Determination of the Unknown Coefficients in the Lame-Clapeyron Problem (or One-Phase Stefan Problem)

Domingo Alberto Tarzia
PROMAR(CONICET-UNR), Instituto de Matemática "Beppo Levi," Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario, Argentina

Abstract

We study the Lamé-Clapeyron problem (or one-phase Stefan problem) with unknown coefficients. We give an overspecified condition $k(\partial \theta / \partial x)(0, t)=$ $-h_{0} / \sqrt{t}$ in the fixed face $x=0$ of the phase-change material to solve it. We obtain: (i) If the thermal conductivity or mass density coefficient of the material is unknown, the corresponding free boundary problem always has a solution of Lamé-Clapeyron-Neumann type. (ii) If the latent heat of fusion or specific heat coefficient of the material is unknown, the corresponding free boundary problem has a solution of Lamé-Clapeyron-Neumann type if and only if a supplementary condition is verified. Moreover, if we consider the original problem without unknown coefficients, we deduce the inequality $\operatorname{erf}(\xi)<\sqrt{2 \theta_{0} c / \pi l}$ for the coefficient ξ of the free boundary $s(t)=2 a \xi \sqrt{t}$ of the Lamé-Clapeyron solution of the one-phase Stefan problem.

I. Introduction

We shall consider the Lamé-Clapeyron problem (or one-phase Stefan problem). That is, we shall find the functions $s=s(t)>0$ (free boundary), defined for $t>0$ with $s(0)=0$, and the temperature $\theta=\theta(x, t)$, defined for $0<x<s(t)$ and $t>0$, such that they satisfy the following conditions:

$$
\begin{align*}
& \frac{\partial \theta}{\partial t}=a^{2} \frac{\partial^{2} \theta}{\partial x^{2}}, \quad 0<x<s(t), \quad t>0 \\
& \theta(s(t), t)=0, \quad t>0, \\
& -k \frac{\partial \theta}{\partial x}(s(t), t)=L s^{\prime}(t), \quad t>0 \tag{1}\\
& s(0)=0, \\
& \theta(0, t)=\theta_{0}, \quad t>0
\end{align*}
$$

0196-8858/82/010074-09\$05.00/0
Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.
where

$$
\begin{array}{ll}
k>0: & \text { thermal conductivity, } \\
c>0: & \text { specific heat, } \\
\rho>0: & \text { mass density, } \\
l>0: & \text { latent heat of fusion, } \\
L=\rho l, & C=\rho c, \tag{2}\\
a^{2}=\frac{k}{C}: & \text { thermal diffusivity, } \\
\theta_{0}>0: & \text { temperature in the fixed face } x=0 .
\end{array}
$$

The solution of the problem (1) is given in [17]. But, if one of the coefficients k, l, c, ρ of the phase change material (we suppose that its melting temperature is null) is unknown, then it is necessary to give an overspecified condition in the fixed face $x=0$ to solve it. This idea was suggested in papers [2-12, 14-16]. The overspecified condition is given by the knowledge of the heat flux that the phase change material receives in its fixed face $x=0$, that is,

$$
\begin{equation*}
k \frac{\partial \theta}{\partial x}(0, t)=-\frac{h_{0}}{\sqrt{t}}, \quad t>0, \text { with } h_{0}>0 \tag{3}
\end{equation*}
$$

which was suggested in [20].
We shall consider in Section II four different cases with the following unknown coefficient:

$$
\begin{array}{rlll}
\text { (i) } & k, & \text { (ii) } l, \\
\text { (iii) } & c, & \text { (iv) } & \rho . \tag{4}
\end{array}
$$

We shall prove that, under condition (3), there is not always a solution of Lamé-Clapeyron-Neumann type [1, 13, 17, 18, 20, 21] for the problem (1) and (3), in the four different cases (4). Moreover, the explicit solution exists for the cases (ii) and (iii) if a complementary condition is satisfied and the explicit solution always exists for the cases (i) and (iv). This fact has been already observed in $[19,20]$ for the other problems of Stefan type. Moreover, in Section III, for the problem (1) with solution (5), we obtain the inequality (29) for the coefficient ξ of the free boundary $s(t)=2 a \xi \sqrt{t}$ using the inequality (22) obtained in Section II.

II. Solution of the Different Cases

Case (i). Determination of the Coefficient k
The solution of the problem (1), (3) is given by

$$
\begin{align*}
\theta(x, t) & =\theta_{0}-\frac{\theta_{0}}{f(\sigma / a)} f(x / 2 a \sqrt{t}) \\
s(t) & =2 \sigma \sqrt{t}, \quad \sigma>0, \text { with } f(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-u^{2}\right) d u=\operatorname{erf}(x) \tag{5}
\end{align*}
$$

where the two unknown coefficients $\sigma>0, k>0$ must satisfy the following system of equations:

$$
\begin{align*}
& \frac{k \theta_{0}}{L a \sqrt{\pi}} \frac{\exp \left(-\sigma^{2} / a^{2}\right)}{f(\sigma / a)}=\sigma \\
& \frac{k \theta_{0}}{a \sqrt{\pi}}=h_{0} f(\sigma / a) \tag{6}
\end{align*}
$$

or equivalently

$$
\begin{align*}
& \sigma \exp \left(\sigma^{2} / a^{2}\right)=\frac{h_{0}}{L}, \\
& \frac{a}{f(\sigma / a)}=\frac{h_{0} \sqrt{\pi}}{C \theta_{0}}, \quad a=\sqrt{\frac{k}{C}} . \tag{7}
\end{align*}
$$

If we define

$$
\begin{equation*}
\boldsymbol{\xi}=\frac{\boldsymbol{\sigma}}{\boldsymbol{a}} \tag{8}
\end{equation*}
$$

we have

$$
\begin{equation*}
G_{1}(\xi)=\frac{C \theta_{0}}{L \sqrt{\pi}}=\frac{c \theta_{0}}{l \sqrt{\pi}}, \quad \xi>0 \tag{9}
\end{equation*}
$$

where the function G_{1} verifies

$$
\begin{align*}
G_{1}(x) & =x \exp \left(x^{2}\right) f(x) \\
G_{1}(0) & =0, \quad G_{1}(+\infty)=+\infty, \tag{10}\\
G_{1}^{\prime}(x) & >0, \quad \forall x>0
\end{align*}
$$

With the properties (10), Eq. (9) has a unique solution $\xi>0$. Moreover, the coefficients σ, k are given, as functions of element ξ, by:

$$
\begin{align*}
\sigma & =\frac{h_{0}}{L} \exp \left(-\xi^{2}\right) \\
k & =\frac{\pi h_{0}^{2}}{C \theta_{0}^{2}} f^{2}(\xi) \tag{11}
\end{align*}
$$

and then we obtain
Lemma 1. For any data $h_{0}>0, \theta_{0}>0$ and for any coefficients of the phase change material $\rho>0, L=\rho l>0, C=\rho c>0$, the problem (1), (3) has the solution (5), where the coefficients σ, k are given by (11), and ξ is the solution of Eq. (9).

Case (ii). Determination of the Coefficient l

The solution of the problem (1), (3) is given by (5), where the two unknown coefficients $\sigma>0, l>0$ must satisfy the following system of equations:

$$
\begin{align*}
\rho l & =\frac{h_{0}}{\sigma} \exp \left(-\sigma^{2} / a^{2}\right), \\
f(\sigma / a) & =\frac{k \theta_{0}}{a h_{0} \sqrt{\pi}} \tag{12}
\end{align*}
$$

If we define ξ by (8), we obtain

$$
\begin{align*}
\sigma & =\xi \sqrt{\frac{k}{C}} \\
l & =\frac{h_{0}}{\rho} \sqrt{\frac{C}{k}} \frac{\exp \left(-\xi^{2}\right)}{\xi} \tag{13}
\end{align*}
$$

where $\boldsymbol{\xi}$ must satisfy the equation:

$$
\begin{equation*}
f(\xi)=\frac{k \theta_{0}}{a h_{0} \sqrt{\pi}}, \quad \xi>0 \tag{14}
\end{equation*}
$$

As $0<f(x)<1, \forall x>0$, the solution $\xi>0$ of Eq. (14) exists if and only if the condition

$$
\begin{equation*}
\frac{k \theta_{0}}{a h_{0} \sqrt{\pi}}=\frac{\theta_{0}}{h_{0}} \sqrt{\frac{k \rho c}{\pi}}<1 \tag{15}
\end{equation*}
$$

is verified. Then we obtain
Lemma 2. If the data $h_{0}>0, \theta_{0}>0$ and the coefficients of the phase change material $\rho>0, C=\rho c>0, k>0$ verify the condition (15), the problem (1), (3) has the solution (5) where the coefficients σ, l are given by (13) and ξ is the solution of Eq. (14).

Case (iii). Determination of the Coefficient c
The solution of the problem (1), (3) is given by (5) where the two unknown coefficients $\sigma>0, c>0$ are given, as functions of the element ξ, defined in (8), by:

$$
\begin{align*}
\sigma & =\frac{h_{0}}{L} \exp \left(-\xi^{2}\right) \\
c & =\frac{\pi h_{0}^{2}}{\rho k \theta_{0}^{2}} f^{2}(\xi) \tag{16}
\end{align*}
$$

where ξ is the solution of the equation:

$$
\begin{equation*}
G_{2}(\xi)=\frac{k L \theta_{0}}{h_{0}^{2} \sqrt{\pi}} \exp \left(\xi^{2}\right), \quad \xi>0 \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
G_{2}(x)=\frac{f(x)}{x} \tag{18}
\end{equation*}
$$

The function G_{2} has the following properties:

$$
\begin{align*}
G_{2}\left(0^{+}\right) & =\frac{2}{\sqrt{\pi}}, \quad G_{2}(+\infty)=0 \\
G_{2}^{\prime}(x) & =\frac{\frac{2}{\sqrt{\pi}} x \exp \left(-x^{2}\right)-f(x)}{x^{2}}<0, \quad \forall x>0 \tag{19}
\end{align*}
$$

This is true, since we have

$$
\begin{equation*}
f(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-u^{2}\right) d u>\frac{2}{\sqrt{\pi}} x \exp \left(-x^{2}\right), \quad \forall x>0 . \tag{20}
\end{equation*}
$$

With the properties (19), Eq. (17) has a unique solution $\xi>0$ if and only if the condition

$$
\begin{equation*}
\frac{k L \theta_{0}}{h_{0}^{2} \sqrt{\pi}}<G_{2}\left(0^{+}\right)=\frac{2}{\sqrt{\pi}} \tag{21}
\end{equation*}
$$

or its equivalent

$$
\begin{equation*}
\frac{k L \theta_{0}}{2 h_{0}^{2}}<1 \tag{22}
\end{equation*}
$$

is verified. Then, we obtain
Lemma 3. If the data $h_{0}>0, \theta_{0}>0$ and the coefficients of the phase change material $\rho>0, k>0, L=\rho l>0$ verify the condition (22), the problem (1), (3) has the solution (5) where the coefficients σ, c are given by (16) and ξ is the solution of $E q$. (17).

Case (iv). Determination of the Coefficient ρ
The solution of the problem (1), (3) is given by (5), where the two unknown coefficients $\sigma>0, \rho>0$ must satisfy the following system of equations:

$$
\begin{align*}
& \frac{\sigma}{a} \exp \left(\sigma^{2} / a^{2}\right) f(\sigma / a)=\frac{k \theta_{0}}{L a^{2} \sqrt{\pi}}=\frac{c \theta_{0}}{l \sqrt{\pi}}, \\
& f(\sigma / a)=\frac{\theta_{0}}{h_{0}} \sqrt{\frac{k \rho c}{\pi}} . \tag{23}
\end{align*}
$$

If we define

$$
\begin{equation*}
\xi=\frac{\sigma}{a}=\sigma \sqrt{\frac{\rho c}{k}}, \quad \eta=\sqrt{\rho}, \tag{24}
\end{equation*}
$$

then the coefficients σ, ρ are given, as functions of the element ξ, by

$$
\begin{align*}
& \sigma=\frac{k \theta_{0}}{h_{0} \sqrt{\pi}} \frac{\xi}{f(\xi)} \\
& \sqrt{\rho}=\eta=\frac{h_{0}}{\theta_{0}} \sqrt{\frac{\pi^{-}}{k c}} f(\xi), \tag{25}
\end{align*}
$$

where ξ must satisfy the equation:

$$
\begin{equation*}
G_{1}(\xi)=\frac{c \theta_{0}}{l \sqrt{\pi}}, \quad \xi>0 \tag{26}
\end{equation*}
$$

As the function G_{1} verifies (10), Eq. (26) has a unique solution $\xi>0$ and we obtain

LEMMA 4. For any data $h_{0}>0, \theta_{0}>0$ and for any coefficients of the phase change material $k>0, l>0, c>0$, the problem (1), (3) has the solution (5), where the coefficients σ, ρ are given by (25) and ξ is the solution of Eq. (26).

Remark 1. In the cases (i) and (iv), we have the same element ξ, defined by (9) or (26). Moreover, if we define $\sigma_{\mathrm{I}}, k_{\mathrm{I}}$ by (11) and, $\sigma_{\mathrm{IV}}, \rho_{\mathrm{IV}}$ by (25) corresponding to the cases (i) and (iv), respectively, we have
(a) If we put $k=k_{\mathrm{I}}$ in the definition of σ_{IV} we obtain σ_{I}.
(b) If we put $\rho=\rho_{\text {IV }}$ in the definition of $\sigma_{\text {I }}$ we obtain $\sigma_{\text {IV }}$.

III. An Inequality for the Coefficient σ of the Free Boundary $s(t)=2 \sigma \sqrt{t}$ of the Lame-Clapeyron Solution

If we consider the Lamé-Clapeyron problem without unknown coefficients, defined by (1), the solution of which is given by (5) where the coefficient σ (or $\xi=\sigma / a$) is the unique solution of the equation.

$$
\begin{gather*}
G_{1}(\xi)=\alpha_{0}, \quad \xi>0, \\
\text { with } \quad \alpha_{0}=\frac{k \theta_{0}}{L a^{2} \sqrt{\pi}}=\frac{c \theta_{0}}{l \sqrt{\pi}} \tag{27}
\end{gather*}
$$

In this case, the corresponding coefficient h_{0} in (3) is given by

$$
\begin{equation*}
h_{0}=\frac{k \theta_{0}}{a f(\sigma / a) \sqrt{\pi}} \tag{28}
\end{equation*}
$$

Then, by Section II, the inequalities (15) and (22) are verified. Using (28), the condition (22) gives us the following inequality for the coefficient σ (or $\xi=\sigma / a)$:

$$
\begin{equation*}
f(\xi)<\sqrt{\frac{2 \theta_{0} c}{\pi l}} \tag{29}
\end{equation*}
$$

On the other hand, the condition (15) does not give us anything since it is always verified by definition of the error function f. Then, we obtain

Lemma 5. The coefficient ξ of the free boundary $s(t)=2 a \xi \sqrt{t}$ of the Lamé-Clapeyron solution of the one-phase Stefan problem satisfies the inequality (29).

Remark 2. The inequality (29) is of physical interest when the data θ_{0}, l, c verify the condition

$$
\begin{equation*}
\frac{c \theta_{0}}{l}<\frac{\pi}{2} . \tag{30}
\end{equation*}
$$

In this case, we obtain an upper bound for the displacement $s(t)=2 \sigma \sqrt{t}$ and the velocity $s^{\prime}(t)=\sigma / \sqrt{t}$ of the free boundary of the Lamé-Clapeyron solution of the one-phase Stefan problem.

An inequality for the Neumann solution of the two-phase Stefan problem is given in [20].

Remark 3. Using a development similar to the one described in this paper in an inverse one-phase Stefan problem, it is possible to obtain simultaneously two unknown coefficients of the phase-change material.

Acknowledgment

Part of this paper has been sponsored by the SUBCYT-CONICET (Argentina). This financial support was granted to the project "Problemas de frontera libre de la FísicaMatemática".

References

1. M. Brillouin, Sur quelques problèmes non résolus de physique mathématique classique:propagation de la fusion, Ann. Inst. H. Poincaré 1 (1930-1931), 285-308.
2. B. M. Budak and A. D. Iskenderov, On a class of boundary value problems with unknown coefficients, Soviet Math. Dokl. 8 (1967), 786-789.
3. B. M. Budak and A. D. Iskenderov, A class of inverse boundary value problems with unknown coefficients, Soviet Math. Dokl. 8 (1967), 1026-1030.
4. J. R. Cannon, Determination of an unknown coefficient in a parabolic differential equation, Duke Math. J. 30 (1963), 313-323.
5. J. R. CANNON, Determination of certain parameters in heat conduction problems, J. Math. Anal. Appl. 8 (1964), 188-201.
6. J. R. Cannon, Determination of the unknown coefficient $k(u)$ in the equation ∇. $k(u) \nabla u=0$ from overspecified boundary data, J. Math. Anal. Appl. 18 (1967), 112-114.
7. J. R. Cannon, J. Douglas, Jr., and B. F. Jones, Jr., Determination of the diffusivity of an isotropic medium, Internat. J. Eng. Sci. 1 (1963), 453-455.
8. J. R. Cannon and P. C. Duchateau, Determining unknown coefficients in a nonlinear heat conduction problem, SIAM J. Appl. Math. 24 (1973), 298-314.
9. J. R. Cannon and P. C. Duchateau, Determination of unknown coefficients in parabolic operators from overspecified initial-boundary data, J. Heat Transfer 100 (1978), 503-507.
10. J. R. Cannon and D. L. Filmer, The determination of unknown parameters in analytic systems of ordinary differential equations, SIAM J. AppI. Math. 15 (1967), 799-809.
11. J. R. Cannon and J. H. Halton, The irrotational solution of an elliptic differential equation with an unknown coefficient, Proc. Cambridge Philos. Soc. 59 (1963), 680-682.
12. J. R. Cannon and B. F. Jones, Jr., Determination of the diffusivity of an anisotropic medium, Internat. J. Eng. Sci. 1 (1963), 457-460.
13. H. S. Carslaw and J. C. Jaeger, "Conduction of Heat in Solids," Oxford Univ. Press (Clarendon), London, 1959.
14. J. Douglas, Jr. and B. F. Jones, Jr., The determination of a coefficient in a parabolic differential equation. II. Numerical approximation, J. Math. Mech. 11 (1962), 919-926.
15. B. F. Jones, Jr., The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness, J. Math: Mech. 11 (1962), 907-918.
16. B. F. Jones, JR., Various methods for finding unknown coefficients in parabolic differential equations, Comm. Pure Appl. Math. 16 (1963), 33-44.
17. G. Lame and B. P. Clapeyron, Memoire sur la solidification par refroidissement d'un globe liquide, Ann. Chim. Phys. 47 (1831), 250-256.
18. L. I. Rubinstein, "The Stefan Problem," Translations of Mathematical Monographs, Vol. 27, Amer. Math. Soc., Providence, R.I., 1971.
19. D. A. Tarzia, Sobre el caso estacionario del problema de Stefan a dos fases, Math. Notae 28 (1980-1981), 73-89.
20. D. A. Tarzia, An inequality for the coefficient σ of the free boundary $s(t)=2 \sigma \sqrt{t}$ of the Neumann solution for the two-phase Stefan problem, Quart. Appl. Math., in press.
21. H. Weber, "Die partiellen differential-Gleinchungen der mathematischen physik," nach Riemmans Vorlesungen, t. II, Braunwschweig, 1901.
