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1. INTRODUCTION

.- We consider a material 2, a bounded domain of R” (n=1, 2, 3 in prac-
tice), with a sufficiently regular boundary I'=1I"; u I', (with meas(/";)>0
and meas(/,)>0). We assume, without loss of generality that the phase-
change temperature is 0°C. We impose a Newton law with coefficient a > 0
on I'; with a temperature b=const. >0 and an outcoming heat flux
g=const.>0 on I',.

If we consider in 2 a steady-state heat conduction problem, then we are
interested in finding out sufficient and/or necessary conditions for the heat
transfer coefficient « and/or for the heat flux g to obtain a change of phase
in £, that is, a steady-state two phase Stefan problem in . In others
words, we are interested in obtaining the steady-state temperature of non-
constant sign in €.

Following [3] we study the temperature 6 = 8(x), defined for x € Q. The
set 2 can be expressed in the form

Q=0,0uQ,ul, (1)
where
Q,={xeQ/6(x)<0}
Q2,={xeQ/6(x)>0} (2)
I={xeR/6(x)=0}

are the solid phase, the liquid phase, and the free boundary that separates
them, respectively.
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HEAT TRANSFER COEFFICIENT 17

The temperature 0 can be represented in 2 by
0,(x) <0, xe2,
0(x) = 0, xel (3)
1 0,(x)>0, x€ef,
and satisfies the conditions
(i) 46,=0 inQ2, (i=1,2),
0,=0,=0, |

i) 59 00
1 _ 2
kv gy =kaz  onk

a "
_k2_92_ =gq if 0].,>0, 4)
an I
(i11) 20
1 _ .
_kl—é"';'rz—q if 0|r2<0,
00
—ky—=2| =a(k,0,—B) if 6|;,>0,
_ on |r,
(iv) 20
—k,—| =ak,0,—B) if 6|,<0,
an r

where k; > 0 is the thermal conductivity of phase i (i= 1: solid phase, i =2:
liquid phase) and B=k,b>0. ‘
If we defined the function u in 2 as

u=k,0* —k,0- inQ, (5)

where 8% and 0~ represent the positive and the negative parts of the
function 6, respectively, then problem (4) is transformed into

() Au=0  inD'(Q)
0
(i) ~ |, = (6)
(i) o —au=)

whose variational formulation is given by (v =u,,)

a,(u, v) = L, 5(v), YveV, uelb, (7)
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where

V=H'Q), a(uv)=| Vu-Vuds,
2
a,(u, v)=a(u, v)+af uv dy, (8)
L,,p(v)=L(v)+aB ‘[ v dy, L,(v)=—q ‘[ v dy.

If we consider the problem (4)(bis) by replacing condition (4)(iv) by
0l;,,=b>0 (4)(iv bis)

then the function u, defined by (5), satisfies conditions (6)(bis), i.e.,
(6)(i)(ii) and

ulp =B (6)(iii bis)

whose variational formulation is given by (v =u,)
a(u,v—u)=L (v—u), YveK, uek, %)
where
Vo={veV/|,=0}, K={veV/v|, =B} (10)

The variational inequalities (7) and (9) have unique solutions for all
x>0, ¢g>0, and B>0 [1-3,5]. We suppose that 2 and I" have the
necessary regularity so that these solutions belong to C°(9).

For the problem (4)(bis) or (6)(bis) or (9), the following result was
given in [6]: If ¢ > q,, where

ao(B)=gmeas () (B>0) (11)

then we obtain a steady-state two-phase Stefan problem in £; ie., the
function u, is of non-constant sign in Q. The constant C is such that

a(u,, u,)=Cq?, Yq >0, (12)

and it can also be calculated by the expression

1
C==[ (B-u)dy=aluo,u)=| wdy, ¢>0,  (13)
q'rn, r
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where u, is the solution of the problem
a(u,, v)=J~ v dy, YveV,, uyseV,. (13)(bis)
I

Moreover, it has the physical dimension [C]=(Cm)", where n is the
dimension of the space R”".

In this paper we shall generalize the above result for problem (4) or (6)
or (7), i.e., for the problem with « and g as independent variables. In others
words, we shall study the mixed boundary value problem for the Laplace
equation (6) with the object of deciding when it exhibits a solution of non-
constant sign in .

In Section II we given some results related to the functions u,, and u,.

In Section III we consider the case where ¢ > g, (¢, given by (11)) and
we obtain that there exists a steady-state two-phase Stefan problem in Q
(i.e., the function u,, is of non-constant sign in 2), for all « > a,, where

q meas([l,)

B)=4mcast )
%o(4, B) B meas(I",)

(9>4qq, B>0). (14)

Moreover, in the case where, because of symmetry, we find that u,, is
constant on I,, then the sufficient condition (14) is also necessary.

In Section IV we consider the general case « >0 and ¢ > 0 for each B> 0.
We then obtain that there exists a steady-state two-phase Stefan problem in
Q (ie., the function u,, is of non-constant sign in ) for

dm(® B)<q<qu(®, B), a>0(B>0), (15)
where the functions ¢,, and ¢,,, defined for «, B> 0 are given by

B meas(I',)
Ad)

__ Bmeas(l',) «

qm(as B)= qM(as B)_ meas(]"z)

, (16)

where 4 = A(a) has an adequate expression. Moreover, we have that (for
all B>0)

4(0", B)=q,(0", B)=0,
lim g,(x, B)=qo, (17)

a— +co
4., is an increasing monotone function of a.
In Section V we consider a particular case of the one developed in

Section IV for which we can obtain more information for the expression of
the function 4 = A(a).
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Finally, we remark here that all that we have proved in this paper is still
valid if the boundary I of Q2 is represented by the union of three portions
I'=r,vur,vur, such that:

(i) I, and I', have the same condition as those previously described
in problem (4).

(ii) I is as wall impermeable to heat, i.e., we have (86/0n)|, =0 in
(4) and therefore, (du/on)|, =0 in (6).

In Section VI we give three examples in which the solution is explicitly
known. Moreover, for all these examples, the sufficient condition (15) is
also necessary.

The method employed in this paper is the elliptic variational inequalities
theory [1, 2, 5] which has been used in numerous mechanical problems,
e.g., free boundary problems, variational principles in elasticity and
plasticity (Saint—Venant theory), etc. [1, 2, 5, 7].

We shall denote by (N —n) the formula (n) of Section N and we shall
omit N in the same paragraph. We also omit the space variable x € 2 for
every function defined in Q.

II. PRELIMINARY PROPERTIES OF u,, AND u,

We shall use u, = u,, and u,, = u, when it is necessary for convenience of
notation.

Remark 1. The bilinear form a, is coercive on V, i.e.,
>0/, 0)=alo,0)+ [ Pdza oI}, eV, (1)
I

Moreover, so is the bilinear form a, and we have

a,(u, v) =4, |vl3, YoeV, A,= 4, min(1, a). (2)

LEMMA 1. We have the following properties:

(1) Uyg = U, inV, whenoa - + o0, Vg>0,
(i1) u,,<B inQ,Ya>0,VYg>0, 3)
(iii) U, <u,<B in ,Ya>0,Vg>0,

(iv) Ugygr S Unyg, in,¥q,<q,, Vo, <a,.
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Proof. (i) It was given in [3]. We will only prove (iv) because the other
cases are analogous. We shall take into account the equivalence

u, <u, inQ<ew=0 in Q, (4)
where w= (u; —u,)* in Q and u,=u,, (i=1,2).
If we use v=we V in the variational equality (I-7) corresponding to u,,

and v = —we V in the one corresponding to u, and we later add them up,
we have '

am W) +(@1—4) | wivt(@—a) | (B-u)way=0, (5)
that is, w=0 in Q.

LEMMA 2. We have the properties

M,<u,<M, inQ, (6)
where
M,=Minu,, M,=Maxu,,. (7)
I Iy

Proof. Let w, and w, be the functions defined in the following way:
Wi=(ugy—M)*,  wa=(My—u,)*  inQ (8)

If we use v=w, e ¥V and v=w, e V in the variational equality (I-7) and
we take into account that w, |, =0 and w,|, =0, then we obtain

alws, wi)+q | widy=0,
2

9)
a(wa, wo) +a [ (B—up,) wy dy=0;
I
that is, w, =w,=01in Q, i.e., (6).
COROLLARY 3. We have the following properties:
(a)
M‘_?x Uy =M, l\rgn Uy =M, (10)

where the elements M, and M, are defined in (7).
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(b) The problem (1-4) or (1-6) or (I-7) is a steady-state two-phase
Stefan problem in Q (i.e., the function u,, is of non-constant sign in Q) iff

ix,erl, Xy €Iy fty,(x,) >0, Upy(X,) <O0. (11)

(c) If u,, satisfies the condition

f Uy, dy >0, frz U, dy <0, (12)

Iy

then problem (1-7) is a two-phase problem.

LEMMA 4. For all B> 0, we have the following expression:
| uaqdy=Bmeas(I’l)—gmeas(F2), Vo, g > 0. (13)
Iy

Proof. By using (I-7) with v=1€ ¥V, we obtain

0=a,(uy, 1)—Ly,5(1)=0a J Uy, dy + q meas(I",) — aB meas(I,),

Iy

that is, (13).

LEMMA 5. For all B> 0, we have the following properties:

(1) a(u,, u,)=L,(u,)+ Bgmeas(I',), Vg>0, (14)
(i1) a(u,,, ug)=alu,, u,), Va, g >0.

Proof. 1If we use v=BeK in (9), we obtain

a(u,, u,)=a(u,,u,— B)=L (u,— B)= ,(u,)— L, (B),

that is, (14)(i).
If we use v=u,e K< Vin (7) and take into account (13) and (14)(i) we
obtain

O(ttggy ) = Lagslttg) = | oty dy=L,(u;) +aB [ u, dy
Iy I
— B f Uy, @y = L,(u,) + Bq meas(I’,) = a(u,, u,),
Iy

that is, (14)(ii).
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III. STUDY OF THE PROBLEM (I-4) WHEN g > ¢,

We shall study the problem (I-4) or (I-7) when the heat flux
q=const.>0 on I', is such that ¢ > g, (g, is given by (I-11)); that is, the
problem (I-4)(bis) steady-state two-phase Stefan problem in 2 (ie., the
function u, is of non-constant sign in £2). Then, we obtain the following
result:

THEOREM 6. If q>q,, then (I-4) is a steady-state two-phase Stefan
problem in Q (ie., the function u,,, solution of (1-7), is of non-constant sign
in Q) for all a> a,, where o is given by (1-14).

Proof. Owing to q> ¢q,, we have that [6]
l\'gnuq=Minuq<0 (1)

I
and therefore, by using (II-3)(iii), we deduce that
M,<0, VYa>0. (2)
Besides, by using (II-13), we have that
j U, >0 a>0,  (with g>qo), 3)
I

then we obtain the thesis.

COROLLARY 7. In the case where, because of symmetry, we find that
function u,, is constant on I'\ then the sufficient condition, given by
Theorem 6, is also necessary for problem (1-4) to be a two-phase problem.

Proof. Since u,,|r, = const., the property follows from Theorem 5 and
the following equivalence:

u,, dy>0<=u,|r>0. (4)
J, ta I

I

Remark 2. For the three examples given in Section VI we can apply the
above corollary.

IV. STUDY OF THE GENERAL PROBLEM (I-4)

We shall study the problem (I-4) or (I-7) for «>0 and ¢>0 (ahd for an
arbitrary but given ¥ >0 or B> 0); we shall give sufficient (and in some
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cases also necessary) conditions for problem (I-4) to be a two-phase
problem.

From now on, we will denote u=u(a, g, B) (it was u,, in Sects. I, II, and
III) and u, =u,(q, B) (it was u, in Sects.I, II, and III) as the unique
solutions of the variational equalities (I-7) and (I-9), respectively, for a >0,
g>0, and B>0.

The solution u(a, g, B) of (I-7) is characterized by the minimum problem
[1,2,5]

Joos(u(a, g, B)) < J, 5(v), YveV, u(a, g, B)e V, (1)

where

Jan(v) = %aa(ua U) - Lan(U)a VU € V (2)
Following [6], let f: (R*)>— R be the real function, defined by

f(aa q, B) =Jan(u(aa q, B)) (3)

which is equivalent to the expression

f(@ g B) =3 a,(u(z g, B), u(e ¢, B)) = —3 Loos(u(x, 4, B))

_1 _aB
_5 L"z u(aa q, B) d P) JI’] u(aa q, B) d')’ < 09 (4)

by using equality (I-7) for v = u(a, g, B).

Remark 3. The function
(g, B)e®") = | ulo g, B)dy (5)
1

is continuous because of expression (II-13).

Let be h> 0. If we define 4,u(a), 4,u(q), and 4,u(B), for all a, g, B> 0,
as

Ahu(a) = u(a+h9 q, B) _u(aa q, B)
A,u(g)=u(a, g+ h, B)—u(a, g, B) (6)
Ahu(B) = u(aa q, B+h)_ u(a’ q, B)

then we obtain the following estimates:



HEAT TRANSFER COEFFICIENT 25

LEMMA 8. We have

I 4pu(@)lly < Cyh (7)
||Ahu(a)||Lz(,~l)SC2h, (8)
where
S 17 "
1== s 4> B\ 12>
* 9)
C=Cy Iyl

and y, is the trace operator (linear and continuous, defined on V).

Proof. If we use v=4,u(e) and v= —4d,u(x) in (I-7) with the
parameters a + 4 and a, respectively, add them up, and take into account
(I1-2), (II-3), the Cauchy-Schwarz inequality, and the continuity of y,, we
deduce

Ao | 4pu(@) |} < a(d,u(a), 4,u(a))=h L (B—u(a+h)) 4,u(a)) dy

=h [ (B—u(a+h,q, B)) 4,u(@) dy

<h || B—u(a, g, B 12,y 1 duu(@)lly 7ol

that is, (7). Taking into account (7) and the continuity of y, we obtain (8).
COROLLARY 9. For all >0, ¢>0, and B> 0, we have

lim | wu(x+h,q, B)u(a, g, B)dy= L u’(a, g, B) dy. (10)

h—*0+ rl

Let be h> 0. We define 4, f(«), 4, f(q), and 4, f(B), for all a, g, B> 0,
as follows:

4, f(e)=f(a+h,q, B)—f(a,q, B)
4,f(q)=f(a, q+h, B)—f(a, g, B) (11)
Ahf(B) =f(d, q,B+h)"f(0‘, q, B)

Then we obtain the following properties:

LEMMA 10. We have

Ahi(a) =_;_'[ (u(a+h’ q, B) u(a’ q, B)—B(u(oz+h, q, B)+ U(a, q, B))) d'}’,

(12)
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Ahi (‘1)% (W, -+ h, B+ u(z, 4, B)) dy, (13)
A"i(B)= _%fr (u(a, g, B+ h)+u(a, g, B)) dy. (14)

Proof. We obtain (12)-(14) after some manipulations in the variational
equality (I-7) by choosing different test functions and parameters.
Moreover, we deduce

| gy d=2] wewamd+Z[ su@d a5

before obtaining (13).

Remark 4. Taking into account that {, u(a, g, B)dy is a continuous
function with respect to a, g, B> 0, we deduce that

4>0-| wog,B)d (16)

is also a continuous function for all a, B> 0.
Finally, we obtain the
THEOREM 11. Function f has partial derivatives with respect to variables

o, q, and B, and they are given by the following expressions for all a, q,
B>0:

0 1

_aé (d, q, B) = J‘rl [E uz(aa q, B) - Bu(a’ 9, B)] dy! (17)

g—f(az, g, B)=f u(a, g, B) dy, (13)
q I,

5,

Lo B)=—a] ueaB)d (19)

Proof. Taking into account (5) (Remark3), (10), and (16)
(Corollary 10), it is enough to take the limit # — 0 in (12)-(14) to obtain

(17)-(19).
By using (II-13) and (19), we obtain the

COROLLARY 12. For all a, q, B>0, we have

9
2B

which is an affine function in each variable o.>0, ¢ >0, and B> 0.

(a, g, B)=q meas(I",) — aB meas(I",) (20)
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THEOREM 13. There exists a function A = A(a), defined for a >0, such
that

f(a, g, B)= —# q* + Bq meas(I,) —BTZO‘ meas(/,). (21)

Proof. By using (II-13), (4), and (18), we obtain

B B2
f(a, g, B)= + g f.(% ¢, B)+ ‘17 meas(T",) — T“ meas(I',).  (22)

By differentiating (22) with respect to the variable ¢, we deduce
qqu(as q, B) _fq(aa q, B) =—B meas(FZ) (23)

and therefore alf/aq3 =(. Then, function f can be written in the form

A(a, B)

2= ¢7+4,(% B) g+ Ax(a, B). (24)

f(a’ an)= -

By some manipulations with (22)-(24), we obtain

A (a, B)y= Bmeas(l,),

BZ
A,(a, B)= —T“meas(rl), (25)
04
3B (a, B)=0,

that is, (21).
By using (18) and (21), we deduce

COROLLARY 14. For all a, q, B> 0, we have

j u(a, g, B) dy = Bmeas(I",) — A(a) q. (26)

2

COROLLARY 15. Function A= A(a) satisfies
(i) A(a) >0, Va>0,

(27)
(i1) A is a decreasing function of .

Proof. By using (II-3)(ii), (26), and by the fact that meas(/’,) >0 we
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deduce A(a) =0, Va > 0. The case 4(a) =0 is not possible for a >0 because
we have

A(@)=0=>u(a, ¢, B)|,=B=u(2,q,B)=B inQ=q=0. (28)

(ii) follows from (II-3)(iv) and (4) or (26).
Remark 5. By the definition of function f, we have f(a, q, B) <0 for all,
q, B> 0. We can obtain the following limit cases:
(1) f(a, g, B)=0, forsome a >0, ==¢g=B=0,

. (29)
(ii) g=B=0<f(a,q,B)=0, Va>O0.

Moreover, we have
f(a, q, B) <O, Va, g, B> 0. (30)

Proof. (i) We suppose f(a,, q, B) =0 for some a =a, > 0. By using (4),
we deduce u(a,, g, B)=0 in £, and therefore, we obtain B =g =0 because
of (I-6). (ii) follows from (i) and (21).

We shall improve (27).

LEMMA 16. We suppose that meas(I";)>0, ¢>0, and B> 0. Then, the
following propositions are equivalent:

(meas(I,))* 1 '
meas(l",) o ve >0, (31)

(iii) A(a)>0, Va >0, (iv) A(a)>0, for some o> 0.

(i) meas(I,)>0; (i) A(x)>

Proof. (ii)=>(iii) and (iii) = (iv) are evident. (iv)= (i) follows from
(26). To prove (i) = (ii) it is enough to use B =meas(I",)/meas(I";)(g/a) in
(21), because of (30). -

Remark 6. As (31)(i) is one of our general hypotheses, we have
obtained the inequality (31)(ii) for function 4 = A(a).

COROLLARY 17. For all B> 0, we have that the set

S®={(x, 9) € (R*)*/gm(a, B)<q<qu(a, B),a>0}#F,  (32)
where q,, and q,, are defined by (1-16).

Proof. By using (31)(ii)) we have g,(a, B)<qu\(a, B) for all a>0,
B >0, that is, (32).

Now, we shall give a sufficient condition in order to have a two-phase
problem for (I-7).
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THEOREM 18. If (a, q)€ S®, then (1-4) or (I-7) is a steady-state two-
phase Stefan problem in Q; that is, the function u(a, q, B) is of non-constant
sign in .

Proof. By using (II-13) and (26), we deduce the equivalences
(i) |, o g, B)dy>0 <> g <gu(a B),
‘ (33)
(i) | u(e,q,B)dy<0<g> g, B)
I

which yield the theorem because of Corollary 3(c).

COROLLARY 19. In the case where, because of symmetry, we find that
function u(a, q, B) is constant on I'y and I',, respectively, then the sufficient
condition, given by Theorem 18, is also necessary for problem (1-4) to be a
two-phase problem. Moreover, for the three examples given in Section VI, we
can apply this fact.

LEMMA 20. We have
lim A(a)=C>0, (34)

a— + o

where C is the constant defined by (I-13), which is independent of q, B> 0.
Proof. By using (3)(i) we deduce that

lim | (g Bdy=| ualg.B)dy (35)

a— + o 1-'2

and therefore we have (34) because of (I-13) and (26). Moreover, constant
C is independent of ¢, B> 0 and positive because A = A(a) is also indepen-
dent of ¢, B>0 and u, (g, B)|r, < B, respectively.

CoROLLARY 21. Function gq,,=4q,(x, B) is an increasing monotone
function of variable o and satisfies

lim g,(x B)=4¢¢(B)>0, ¢.(0%, B)=0, (36)

o — + 00
where qo= qo(B) is defined by (1-11).

We shall give a new proof of the result of [6] by passing to the limit
o — + oo for the above results.
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THEOREM 22. If q, B> 0 are such that q > qo(B) then (1-4)(bis) or (1I-9)

is a steady-state two-phase Stefan problem in Q; that is, the function
u.(q, B) is of non-constant sign in Q.

Proof. By using (II-3)(i), (27)(ii), and (34), we have
j u(a, g, B) dy = Bmeas(I,)— A(a) g< M <0, VYa>0, (37)
I,
where
M = Bmeas(I',)— Cq < Bmeas(I',) — Cq,=0. (38)

Therefore, by passing to the limit « - + co, we obtain

[ uala By dy<M<0; (39)

I,
that is, problem (I-4)(bis) or (I-9) iss a two-phase problem [6].
We shall obtain new properties of the function 4 = A(x).

LEMMA 23. We have

(aA(a))'=;;—2a<u<a, ¢ B)u(s, ¢, B)>0, Va>0, (40)

where a is the bilinear form, defined in (1-8), and ( Y =d( )/do.

Proof. By using (II-13), (4), (17), and (21), we obtain (omitting
variables a, g, B)

a(u, u)= —2f—aj wdy= —2f—2afa—2aBj udy
i r

= —2f+ad'(a) ¢* + B*a meas(I';) — 2aBj udy
, n
=g (4+ad’)=q*(ad),

that is, (40).

COROLLARY 24. We have

lim ad'(a)=0. (41)

a— 4+
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Proof. By using (II-3)(i) and (34), we obtain

. . 1 .
lim ad’(a)= lim ? a(u(a, q, B), u(a, g, B))— lim A(a)=C—-C=0,
o — 4+

o— + oo o— + oo

that is, (41).

COROLLARY 25. For all B> 0, function q,,= q,,(a, B) satisfies

aq., _ Bmeas(I';) A'(a)
o P B)=- A2(x)

>0, VYo >0,
(42)
. 0q,
lim ——=(a, B)=0.
Ou

o — + o0

Remark 7. In the plane a, g (for a given B>0), we represent with
dashes the region where a two-phase Stefan problem is obtained for
problem (I-4), (I-6), or (I-7).

q]
q=4qu(®, B)
qo(B) _{ _____
! q=qm(a, B)
oo ~
The number a,, is defined by
5 _ [meas(I’,)]*

which is the a-component of the intersection point between the two straight
lines ¢ = q4(B) and g =q,,(B). We remark that a, is independent of B.

The function A(«), defined for a > 0, is not explicitly known but has the
properties (27)(i)(ii), (31)(ii), (34), (40), and (41). We shall now consider a
particular case for which we can obtain more information about the
expression of A(a).

V. A PARTICULAR CASE

We consider the case when u = u(a, g, B) satisfies the condition

1
7 a(u(a, q, B), u(a, g, B)) = const., (1)
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or equivalently
(xd(a))' = A(a) + aA’(a) = const. (2)
By using Lemma 23 and Corollary 24, necessarily we have that
const. = const.(x)=C>0, Va>0, 3)

where C > 0 is the constant defined before by (I-13).

LEMMA 26. We have the equivalence
U, — u, =const. in Q< (ad(a)) =C, (4)
where we note u., =u,(q, B) and u,=u(a, q, B).
Proof. By using (II-14)(ii), we obtain
U, — u,=const. in Q<au,—u,u,—u,)=0
<> a(uy, u)=a(us, Uy)

a(ua,zua)=a(uoo,2uoo) (=C) < (2d(2)) =C,

q q

that is, (4).

THEOREM 27. For q, B>0, we have that the following propositions are
equivalent (a, > 0):

(1) u,, —u,=C,(const.) in 2,
. q meas([,) .
ey =22 2 Q,
(i) Yo “HUa =0 meas(I;) "

_ p—a meas(l,)

(ii1) Ug—u, Ba qmeas(l"l) in Q,
(iv) ug—u, = C, (const.) in 2,
(v) % n=aa':‘ Rt (5)
(vi) ' Uyl = —%-2::—:2;% onl,
(vii) aa'; . =q.2_::_:§_% onT,,
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(viii) sl _,(comst) onT\,
on | n,
(ix) Ous| C; (const) onI’
on |, -3 .

Proof. To prove the above equivalences we shall use the following plan:
(1) = (ii) = (iii) <> (iv) <> (V) = (vi) = (vii) = (viii) = (ix) = (i).

The conditions (ii)= (iii)=>(iv)=>(v) and (vii)= (viii) are evident
taking

_ p—a meas(/],) _meas(]'))

C =g ——.
2= 80 T meas(T',)’ >~ T meas(I",)

(6)
(1) = (i1). By using (II-13), we obtain

C, meas(I',) = fr (4o —u,) dy = Bmeas(I",)— fr u, dy = g meas(I",),

that is,
__qgmeas(l)
' ameas(I",)’ (7
(iv) = (ii1). It follows from (II-13). :
(v)=(iv). Owing to the Green formula and the fact that
ou, _ % -y
on|r, On|p, ’
we obtain a(ug—u,, ug—u,) =0, that is, (iv).
(iii) and (v)=(vi). By using (I-6)(iii) we obtain
p—a meas(],) p—a
= —_ =—(B—
o meas(ry = e~ 4ln =g (B= i
that is, (vi).
(vi)= (vii). It follows from (I-6)(iii).
(viii) = (ix). Let v be the function defined by
1 X du,




34 TABACMAN AND TARZIA

which satisfies the problem

Av=0 in Q,
o 9)
U|n=B, —%r—_q,
2

i.e., v=u,, by the uniqueness of problem (I-6)(bis). Therefore, we obtain

Oue| Ov|  Ou,| c
on |, onlp, on|p ¥
that is, (ix).
(ix)=(i). Let w be the function defined by
1 ou ou
=y —= i =—2 =22 |, 1
W=l — C, in Q <C3 an |r, = on n> (10)
This function satisfies the problem
Aw=0 in Q,
ow ou,,
|, = "5, = C=ew—B) (11)
_6w o Oue|
onlr, on rz_q’

i, w=u, by the uniqueness of problem (I-6). Therefore, we obtain (i) -
With Cl - C3/a.

Now we can obtain an expression for 4 = A(a) in this particular case.

THEOREM 28. We have the following equivalence:

1 (meas(77;))’

i A(o) = .
(1) of Theorem 27 <> A(a) C+oc meas(l';)

(12)

Proof. (<) We have aAd(a)=const. + Ca, i.e., (xA(x))’ = C. Therefore,
(i) of Theorem 27 follows from Lemma 26.
(=) From Lemma 26 we have that (xA4(a))’ = C, ie., by integration,

| A(a)=C+§C4 (C, = const.). (13)
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As u,|r,= B— C, we can evaluate |, u2dy. By using (1) we obtain that

_ 1 o 2
[ g, B)= 3 alu,,u) =5 | wdy

2

B
) + Bq meas([,) _ocT meas(/",),

7 (c4 L mestly)y

2 o meas(l)

ie.,
_ (meas(I',))?

*™ meas(I'y) (14)

Remark 8. (Continuation of Corollary 19). If u(a, g, B)| ,, =const. we
can also compute the function 4 = A(a) because of the above results.

VI. SoME EXAMPLES

We shall give some examples in which the solution is explicitly known

[4].
(i) We consider the data

n=2, 2 =(0, x0) x (0, yo), Xg>0, yo, >0,
rl={0}x[09y0]9 F2={x0}x[09y0]9 (1)

r3 = (09 xO) X {0} v (09 xO) X {yO}
and then we obtain

ua(x,9)=B—gx  ulxy)=B-I-gx

B
C=x Yo, qo(B) =

0

(2)
q 1 1
aO(q9 B)=§9 a00=x_09 A(a)=y0 <x0+a)9
= ——— B =B .
qm(a9 B) Xo + (l/oc)’ qM(a9 ) a
(ii) Next we consider
n= 2, 0 < I‘l < r2,

€2: annulus of radii r, and r,, centered at (0, 0), 3)

I';: circle of radius r, and center (0, 0),

I',: circle of radius r, and center (0, 0),
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and we arrive at
r

ualey)=Bqrslog (£),  r=(+y)2
1

qr; r
) =B -Z=_ lo -1,
uat('x y) o "1 qr2 g (I‘ )

1

r B
cozmiio(3). a =
2 1
(4)
1 r
— b 2
A(x) =2nr; (00‘1 +log ("1))’
qr, 1
,By=22, —_—
%(¢. B) Br, %00 rylog (ry/ry)
gm(a, B)= ! (a, B) = Ba 2
) (Uary) +log (rofry) TM® Iy

For the numerical approximation and owing to the symmetry of the
problem, it is convenient to solve it for a quarter of the circular crown (the
one corresponding to the first quadrant), bearing in mind that in this case
a new portion I'; of the boundary appears , which is given by

r3={O}X(rlarZ)U(rl’rZ)x{O}' (5)

Therefore, the values for meas(I",), meas(I",), and C are modified by a
i factor, but the expressions of ¢, and a,, which are the values or our
interest, do not vary.

(i) Finally, we take into account the same information of example (ii)
but now for the case n=3; by doing this, we reach the following results:

1 1
uoo(xa Y, Z)=B—qr§ (r——;)a r=(x2+y2+22)1/2a
1
_pg_4n_ (1 1
ua(xayaz)_B ar% qr2<rl r ’
ry(ry—ry) qr3
=4r 222 U B)=12
C T 7‘1 ’ aO(qa ) Brf’
1 1 1 (6)
A(a)=41tr‘2‘(-——2+———>,
ary ry r;
Brl rs
(B)=—F———, =T,
7o ry(ry—ry) % rro—ry)
B

r2
qm(a’ B)= qM(Ot, B)=Ba'r—%

r3((Yar) + (1/ry) — (1/r3))’
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Remark 9. We remark that for the three above examples we can
directly verify all the theoretical results obtained in this paper.
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