Vi >0. (118)

a—>+

O



50 Domingo A. Tarzia

VI. Convergence of the Discrete Cost Functional when # — 0

Following Section I'V.1, we have:

Lemma 17. If M verifies the inequality (42) and the continuous system

state and adjoint system state have the regularities u, < H' (Q), Pg,p €

Yop

H"(Q) (1 < r <2), then we have the following error bonds:

M an, ~a,, 1 < Ia,) - Iq,)<chD@9)
Han, —a,, By < Jla,,)- Jila,, )< €, (120)
| Jn(qop) = I (g0p) | < CH™7, (121)
[ T4(an,,) = T(agp) | < CH" (122)

where C’s are constants independent of h.

Proof. Estimations (119) and (120) follow from the estimations (66) and
(96), and the equalities:

1 2 M 2
J(qhop) - J(qop) - 5" uqhop - uq()p ”H + 7” qhop - qop ”Q’ (123)

1 2 M 2
Jh(qop) - Jh(qhop) = E” uhqhop - ”hqoz7 "H + 7” qhop - qop ”Q (124)

Estimation (121) follows from the estimations (27), (66) and (86), and
the inequality:

RAOERIO]
1
< (g =g I +tg =24 Ly I wig = Ly ¥a 0 129

Finally, estimation (122) follows from the previous results and the

triangular inequality for norms. U
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Remark 3. We can also obtain for the optimal control problem (B, )

similar results to the one given in Lemma 17, e.g.,
| Tha(dop) = Jaldop) | < CH™, (126)
| Tha(@hayy) = Jo(da,, ) | < CH"! (127)
which proof will be omitted here.
VII. Conclusions

We have studied the numerical analysis of the discrete Neumann
boundary optimal control problems (P,) and (B, ), and the corresponding
asymptotic behaviour when o — o and 4 — 0 by using the finite element

method. We have defined the discrete cost functional Jj, and Jj,, the
discrete variational equalities for the system states u;, and u,, for each
o, h > 0, and the discrete variational equalities for the adjoint system states

Prg and pjq, for each a, h>0. We have characterized the discrete

Neumann boundary optimal control heat fluxes qh,p and ha,, 3 fixed

point on Q of suitable discrete operators W, and W, over his adjoint

system states Phg,p and phagh%p , respectively, for each o > 0. We have

also studied the convergence of the discrete Neumann boundary optimal
control problems (B,,) to (P,) when o — oo for each 4 > 0, and when
h — 0 for each a > 0, and we have obtained a commutative diagram (see
Introduction) which relates the continuous and discrete Neumann boundary
mixed optimal control problems (B, ), (£,), (P,) and (P) by taking the

limits 7 — 0 and o0 — oo.
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