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ABSTRACT: A continuous and its corresponding discrete mixed elliptic
differntial problem with solutions of non-constant sign, as functions of the
Dirichlet and Neumann data, are studied in a convex polygonal bounded
domain 2 of R". An inequality for the heat flux is given in order to obtein
a continuous and discrete change of phase, that is, a continuous or discrete
solution of non-constant sign in 1 (steady-state two-phase continuous or
discrete Stefan problem). A convergence for the two inequaliteies, as func-
tion of the parameter A of the finite element method, is also obtained.
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I. INTRODUCTION

We consider a heat conducting material occuping 1, a convex polygonal
bounded domain of R™*(n = 1,2, 3 in practice), with a sufficiently regular
boundary I' = I'; U I'y( with meas (I';) = |T';| > 0, |T'a| > 0). We assume,
without loss of generality, that the phase-change temperature is 0°C. We
impose a temperature b > 0 on I'; and autcoming heat flux ¢ > 0 on I';.
If we consider in 2 a steady-state heat conduction problem, then we are
interested in finding sufficient and/or necessary conditions for the heat flux
g on I'; to obtain a change of phase in 1, that is, a steady-state two-phase
Stefan problem in Q (i.e. the temperature is a function of non-constant
sign in 1) [10].

58



Following [9] we study the temperature § = 6(z), defined for z € 1.
The set £} can be expressed in the form

(1) 0=0,UfUL.

where

0, ={z €0 /6(z) <0},
(2){ ;= {z €0/ 6(z) > o},
L={ze0/b(z)=0}
are the solid phase, the liquid phase and the free boundary (e.g. a sur-
face in R ) that separates them respectively. The temperature 6 can be
represented in {2 in the following way:

61(3) < 0, Z 601 ’

(3) 0(3):{0, z€L,
63(3))0, 36021

and satisfies the conditions below:

(1)A6; =0 in 0;(i = 1, 2),
ii)91=03=0, kl%ilzkg%il on L,
iii)e2|l" = b,
4 ! .
4 7 k88, =g if Ofr, > 0,
iv)
\ -—kl%lp’ =gq ifelp, <0,

where k; > 0 is the thermal conductivity of phase i (i = 1 : solid phase,
i = 2 : liquid phase ), b > 0 is the temperature given on I'; , and ¢ > 0 is
the heat flux given on I';.

Problem (4) represents a free boundary elliptic problem (when £ # 0)
where the free boundary £ (unknown a priori) is characterised by the three
conditions (4ii). Following the idea of [1, 3, 4, 9] we shall transform (4) into
a new elliptic problem but now without a free boundary. If we define the
function u in 1 as follows

1, 1

— k8t — k(8 = —ut — —
(5) u= kga k10 (6 kzu klu

-) inQ,

where 6% and 6~ represent the positive and negative parts of the function
6 respectively, then problem (4) is transformed into
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ii)‘ulpl =B, B=kgb>0 '

)Au=0 in D'(Q),
of
lll) - 3;'1": =4q,

whose variational formulation is given by

(7){a(u,v—u)= L(v-u), Yv€EK,

u € K,
where
. (v=HYa), % = {v € V/vlr, = 0},
(8){K=KB={06V/0|P1 =B},
a(u,v) = [, Vu.V u dz, L(v) = Lg(v) = - [, q v d7.

Under the hypotheses L € V] ( e.g. ¢ € L?(T';))and B € H¥(I",),
there exists a unique solution of (7) which is characterised by the following
minimisation problem [1,6]

(9){1{(;‘)1{5’ J(”)v Yv € Kv

where

1 1
(10) J(v) = J4(v) = -2-a(v,v) - L(v) = Ea(v,v) +/ qvdy.
T,

LEMMA 1. If u = uggis the unique solution of problem (7) for
data q on I'; and B > 0 on Ty, then we have the monotony property:

(11) By <B;onTiand ¢q; <quonT; = uyp, <ugs, in Q.

- Moreover,
(12) q>00h 2 = uyp gn%‘a.xB in Q,

and function u = u,p satisfies the equality
(13) a(uv™,u") =/ qu—dy .
T
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COROLLARY 2.- From (13), we deduce

(14) w #0m 0@ u #0onTy,
where ¢ > 0 and B > 0.

NOTE 1.- We shall denote by (N-n) the formula (n) of Section N
and we shall omit N in the samc paragraph. Idem for theorems, lemmas,
corollaries, remarks and notes. We shall also omit the space variable z €
for every function defined in 2.

II. MIXED ELLIPTIC PROBLEMS WITH OR WITHOUT
PHASE CHANGE.

We shall give a problem which are related to the mixed elliptic partial
differential equations (I-6) or (1-7).

Probem P : For the constant case B > 0 and ¢ > 0, find a constant
g0 = go(B) > 0 such that for ¢ > go(B) we have a steady-state two-phase
Stefan problem in {2, that is the solution u of (I-7) is a function of non-
constant sign in {1.

REMARK 1.- From (I-14) we deduce that an answer to problem P
is the element ¢ for which u takes negative values on the boundary I';.

LEMMA 1.- Let u = u, be the unique solution of the variational
equality (I-7) for ¢ > 0 (for a given B > 0). Then

(i) The mappings
(1) g>0—-u, €V and ¢>0— usdy ER
r,

are strictly decreasing functions.
(i) For all ¢ > 0 and h > 0 we have the following estimates:

1 1
@) Ix(ugsn - ugllly < € = olpyp
Qo

1
(3) ”X(u’ — ugn)llza(r,) £ C2 = Cillroll

where ¢ is the trace operator (linear and continuous, defined on V' ), and
a > 0 is the coercivity constant on V; of the bilinear a , i.e. :

(4)  3a>0/a(v,9)= bl > albly , Ve Vo.
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(iii) For all ¢ > 0 and h > 0 we have

(5) 0< ./I: uqd‘y —4/1‘ uq.,.hd‘y S Cah(Ca = Cglrzl* > 0)

and therefore the function ¢ > 0 — fl‘: u,dy is continuous.

PROOF.- If u; = u,, is the solution of (I-7) for ¢; > 0 (i = 1,2),
then we have the following equalities:

(6) a(u3 — uy,u3 — uy) = (g1 — 42)/1: (ug —u)dy ,

(1) a(ua,ua)—a(uz, u1) = a(ug+uy, v—u1) = (g14+42) /P (w1—u)d7

because we take v = u3 € K in the variational equality corresponding to
u; , and v = u; € K in the one corresponding to us, and we add up and
subtract both equalities. From (6) and (7) we obtain (2) and (3) [12].

Let f: Rt — R be the real function defined by

6)  £(@)=I(ug) = yalug,va) + [ ug 1.

| 9

REMARK 2.- To solve Problem P it is sufficient to find a value
g > 0 for which we have f(q) < 0. We shall further see that this technique

can still be improved.

THEOREM 2.- (i) The function f is differentiable. Moreover, f’is a
continuous and strictly decreasing function, and it is given by the following
expresion

©  fla)= [ udr
(ii) There exists a constant C > 0 such that
(10) a(uq, uq) = Cg?,

C

(11)  £(q) —;q’+BII‘qu-
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(i) If
(12) q > qO(B)i

then we obtain a two-phase steady-state Stefan problem in Q (i.e. uyis a
function of non-constant sign in 1 ), where

13)  ao(B)= 222

(iv) Constant C = C(Q,T';,T';) > 0 is given by

(14) € = a(us, us) = / us dv,
ra

where uj is the solution of the variational equality

(15) a(u3,v) = fl‘, vdy, YveEl,
Uz € Vo

PROOF.- We deduce (8) by considering the fact that

h) — 1 1
(16) flg+h) f(q)z_A’uq,d1+§£=uq+h dy

h 2

which is obtained from (I-7) after elementary manipulations.

Moreover, we have

(17) u, =B —gqu3 inQ,

(18)  f'(go(B)) = 0.

We obtain the thesis by using the fact that if fr’ ug dy < Othenus #0
in Q. ’

REMARK 83.- The sufficient condition f(q) < 0, to solve Problem P,
was improved by the condition f'(q) < 0 , which is optional (see examples
more later). In the case where, because of symmetry, we find that the

function uy is constant on I'; , the sufficient condition, given by (12), is
also necessary to have a steady-state two-phase Stefan problem.
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III. NUMERICAL ANALYSIS OF MIXED ELLIPTIC
PROBLEMS WITH OR WITHOUT PHASE CHANGE

Now, we consider 7, , a regular triangulation of polygonal domain 2
with Lagrange triangles of type 1, constituted by affine-equivalent finite
element of class C°, where A > 0 is a parameter which goes to zero. We
can take h equals to the longest side of the triangles T € 7, and we can
approximated V; by [2]:

(1) Vi ={vs € C°(Q) / valr € Pi(T), YT € 4, va|r, =0},

where P, is the set of the polynomials of degree less or equals than 1. Let x,
be the corresponding linear interpolation operator. Then, we can consider
that there exists a constant Cy > 0 (independent of the parameter k) such
that

- (2) lv = ®avlly < Coh™ |v|lr.q,Yv € H'(Q), with 1 < r < 2.

We consider the following finite dimensional approximate variational
problem, corresponding to the continuous variational problem (I-7), given
by:

(3) a(up,vn) = L(vp), Vop € Vi,
up € K = B+ V,,

and we can obtain the following results.

LEMMA 1.- We have
4 1 — -
( ) hhmo+ ”uh u”v 0,

where u is the unique solution of the variational equality (I-7).

PROOF.- Owing to meas (I';) > 0, we have that the bilinear form a is
coercitivity over V; and therefore |||y, and ||.|ly are two equivalents norms
in V5 . We follow a similar method developped in [2].

COROLLARY 2.- If we define

1 1 1 1
5 O, = —ut — —u- eV = —yt - —y~
(5) * kzuh kluh €v,?o kzu klu .EV
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then we have

(6)  lim |I6n—6llz =0,

where H = L?(Q).
PROOF.- If we consider the scalar product in H, defined by

(7) (u,v) = /nu v dz,

then, we deduce
(8)  lun —ullly = lluf — w*ilE + lluy — o [l + 2(uf,v7)+

+2(ut, ut) >l —ut|lE + Jluy —wTE

that is
(9)  max(lluf —ut|l, Jluy —u7|l) < Jlun — ullm -

From (5) we obtain:
(10)  1l6n = Ollr < llwy — w7l + p-llvn —w7lle <

1
< (k_1 + E)"“h - ully ,

i.e. (6).

The goal of this part is to consider the numerical analysis of the in-
equality (II - 12). We study sufficient (and/or necessary) conditions for
the constant heat flux ¢ on I'; to obtain a change of phase (steady-state
two-phase discretised Stefan problem) into the corresponding discretised
domain, that is a discrete temperature of non-constant sign in £2. We ob-
tain that (similarly to the continuous problem):

(1) there exists a constant C; > 0 (which depends only of the geometry of
the domain € for each h > 0 and it is characterised by a variational prob-
lem) such that if ¢ > go,(B) = B|I'3|/Cy then the steady-state discretized
problem presents two phases.

(i) we have the estimations Cj < C and go(B) < go,(B) where C and
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go(B) have been obtained for the continuous problem by (I1-14) and (II-13)

respectively.
(iii) we deduce an error bounds for C — Cy and go,(B)—go(B) as a function
of the parameter h.

In other words, we obtain for the mixed elliptic discretised probem, de-
fined by uy, analogous conditions to the ones obtained for the corresponding
continuous problem [12], defined by u .

For each ¢ > 0 we consider the functions u(g) € K and ux(q) € Kj, as
the unique solution of the variational equalities (I-7) (continuous problem)
and (3) (discrete problem) respectively. We define the real function fj :
Rt — R, for each A > 0, in the following way

(11) In(q) = Jo(un(q)) = ‘;‘a(“h(Q)v“h(Q)) + q/ up(q)dvy, ¢ >0.

T,

Thetefore, we obtain the following properties:

THEOREM 8.- (i) If u; = u4(g;) is the solution of (3) forg; > 0 (i =
1,2), then we have the following equalities:

(12)  afuz — uyy 2 — v1) = (g1 — g3) /P (u2 — wr)d,

(13) a(uz, uz)—a(uy, u1) = a(uz+u,, uz-ul) = (91+112)/I: (u1—~uz)dy .

(i) For all real numbers ¢ > 0 and A such that (¢ + A) > 0, we obtain the
following estimations:

(19) | Elunle) ~ unla+ ANl < Dy = Py,

(15) | glun@) = unla+ A)ll ar, < D = Dalbrol

where g is the linear and continuous trace operator, defined over V' . More-
over, the function

(1) ¢>0 — / un(q)dv € R,
T,
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is a continuous and strictly decreasing function. _
(ii) Function f, = fx(q)is derivable. Moreover, f,' is a continuous and
- strictly decreasing function and given by the following expression

(17) fh,(9)=/r uy(q)d7.

PROOF.- (i) If we take v = u; — u; € V, in the variational equality
corresponding to u; and v = u; — ug € V, in the one corresponding to uj,
and we add up and subtract both equalities, then we obtain (12) and (13)
respectively.

(ii) Taking into account (II-4), the Cauchy-Schwars inequality and the con-
tinuity of the operator v, we deduce (14). From (14) and the continuity of
70 we have (15). Therefore we have (16) because

(18) < D,|T,|3 A.

[ (@) - uale+ Ay
r-2 |

Moreover, the monotony property is a consequence of (12).
(i) From (11) and elementary computations, we deduce

19 zlAle+8)- el = [ [nlo)+ule+a)dr,

that is (17), by using (16).
THEOREM 4.- (i) The element u; = up(g) € V3 can be written by

(20) un(g) =B —qus,

where uy;, is the unique solution of the variational equality

(21) {a(uun vh) = fp: ”hd’h Vvh € Vh’
U3n € V;..

(ii) There exists a constant C, > 0 such that
1
(22)  fa(q) = ¢B|I3| - ECW’, Vg >0,

(23)  a(un(e), un(q)) = Cad?, Vg >o.

where the constant C), is given by
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(24) Ch = a(u3p, Uzp) = /r' u3p dv.
3

(iii) If
(25) q> qOh(B)’

then problem (3) represents a discretized steady-state two-phase Stefan
problem (i.e. ux(g) is a funtion on non-constant sign in {3 ), where

26)  qor(B) = 2.

PROOF.- (i) It follows from (3), (11) and (20) by uniqueness of the
variational equalities (3) and (21).
(i) It follows from (11) and (20); (iii) It follows taking into account

(27)  fi'(904(B)) =0,
and the monotony property of function f;' .

THEOREM 5.- (i) We have the following equality:

(28)  a(u(q), un(q)) = Cag®, Vg >o.
(ii) We have the following inequalities:

(29) (a)Ca < C, (b)gon(B).

PROOF .- (i) If we take v = uy(¢) € K, = B+ V, C B+ Vo = K in the
variational equality (I-7), and we take into account the expressions (1I-10)

and (22), then we obtain (28).
(i) On the other hand, from (II-4) and (28) we have

(30)  aflu(g) - un(9)llv” < a(u(g) — ua(e), u(g) — un(a)) = (C - Cu)d?,

that is (29a). Moreover, (29b) follows from (II-13), (26) and (29a).

Now, we shall use the interpolation result (2) for the funtion u; €
HT(R2), as a hipotesis of regularity of the continuous problem (7) (in general,
1< r< 2[57,8]). In (11}, we present three examples with explicit solution.

In these cases, we have u(q), u3 € C*(02).
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THEOREM 6.- We have the following relations and estimations:

(31) a(u(q) — un(g),vn) =0, Vup € Vj,

(32)  (C-Ch)g® = a(u(g) — un(g), u(g) — un(g)) <
< _inf_a(u(g) = s, u(g) — )

(33) 0<C-Co<C) WDy,

' C3? hz(r—l)
(34) 0 <gon(B)—a(B) < —Q*—E-—I“alz,n gon(B)-

PROOF.- If we take v = v, € Vj, C V in the variational equality (I-7)
and we subtract it with the variational equality (3), we obtain (31). By
using (28), (30) and (31) we deduce

(35)  a(u(g) — ua(q), u(g) - un(q)) = a(ulg) — ua(q), u(q))-
—a(u(g) — un(g), un(q)) = a(u(g) — un(g), u(g)) — a(u(g) — un(g), ) =
= a(u(g) — un(q), u(g) — va) < [a(u(q) — un(q), u(g) — ua(q))]?.
[a(u(g) - va, ulg) — w))*, Vun € Vi,
because a(.,.) is a escalar product in Vj;, then we obtain (32).

By using (32), the facts that

(36) IMu(u(g)) €B+WVu, u(g)- nh(“(Q)) EWV

and the interpolation result (2), we deduce (33). The relation (34) is ob-
tained by using the definition of go,{B) and go(B), and (33).

REMARK 1.- If we only have u(g) € V (i.e. u3 € V) we can obtain

(1) 0<C= 0y < llu(a) - Ta(ula)lfy = lus ~Ta(us)l},

where the second term converges to sero when h — 0% [2], but we cannot
give an order of convergence.
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REMARK 2.- If the constant heat flux on I'; verifies the inequality
g > qo,(B), then both discrete and continuous problem represent a steady-
state two-phase Stefan problem, that is, their temperatures are of non-

constant sign in {1.

REMARK 38.- When the function u,(q) is constant on I'; (as a
funtion of z € I';), then the sufficient condition, given by (25), is also a
necessary condition to have a two-phase discrete problem, because

(38) /I: up(g)dy < 0 & up(g) < 0on Is.

THEOREM 7.- If we consider h,B > 0,and 0 < ¢ < 1 (€ is a
parameter to be chosen arbitrarily ), then we have the following estimations:

(9 w(B)<an®) <2 wd G20 o, Vh<hla),

C3 lusl2g

(40)  0<qon(B)~0(B) < —5—

qo(B) A3V, Yh < h.(eo),

where

~ &)\ =D
(41) A () = (—————ggusl,‘;)) .

PROOF.- From (34) we deduce
(42) A(h)qon(B) < g0(B),
where

C3 |usl?q

(43) A(h)=1- A3 r-1) <,

If we consider, for each parameter 0 < €5 < 1 the following equivalence:

(44) 0<e<A(h) <14 0<h<h(e),
we can deduce the inequalities (39) and (40).
* COROLLARY 8.- If B > 0, then we have the following limit
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~(45) hl_ifg+ gon(B) = 90(B)-

REMARK 4.- Every thing we proved in this paper is still valid if the
boundary I' of the bounded domain 2 is represented by the union of the
portions (' = T';UT3UT'3) such that they have the following characteristics:
(i) T'; and I'; have the same conditions as the ones previously described in
(1-4). g
(ii) I's is a wall impermeable to heat, i.e. we have %:-IP. = 0 in (I-4) and
therefore %Ir. = 0 in (I-6).

Moreover, the first example considered (see bellow) verifies this condi-
tion. : '

We shall give three examples in which the solution is explicity known
[11] so that we can verify all the theoretical results obtained in this work.

Example 1.- We consider the following data

I.‘1 = {0} X [0) yO] ) I = {30} X [Ov yO])

{n:Z, ﬂ:(O,zo)x(O,yo), z0>0, y0>0)
(46)
T3 = (0,20) x {0} U (0,z0) x {yo}

Example 2.- Next we consider

n=2, 0<r<ry;, T3=0,

f1 : annulus of radius r; and r;, centered at (0, 0),
I'; : circunference of radius r, and center (0, 0),
I'; : circunference of radius r; and center (0, 0).

(47)

Example 3.- Finally, we take into account the same information of
Example 2 but now for the case n = 3.
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