PRIMER ENCUENTRO NACIONAL DE ANALISTAS

Centro Latinoamericano de Matemática e Informática CLAMI

PRIMER ENCUENTRO

NACIONAL

DE

ANALISTAS

23 - 25 de abril de 1992

NUMERICAL ANALYSIS OF A MIXED ELLIPTIC PROBLEM WITH SOLUTION OF NON-CONSTANT SIGN

Domingo Alberto Tarzia

ABSTRACT: A continuous and its corresponding discrete mixed elliptic differntial problem with solutions of non-constant sign, as functions of the Dirichlet and Neumann data, are studied in a convex polygonal bounded domain Ω of \mathbb{R}^n . An inequality for the heat flux is given in order to obtein a continuous and discrete change of phase, that is, a continuous or discrete solution of non-constant sign in Ω (steady-state two-phase continuous or discrete Stefan problem). A convergence for the two inequaliteies, as function of the parameter h of the finite element method, is also obtained.

KEY WORDS: Steady-state Stefan problem, free boundary problems, phase-change problems, variational inequalities, Mixed elliptic problems, Numerical Analysis, Finite Element Method.

AMS SUBJECT CLASSIFICATION: 35R35, 35J85, 65N15, 65N30.

I. INTRODUCTION

We consider a heat conducting material occuping Ω , a convex polygonal bounded domain of \mathbb{R}^n (n = 1, 2, 3 in practice), with a sufficiently regular boundary $\Gamma = \Gamma_1 \cup \Gamma_2$ (with meas $(\Gamma_1) \equiv |\Gamma_1| > 0$, $|\Gamma_2| > 0$). We assume, without loss of generality, that the phase-change temperature is 0°C. We impose a temperature b > 0 on Γ_1 and autcoming heat flux q > 0 on Γ_2 . If we consider in Ω a steady-state heat conduction problem, then we are interested in finding sufficient and/or necessary conditions for the heat flux q on Γ_2 to obtain a change of phase in Ω , that is, a steady-state two-phase Stefan problem in Ω (i.e. the temperature is a function of non-constant sign in Ω) [10]. Following [9] we study the temperature $\theta = \theta(x)$, defined for $x \in \Omega$. The set Ω can be expressed in the form

(1)
$$\Omega = \Omega_1 \cup \Omega_2 \cup \mathcal{L}.$$

where

(2)
$$\begin{cases} \Omega_1 = \{x \in \Omega / \theta(x) < 0\}, \\ \Omega_2 = \{x \in \Omega / \theta(x) > 0\}, \\ \mathcal{L} = \{x \in \Omega / \theta(x) = 0\}, \end{cases}$$

are the solid phase, the liquid phase and the free boundary (e.g. a surface in R^3) that separates them respectively. The temperature θ can be represented in Ω in the following way:

(3)
$$\theta(x) = \begin{cases} \theta_1(x) < 0, & x \in \Omega_1, \\ 0, & x \in \mathcal{L}, \\ \theta_2(x) > 0, & x \in \Omega_2, \end{cases}$$

and satisfies the conditions below:

(4)
$$\begin{cases} i) \Delta \theta_i = 0 & \text{in } \Omega_i (i = 1, 2), \\ ii) \theta_1 = \theta_2 = 0, \ k_1 \frac{\partial \theta_1}{\partial n} = k_2 \frac{\partial \theta_2}{\partial n} & \text{on } \mathcal{L}, \\ iii) \theta_2|_{\Gamma_1} = b, & \\ -k_2 \frac{\partial \theta_2}{\partial n}|_{\Gamma_2} = q & \text{if } \theta|_{\Gamma_2} > 0, \\ iv) & \\ -k_1 \frac{\partial \theta_1}{\partial n}|_{\Gamma_2} = q & \text{if } \theta|_{\Gamma_2} < 0, \end{cases}$$

where $k_i > 0$ is the thermal conductivity of phase i (i = 1: solid phase, i = 2: liquid phase), b > 0 is the temperature given on Γ_1 , and q > 0 is the heat flux given on Γ_2 .

Problem (4) represents a free boundary elliptic problem (when $\mathcal{L} \neq \emptyset$) where the free boundary \mathcal{L} (unknown a priori) is characterised by the three conditions (4ii). Following the idea of [1, 3, 4, 9] we shall transform (4) into a new elliptic problem but now without a free boundary. If we define the function u in Ω as follows

(5)
$$u = k_2 \theta^+ - k_1 \theta^- (\theta = \frac{1}{k_2} u^+ - \frac{1}{k_1} u^-)$$
 in Ω ,

where θ^+ and θ^- represent the positive and negative parts of the function θ respectively, then problem (4) is transformed into

(6)
$$\begin{cases} i)\Delta u = 0 & \text{in } D'(\Omega), \\ ii)u|_{\Gamma_1} = B, & B = k_2 b > 0, \\ iii) - \frac{\partial u}{\partial n}|_{\Gamma_2} = q, \end{cases}$$

whose variational formulation is given by

(7)
$$\begin{cases} a(u, v-u) = L(v-u), & \forall v \in K, \\ u \in K, \end{cases}$$

where

$$\begin{cases} V = H^{1}(\Omega), & V_{0} = \{v \in V/v|_{\Gamma_{1}} = 0\}, \\ K = K_{B} = \{v \in V / v|_{\Gamma_{1}} = B\}, \\ a(u, v) = \int_{\Omega} \nabla u \cdot \nabla u \, dx, & L(v) = L_{q}(v) = -\int_{\Gamma_{2}} q \, v \, d\gamma. \end{cases}$$

Under the hypotheses $L \in V'_0$ (e.g. $q \in L^2(\Gamma_2)$) and $B \in H^{\frac{1}{2}}(\Gamma_1)$, there exists a unique solution of (7) which is characterised by the following minimisation problem [1,6]

$$(9) \begin{cases} J(u) \leq J(v), & \forall v \in K, \\ u \in K, \end{cases}$$

where

(10)
$$J(v) = J_q(v) = \frac{1}{2}a(v, v) - L(v) = \frac{1}{2}a(v, v) + \int_{\Gamma_2} q v d\gamma.$$

LEMMA 1. If $u = u_q$ is the unique solution of problem (7) for data q on Γ_2 and B > 0 on Γ_1 , then we have the monotony property:

(11) $B_1 \leq B_2$ on Γ_1 and $q_2 \leq q_1$ on $\Gamma_2 \Rightarrow u_{q_1B_1} \leq u_{q_2B_2}$ in $\overline{\Omega}$.

· Moreover,

(12)
$$q > 0 \text{ on } \Gamma_2 \Rightarrow u_{qB} \leq \max_{\Gamma_1} B \text{ in } \overline{\Omega},$$

and function $u = u_{qB}$ satisfies the equality

(13)
$$a(u^-, u^-) = \int_{\Gamma_2} qu - d\gamma$$

COROLLARY 2.- From (13), we deduce

(14) $u^- \neq 0 \text{ in } \overline{\Omega} \Leftrightarrow u^- \neq 0 \text{ on } \Gamma_2$,

where q > 0 and B > 0.

NOTE 1.- We shall denote by (N-n) the formula (n) of Section N and we shall omit N in the same paragraph. Idem for theorems, lemmas, corollaries, remarks and notes. We shall also omit the space variable $x \in \Omega$ for every function defined in Ω .

II. MIXED ELLIPTIC PROBLEMS WITH OR WITHOUT PHASE CHANGE.

We shall give a problem which are related to the mixed elliptic partial differential equations (I-6) or (1-7).

Probem P: For the constant case B > 0 and q > 0, find a constant $q_0 = q_0(B) > 0$ such that for $q > q_0(B)$ we have a steady-state two-phase Stefan problem in Ω , that is the solution u of (I-7) is a function of non-constant sign in Ω .

REMARK 1.- From (I-14) we deduce that an answer to problem P is the element q for which u takes negative values on the boundary Γ_2 .

LEMMA 1.- Let $u = u_q$ be the unique solution of the variational equality (I-7) for q > 0 (for a given B > 0). Then

(i) The mappings

(1)
$$q > 0 \rightarrow u_q \in V \text{ and } q > 0 \rightarrow \int_{\Gamma_2} u_q d\gamma \in R$$

are strictly decreasing functions.

(ii) For all q > 0 and h > 0 we have the following estimates:

(2)
$$\|\frac{1}{h}(u_{q+h} - u_q)\|_V \le C_1 = \frac{\|\gamma_0\|}{\alpha_0} |\Gamma_2|^{\frac{1}{2}},$$

(3) $\|\frac{1}{h}(u_q - u_{q+h})\|_{L^2(\Gamma_2)} \le C_2 = C_1 \|\gamma_0\|,$

where γ_0 is the trace operator (linear and continuous, defined on V), and $\alpha > 0$ is the coercivity constant on V_0 of the bilinear a, i.e. :

(4)
$$\exists \alpha > 0 / a(v, v) = ||v||_{V_0}^2 \ge \alpha ||v||_V^2$$
, $\forall v \in V_0$.

(iii) For all q > 0 and h > 0 we have

(5)
$$0 < \int_{\Gamma_2} u_q d\gamma - \int_{\Gamma_2} u_{q+h} d\gamma \le C_3 h(C_3 = C_2 |\Gamma_2|^{\frac{1}{2}} > 0)$$

and therefore the function $q > 0 \rightarrow \int_{\Gamma_2} u_q d\gamma$ is continuous.

PROOF. If $u_i = u_{q_i}$ is the solution of (I-7) for $q_i > 0$ (i = 1, 2), then we have the following equalities:

(6)
$$a(u_2-u_1,u_2-u_1)=(q_1-q_2)\int_{\Gamma_2}(u_2-u_1)d\gamma$$
,

(7)
$$a(u_2, u_2) - a(u_1, u_1) = a(u_2 + u_1, u_2 - u_1) = (q_1 + q_2) \int_{\Gamma_2} (u_1 - u_2) d\gamma$$

because we take $v = u_2 \in K$ in the variational equality corresponding to u_1 , and $v = u_1 \in K$ in the one corresponding to u_2 , and we add up and subtract both equalities. From (6) and (7) we obtain (2) and (3) [12].

Let $f: \mathbb{R}^+ \to \mathbb{R}$ be the real function defined by

(8)
$$f(q) = J(u_q) = \frac{1}{2}a(u_q, u_q) + q \int_{\Gamma_2} u_q \, d\gamma$$
.

REMARK 2.- To solve Problem P it is sufficient to find a value q > 0 for which we have f(q) < 0. We shall further see that this technique can still be improved.

THEOREM 2.- (i) The function f is differentiable. Moreover, f' is a continuous and strictly decreasing function, and it is given by the following expression

(9)
$$f'(q) = \int_{\Gamma_2} u_q d\gamma.$$

(ii) There exists a constant C > 0 such that

$$(10) a(u_q, u_q) = Cq^2,$$

(11)
$$f(q) = -\frac{C}{2}q^2 + B|\Gamma_2|q.$$

(iii) If

$$(12) \qquad q > q_0(B),$$

then we obtain a two-phase steady-state Stefan problem in Ω (i.e. u_q is a function of non-constant sign in Ω), where

(13)
$$q_0(B) = \frac{B|\Gamma_2|}{C}.$$

(iv.) Constant $C = C(\Omega, \Gamma_1, \Gamma_2) > 0$ is given by

(14)
$$C = a(u_3, u_3) = \int_{\Gamma_2} u_3 d\gamma,$$

where u_3 is the solution of the variational equality

(15)
$$\begin{cases} a(u_3, v) = \int_{\Gamma_2} v \, d\gamma, \quad \forall v \in V_0, \\ u_3 \in V_0 \end{cases}$$

PROOF. We deduce (8) by considering the fact that

(16)
$$\frac{f(q+h) - f(q)}{h} = \frac{1}{2} \int_{\Gamma_2} u_q \, d\gamma + \frac{1}{2} \int_{\Gamma_2} u_{q+h} \, d\gamma$$

which is obtained from (I-7) after elementary manipulations.

Moreover, we have

(17)
$$u_q = B - q \ u_3 \ \text{in } \Omega,$$

(18)
$$f'(q_0(B)) = 0.$$

We obtain the thesis by using the fact that if $\int_{\Gamma_2} u_q \, d\gamma < 0$ then $u_q^- \neq 0$ in $\overline{\Omega}$.

REMARK 3.- The sufficient condition f(q) < 0, to solve Problem P, was improved by the condition f'(q) < 0, which is optional (see examples more later). In the case where, because of symmetry, we find that the function u_q is constant on Γ_2 , the sufficient condition, given by (12), is also necessary to have a steady-state two-phase Stefan problem.

III. NUMERICAL ANALYSIS OF MIXED ELLIPTIC PROBLEMS WITH OR WITHOUT PHASE CHANGE

Now, we consider τ_h , a regular triangulation of polygonal domain Ω with Lagrange triangles of type 1, constituted by affine-equivalent finite element of class C^0 , where h > 0 is a parameter which goes to zero. We can take h equals to the longest side of the triangles $T \in \tau_h$ and we can approximated V_0 by [2]:

(1)
$$V_h = \{v_h \in C^0(\overline{\Omega}) / v_h|_T \in P_1(T), \quad \forall T \in \tau_h, v_h|_{\Gamma_1} = 0\},$$

where P_1 is the set of the polynomials of degree less or equals than 1. Let π_h be the corresponding linear interpolation operator. Then, we can consider that there exists a constant $C_0 > 0$ (independent of the parameter h) such that

$$(2) \qquad ||v - \pi_h v||_{V} \leq C_0 h^{\tau-1} ||v||_{\tau,\Omega}, \forall v \in H^{\tau}(\Omega), \text{ with } 1 < r \leq 2.$$

We consider the following finite dimensional approximate variational problem, corresponding to the continuous variational problem (I-7), given by:

$$(3) \begin{cases} a(u_h, v_h) = L(v_h), & \forall v_h \in V_h, \\ u_h \in K_h = B + V_h, \end{cases}$$

and we can obtain the following results.

LEMMA 1.- We have

(4)
$$\lim_{h\to o^+} ||u_h - u||_V = 0,$$

where u is the unique solution of the variational equality (I-7).

PROOF. Owing to meas $(\Gamma_1) > 0$, we have that the bilinear form a is coercitivity over V_0 and therefore $||.||_{V_0}$ and $||.||_V$ are two equivalents norms in V_0 . We follow a similar method developped in [2].

COROLLARY 2.- If we define

(5)
$$\theta_h = \frac{1}{k_2}u_h^+ - \frac{1}{k_1}u_h^- \in V$$
, $\theta = \frac{1}{k_2}u^+ - \frac{1}{k_1}u^- \in V$

then we have

(6)
$$\lim_{h\to 0^+} ||\theta_h - \theta||_H = 0 ,$$

where $H = L^2(\Omega)$.

PROOF. If we consider the scalar product in H, defined by

(7)
$$(u,v) = \int_{\Omega} u v dx,$$

then, we deduce

(8)
$$||u_h - u||_H^2 = ||u_h^+ - u^+||_H^2 + ||u_h^- - u^-||_H^2 + 2(u_h^+, u^-) + 2(u_h^+, u^+) \ge ||u_h^+ - u^+||_H^2 + ||u_h^- - u^-||_H^2$$
,

that is

(9)
$$\max(||u_h^+ - u^+||, ||u_h^- - u^-||) \le ||u_h - u||_H$$
.

From (5) we obtain:

(10)
$$\|\theta_h - \theta\|_H \leq \frac{1}{k_2} \|u_h^+ - u^+\|_H + \frac{1}{k_1} \|u_h^- - u^-\|_H \leq$$

 $\leq (\frac{1}{k_1} + \frac{1}{k_2}) \|u_h - u\|_H$,

i.e. (6).

The goal of this part is to consider the numerical analysis of the inequality (II - 12). We study sufficient (and/or necessary) conditions for the constant heat flux q on Γ_2 to obtain a change of phase (steady-state two-phase discretised Stefan problem) into the corresponding discretised domain, that is a discrete temperature of non-constant sign in Ω . We obtain that (similarly to the continuous problem):

(i) there exists a constant $C_h > 0$ (which depends only of the geometry of the domain Ω for each h > 0 and it is characterised by a variational problem) such that if $q > q_{0h}(B) = B|\Gamma_2|/C_h$ then the steady-state discretized problem presents two phases.

(ii) we have the estimations $C_h < C$ and $q_0(B) < q_{0h}(B)$ where C and

 $q_0(B)$ have been obtained for the continuous problem by (II-14) and (II-13) respectively.

(iii) we deduce an error bounds for $C - C_h$ and $q_{0h}(B) - q_0(B)$ as a function of the parameter h.

In other words, we obtain for the mixed elliptic discretised probem, defined by u_h , analogous conditions to the ones obtained for the corresponding continuous problem [12], defined by u.

For each q > 0 we consider the functions $u(q) \in K$ and $u_h(q) \in K_h$, as the unique solution of the variational equalities (I-7) (continuous problem) and (3) (discrete problem) respectively. We define the real function f_h : $R^+ \to R$, for each h > 0, in the following way

(11)
$$f_h(q) = J_q(u_h(q)) = \frac{1}{2}a(u_h(q), u_h(q)) + q \int_{\Gamma_2} u_h(q)d\gamma, q > 0.$$

Therefore, we obtain the following properties:

THEOREM 3.- (i) If $u_i = u_h(q_i)$ is the solution of (3) for $q_i > 0$ (i = 1, 2), then we have the following equalities:

(12)
$$a(u_2 - u_1, u_2 - u_1) = (q_1 - q_2) \int_{\Gamma_2} (u_2 - u_1) d\gamma,$$

(13)
$$a(u_2, u_2) - a(u_1, u_1) = a(u_2 + u_1, u_2 - u_1) = (q_1 + q_2) \int_{\Gamma_2} (u_1 - u_2) d\gamma$$
.

(ii) For all real numbers q > 0 and Δ such that $(q + \Delta) > 0$, we obtain the following estimations:

(14)
$$\left\|\frac{1}{\Delta}[u_{h}(q) - u_{h}(q + \Delta)]\right\|_{V} \leq D_{1} = \frac{\|\gamma_{0}\|}{\alpha} |\Gamma_{2}|^{\frac{1}{2}},$$

(15) $\left\|\frac{1}{\Delta}[u_{h}(q) - u_{h}(q + \Delta)]\right\|_{L^{2}_{(\Gamma_{2})}} \leq D_{2} = D_{1} ||\gamma_{0}||,$

where γ_0 is the linear and continuous trace operator, defined over V. Moreover, the function

(16)
$$q > 0 \rightarrow \int_{\Gamma_2} u_h(q) d\gamma \in R,$$

is a continuous and strictly decreasing function.

(iii) Function $f_h = f_h(q)$ is derivable. Moreover, f_h' is a continuous and strictly decreasing function and given by the following expression

(17)
$$f_h'(q) = \int_{\Gamma_2} u_h(q) d\gamma.$$

PROOF. (i) If we take $v = u_2 - u_1 \in V_h$ in the variational equality corresponding to u_1 and $v = u_1 - u_2 \in V_h$ in the one corresponding to u_2 , and we add up and subtract both equalities, then we obtain (12) and (13) respectively.

(ii) Taking into account (II-4), the Cauchy-Schwarz inequality and the continuity of the operator γ_0 we deduce (14). From (14) and the continuity of γ_0 we have (15). Therefore we have (16) because

(18)
$$\left|\int_{\Gamma-2} [u_h(q) - u_h(q + \Delta)] d\gamma\right| \leq D_2 |\Gamma_2|^{\frac{1}{2}} \Delta.$$

Moreover, the monotony property is a consequence of (12). (iii) From (11) and elementary computations, we deduce

(19)
$$\frac{1}{\Delta}[f_{h}(q+\Delta)-f_{h}(q)]=\frac{1}{2}\int_{\Gamma_{2}}[u_{h}(q)+u_{h}(q+\Delta)]d\gamma,$$

that is (17), by using (16).

THEOREM 4.- (i) The element $u_h = u_h(q) \in V_h$ can be written by

(20) $u_h(q) = B - q \ u_{3h}$

where u_{3h} is the unique solution of the variational equality

(21)
$$\begin{cases} a(u_{3h}, v_h) = \int_{\Gamma_2} v_h d\gamma, \quad \forall v_h \in V_h, \\ u_{3h} \in V_h. \end{cases}$$

(ii) There exists a constant $C_h > 0$ such that

(22)
$$f_h(q) = q B |\Gamma_2| - \frac{1}{2} C_h q^2, \quad \forall q > 0,$$

(23) $a(u_h(q), u_h(q)) = C_h q^2, \quad \forall q > 0.$

where the constant C_h is given by

(24)
$$C_h = a(u_{3h}, u_{3h}) = \int_{\Gamma_2} u_{3h} d\gamma.$$

(iii) If

$$(25) \qquad q > q_{0h}(B),$$

then problem (3) represents a discretized steady-state two-phase Stefan problem (i.e. $u_h(q)$ is a function on non-constant sign in Ω), where

(26)
$$q_{0h}(B) = \frac{B|\Gamma_2|}{C_h}$$

PROOF.- (i) It follows from (3), (11) and (20) by uniqueness of the variational equalities (3) and (21).

(ii) It follows from (11) and (20); (iii) It follows taking into account

(27)
$$f_h'(q_{0h}(B)) = 0,$$

and the monotony property of function f_h' .

THEOREM 5.- (i) We have the following equality:

(28)
$$a(u(q), u_h(q)) = C_h q^2, \quad \forall q > 0.$$

(ii) We have the following inequalities:

(29)
$$(a)C_h < C, (b)q_{0h}(B).$$

PROOF. (i) If we take $v = u_h(q) \in K_h = B + V_h \subset B + V_0 = K$ in the variational equality (I-7), and we take into account the expressions (II-10) and (22), then we obtain (28).

(ii) On the other hand, from (II-4) and (28) we have

(30)
$$\alpha ||u(q) - u_h(q)||_V^2 \leq a(u(q) - u_h(q), u(q) - u_h(q)) = (C - C_h)q^2,$$

that is (29a). Moreover, (29b) follows from (II-13), (26) and (29a).

Now, we shall use the interpolation result (2) for the function $u_3 \in H^r(\Omega)$, as a hipotesis of regularity of the continuous problem (7) (in general, $1 < r < \frac{3}{2}[5, 7, 8]$). In [11], we present three examples with explicit solution. In these cases, we have $u(q), u_3 \in C^{\infty}(\Omega)$.

THEOREM 6.- We have the following relations and estimations:

$$(31) a(u(q) - u_h(q), v_h) = 0, \quad \forall v_h \in V_h,$$

(32)
$$(C - C_h)q^2 = a(u(q) - u_h(q), u(q) - u_h(q)) \le \\ \le \inf_{v_h \in V_h} a(u(q) - v_h, u(q) - v_h),$$

(33)
$$0 < C - C_h \le C_0^2 h^{2(r-1)} |u_3|_{r,\Omega}^2$$

(34)
$$0 < q_{0h}(B) - q_0(B) \leq \frac{C_0^2 h^{2(r-1)}}{C} |u_3|_{r,\Omega}^2 q_{0h}(B).$$

PROOF. If we take $v = v_h \in V_h \subset V_0$ in the variational equality (I-7) and we subtract it with the variational equality (3), we obtain (31). By using (28), (30) and (31) we deduce

$$(35) a(u(q) - u_h(q), u(q) - u_h(q)) = a(u(q) - u_h(q), u(q)) - -a(u(q) - u_h(q), u_h(q)) = a(u(q) - u_h(q), u(q)) - a(u(q) - u_h(q), v_h) = = a(u(q) - u_h(q), u(q) - v_h) \le [a(u(q) - u_h(q), u(q) - u_h(q))]^{\frac{1}{2}}..[a(u(q) - v_h, u(q) - v_h)]^{\frac{1}{2}}, \quad \forall v_h \in V_h,$$

because a(.,.) is a escalar product in V_0 , then we obtain (32).

By using (32), the facts that

$$(36) \qquad \Pi_h(u(q)) \in B + V_h , \qquad u(q) - \Pi_h(u(q)) \in V_h$$

and the interpolation result (2), we deduce (33). The relation (34) is obtained by using the definition of $q_{0h}(B)$ and $q_0(B)$, and (33).

REMARK 1.- If we only have $u(q) \in V$ (i.e. $u_3 \in V$) we can obtain

(37)
$$0 < C - C_h \leq \frac{1}{q^2} ||u(q) - \Pi_h(u(q))||_V^2 = ||u_3 - \Pi_h(u_3)||_V^2,$$

where the second term converges to zero when $h \rightarrow 0^+$ [2], but we cannot give an order of convergence.

REMARK 2.- If the constant heat flux on Γ_2 verifies the inequality $q > q_{0h}(B)$, then both discrete and continuous problem represent a steadystate two-phase Stefan problem, that is, their temperatures are of nonconstant sign in Ω .

REMARK 3.- When the function $u_h(q)$ is constant on Γ_2 (as a function of $x \in \Gamma_2$), then the sufficient condition, given by (25), is also a necessary condition to have a two-phase discrete problem, because

(38)
$$\int_{\Gamma_2} u_h(q) d\gamma < 0 \Leftrightarrow u_h(q) < 0 \text{ on } \Gamma_2.$$

THEOREM 7.- If we consider h, B > 0, and $0 < \epsilon_0 < 1$ (ϵ_0 is a parameter to be chosen arbitrarily), then we have the following estimations:

(39)
$$q_0(B) < q_{0h}(B) \le \frac{q_0(B)}{\epsilon_0}$$
 and $C_h \ge C \epsilon_0$, $\forall h \le h_r(\epsilon_0)$,

(40)
$$0 < q_{0h}(B) - q_0(B) \leq \frac{C_0^2 |u_3|_{r,\Omega}^2}{C \epsilon_0} q_0(B) h^{2(r-1)}, \quad \forall h \leq h_r(\epsilon_0),$$

where

(41)
$$h_{\tau}(\epsilon_0) = \left(\frac{C(1-\epsilon_0)}{C_0^2 |u_3|_{\tau,\Omega}^2}\right)^{\frac{1}{2(\tau-1)}}$$

PROOF.- From (34) we deduce

$$(42) \qquad A(h)q_{0h}(B) \leq q_0(B),$$

where

(43)
$$A(h) = 1 - \frac{C_0^2 |u_3|_{r,\Omega}^2}{C} h^{2(r-1)} < 1.$$

If we consider, for each parameter $0 < \epsilon_0 < 1$ the following equivalence:

$$(44) \qquad 0 < \epsilon_0 < A(h) < 1 \Leftrightarrow 0 < h < h_{\tau}(\epsilon_0),$$

we can deduce the inequalities (39) and (40).

COROLLARY 8.- If B > 0, then we have the following limit

(45)
$$\lim_{h\to 0^+} q_{0h}(B) = q_0(B).$$

REMARK 4.- Every thing we proved in this paper is still valid if the boundary Γ of the bounded domain Ω is represented by the union of the portions ($\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$) such that they have the following characteristics: (i) Γ_1 and Γ_2 have the same conditions as the ones previously described in (I-4).

(ii) Γ_3 is a wall impermeable to heat, i.e. we have $\frac{\partial \theta}{\partial n}|_{\Gamma_3} = 0$ in (I-4) and therefore $\frac{\partial u}{\partial n}|_{\Gamma_3} = 0$ in (I-6).

Moreover, the first example considered (see bellow) verifies this condition.

We shall give three examples in which the solution is explicitly known [11] so that we can verify all the theoretical results obtained in this work.

Example 1.- We consider the following data

(46)
$$\begin{cases} n=2, \quad \Omega = (0, x_0) \times (0, y_0), \quad x_0 > 0, \\ \Gamma_1 = \{0\} \times [0, y_0], \quad \Gamma_2 = \{x_0\} \times [0, y_0], \\ \Gamma_3 = (0, x_0) \times \{0\} \cup (0, x_0) \times \{y_0\} \end{cases}$$

Example 2.- Next we consider

(47) $\begin{cases} n = 2, \quad 0 < r_1 < r_2, \quad \Gamma_3 = \emptyset, \\ \Omega: \text{ annulus of radius } r_1 \text{ and } r_2, \text{ centered at } (0,0), \\ \Gamma_1: \text{ circunference of radius } r_1 \text{ and center } (0,0), \\ \Gamma_2: \text{ circunference of radius } r_2 \text{ and center } (0,0). \end{cases}$

Example 3.- Finally, we take into account the same information of Example 2 but now for the case n = 3.

<u>Acknowledgments</u>.- This paper has been sponsored by the Projects "Problemas de Frontera Libre de Física-Matemática" and "Análisis Numérico de Ecuaciones e Inecuaciones Variacionales" from CONICET, Rosario-Argentina. . [1] C. BAIOCCHI - A. CAPELO, "Disequazioni variazionali e quasivariazionali. Applicazioni a problemi di frontiera libera", Vol. 1,2, Pitagora Editrice, Bologna (1978).

[2] P.G. CIARLET, "The finite element method for elliptic problems", North-Holland, Amsterdam (1978).

[3] G. DUVAUT, "Problèmes à frontière libre en théorie des milieux continus", Rapport de Recherche No. 185, LABORIA-IRIA, Rocquencourt (1976).

[4] M. FREMOND, "Diffusion problems with free boundaries", in Autumn Course on Applications of Analysis to Mechanics, ICTP, Trieste (1976).

[5] P. GRISVARD, "Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain", in Numerical Solution of Partial Differential Equations III, SYNSPADE 1975, B. Hubbard (Ed.), Academic Press, New York (1976), 207-274.

[6] D. KINDERLEHRER - G. STAMPACCHIA, "An introduction to variational inequalities and their applications", Academic Press, New York (1980).

[7] M.K.V. MURTHY - G. STAMPACCHIA, "A variational inequality with mixed boundary conditions", Israel J. Math., 13(1972), 188-224

[8] E. SHAMIR, "Regularization of mixed second-order elliptic problems", Israel J. Math., 6 (1968), 150-168.

[9] D.A. TARZIA, "Sur le problème de Stefan à deux phases", C. R. Acad. Sc. Paris, 288A (1979), 941-944.

[10] D.A. TARZIA, "Una revisión sobre problemas de frontera móvil y libre para la ecuación del calor. El problema de Stefan", Math. Notae, 29(1981), 147-241. See also "A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan problem", (with 2528 references), Progetto Nacionale M.P.I. "Equazioni di evoluzione e applicazioni fisico-matematiche", Firenze (1988).

[11] D.A. TARZIA, "The two-phase Stefan problem and some related conduction problems", Reuniões em Matemática Aplicada e Computação Científica, Vol.5, SBMAC, Rio de Janeiro (1987).

[12] D.A. TARZIA, "An inequality for the constant heat flux to obtain a steady-state two-phase Stefan problem", Engineering Analysis, 5(1988), 177-181.

Departamento de Matemática, FCE, Universidad Austral, Paraguay 1950, (2000) Rosario, Argentina

72

and PROMAR (CONICET-UNR), Instituto de Matemática "Beppo Levi", Avda. Pellegrini 250, (2000) Rosario, Argentina.