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Abstract—This paper consists of two parts:
(1) We consider the two-phase (fusion) Stefan problem for a semi-infinite material with one

unknown thermal coefficient. We have an overspecified condition of type

L

5. 0.0)= ~ho/Vi

k2

with ho > 0 on the fixed face x = 0 of the phase-change material. We obtain: (i) if p is unknown, then
the corresponding free boundary problem always has a unique solution of the Neumann type; (ii) if
one of the remaining five coefficients is unknown, then the corresponding free boundary problem has
a unique solution of the Neumann type iff a complementary condition is verified.

(2) We consider the inverse two-phase (fusion) Stefan problem for a semi-infinite material with an
overspecified condition

3L, . _
k520, 0)= ho/Vt

with Ao > 0 on the fixed face and with two unknown thermal coefficients.

We obtain: (i) if (p, k,) are unknown, the corresponding moving boundary problem always has a
unique solution of the Neumann type; (ii) if (/, k,), (/, ¢;) or (ky, c,) are unknown, the corresponding
moving boundary problem has infinite solutions whenever the complementary conditions are verified;
(iii) in the remaining eleven cases, the corresponding moving boundary problem has a unique solution
of the Neumann type iff complementary conditions are verified.

Moreover, in both parts, we obtain formulas for the unknown thermal coefficients.

I. INTRODUCTION

Heat transfer problems with phase-change such as melting and freezing have been studied in
the last century because of their wide scientific and technological applications. For example, a
review of a long bibliography on moving and free boundary problems for the heat equation,
particularly concerning the' Stefan problem, is presented in [34]. That bibliography is analysed
and classified into the theoretical, numerical and experimental papers and also into those
concerning possible applications. A bibliography on moving free boundary problems with
key-word index is given in [37]. It is important to point out, that the subject has been reviewed
in many other papers, for example [1, 4, 7, 10-14, 20-24, 26, 27, 36].

We consider the melting of a solid in a semi-infinite region 0 <x:< +c. Initially, the solid is
at uniform temperature —d < 0 below the melting temperature 7, = 0°C (we shall assume from
now.on, without loss of generality, that the phase-change temperature of the material is 0°C).
For time >0, a constant temperature b >0, higher than the melting temperature of the
substance, is maintained at the fixed face x = 0. As a result, the liquid phase is formed in the
region 0 <x <s(f) (we shall assume that the solid and liquid phases are separated by a sharp
interphase x = s(¢) at time ¢ > 0 with the initial condition s(0) = 0) and the solid phase remains
in the region s(t) <x, as shown in Fig. 1.

We shall also assume that the thermal properties are constant in each phase, but that they
may take different values in the liquid and solid phases. In general, the solid and liquid
densities are not the same, therefore, some motion of solid resulting from the density change is
expected in actual situations. In the following analysis, we assume the density p to be the same
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- Liquid phase - Solid phase ,
x=0 x = s(t)

Fig. 1. Physical model of the problem.

for both phases so that the convective velocity resulting from the volumetric effects can be
neglected, i.e., there is no expansion nor contraction in the melting process.
We suppose that the temperature T = T(x, t) of the material is defined by
L(x,t)>0 if 0<x<s(¢), t>0
T(x,t)=450 if x=s(), t>0 (1)
Ti(x, 5)<0 if s()<x, t>0
The governing differential equations take the following forms for the liquid and solid phases:
L,—-aT, =0, 0<x<s(), t>0 (2i)
nL,—aT,, =0, s(t)<x, >0 (2ii)

The conditions at the liquid—solid interface x =s(¢f) are given by the requirement of the
continuity of temperature and the energy equation (Stefan’s condition), i.e.

Ti(s(2), ) = T(s(z), ©) =0, t>0 ] (2iii)
kT, (1), 1) ~ kT (s(), ) = pli(),  £>0 2iv)
The initial and boundary conditions are given by
Ti(x, 0) = Ty(+x, t) = —-d <0, x>0, t>0 (2v)
L0, 5)=b>0, t>0 (2vi)
5(0)=0. (2vii)

In this paper we consider the two-phase Stefan problem (2i-vii) [7, 11, 27,29, 32, 38] for a
semi-infinite material 0 <x <« with one or two unknown coefficients with an overspecified
heat flux condition on the fixed face x =0, given by

h
kT, (0, ) = - ;}’; >0 (2viii)

for ho >0 given. We point out that when the boundary condition on the fixed face x =0 is the
heat flux (2viii) then the temperature of the corresponding two-phase Stefan problem is
constant at the fixed face and s(¢) is proportional to ¢ under an appropriate condition for the
data ho [32]. For this reason, we have introduced the overspecified (2viii) on the fixed face
x=0. The idea of using an overspecified condition on the boundary was introduced in
[8,9, 15, 16] (see more details in [10]).

If by means of a phase-change experiment (e.g., fusion), we are able to measure the
quantities b > 0 and ho >0 given by the conditions (2vi) and (2viii) respectively, then we shall
be able to find formulas for the determination of only one unknown thermal coefficient among
l, p, ¢1, 2, k1, k, (see Section II). If, moreover, we are able to measure the quantity o >0
(i.e., s(?)), given by the condition (4), then we can find formulas for the simultaneous
determination of two unknown thermal coefficients among k,, k,, ¢;, ¢3, p, [ (see Section III).
Summing up, if o is known, then we have two overspecified conditions and, therefore, two
unknown thermal coefficients may be found under appropriate conditions. If o is not known, at
most one thermal coefficient can be found.

In Section II, we study problem (P1) where we want to find the function s =s(t) >0 (free
boundary), defined for ¢ >0; the temperature T = T(x, t), defined as (1), and one of the six
thermal coefficients I, p, c,, ¢3, k;, k, so that the conditions (2i-viii) are satisfied. The results
obtained for the six cases already mentioned are summarized in Table 1. The solution of
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Table 1
Necessary and
sufficient con-
ditions for
Unknown the existence
Case  coeffi- and unicity of
No. cient the solution Solution

1= ﬁ T(§,), o=ayf,.
11 (R2)  with
& =f_l(kzb/h°“2\/’_’)
N LN kb &5
AL B

2 p — where &, is the solution of the equation
{ x=(/IVm)P(x, 1,1, 1/f), x>0
with a = bc,, B =Vcyk,/c ks, y= d\/c,r."zkl/k2

c= (kllpa“z‘)(gllgz)z, o= a2§2

where & is given as in case 1, and &, is the
3 ¢ (R3) solution of the equation

Vix)=A4,, x>0
with A= pla;&:\f

= k(§,, 0)

er= ;:f (G—;f§1)) i o=a,E,

4 c,; (RS) where &, is the solution of the equation
k,b
2hoa,

h(G™(x), ho/pla,) = U(x), x>

ky= Pclaz(Ez/El) ’ o=at,

where §, is given as in case 1, and §, is the
solution of the equation

{Q(x)=B, x>0

5 k ®4) with B~ =2 k(E2 0)
dcl a5,
kz=P¢2(—‘—l}El_) ’ o=a,§,
H™ (1)
6 k, (R1) where £, is the solution of the equation

- ho
h(H (x), pl—al) =UR), x>0

problem (P1) is given by

b .
Lx,)=b _f(a/az)f(xlzaz\/;): a=Va, (i=1,2) )
__dfolay) _ d
T D=1 folay ™ T=Fola! */24V
s(t)=20Vt, 0>0 C))
where o and the unknown thermal coefficient are obtained for the following system of
equations 2
Egexp(-—oz/az)— dky exp(—oz/a1)=a (5i)
pl ¥ pla,Vr 1-f(o/ay)
kyb

f(o/ay) = hoaVn (5ii)
We shall prove that problem (P1) does not always have a solution of the Neumann type (3, 4).
Moreover, the explicit solution exists for cases 1, 3, 4, 5 and 6 iff a complementary condition is
satisfied. Otherwise, it always exists for case 2(p unknown). Complementary conditions for the

calculation of the explicit solution have been obtained for Stefan type problems in papers
[32, 33, 35].
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Table 2(a)

Necessary and
sufficient con-
ditions for
Unknown the existence
coeffi- and unicity of
Case No. cients the solution Solution

ky .2 Ao 2
= , I=—=5EW
P c_a:z & P EWE)
1 p,l (R6) where &, is the unique solution of the equation

k,b

hoo/x’

F(x)= x>0

k C
P=—Lg, o= “(5/5
;7! 1 2 1)
where &, is given as in case 1, and &, is the
unique solution of the equation
oc,ho
2 P ®R) Wi =h(5 2)

hoVn ahoVx f(£)
=——E&,f(§), ky=———7%
boc, b &
3 p ky - where &, is the unique solution of the equation

W(x)) = h(x, °';;‘""), x>0

s x>0

ohoVx f(5,) ho\/_

k= ,
b &

o 52 (ED

where

4 ky, c, (R8) £ = (ho [ pldk\l/— a)]—').
ay

ky= -‘1?—’ =p—‘,,2(sz)

where £, is the unique solution of the equation

pboc,
ho\/n’

5 k,, 1 (R10) J(x)=

x>0

1 k
! =p—02(§z)y 2 =’ﬁ &

6 Lc, (R11) where &, is given as in case 1

ky 2 _kp 2
Q= b =,z &
7 €, €y (R13) where &, is given as in case 1, and &, is the unique solution of
the equation

ploz\/_

Vx)=——L(), x>0

@ o’
k=837, k=P
1 2
8 ky, ky (R15) where &, is given as in case 5, and &, is the
unique solution of the equation

0(x) = (dey/DUUE)) ™", x>0

k k
p= Bl o=@

where &, is given as in case 1, and §, is the
unique solution of equation

x>0

ko83 ]

9 Py (R16) V(x)= 0’;‘;‘\/.'_! [exp(-gg) ~hoe.a

k c,k
p'—fj:&%, ky= a 2(52/51)

10 Pk, (R17) where &, is given as in case 1 and §,, as in case 8
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Table 2(a) (continued)

Necessary and
sufficient con-
ditions for
Unknown the existence
coeffi- and unicity of
Case No. cients the solution Solution

pca0 kl 2
Kk, = , Cy =
2 52! 1 P ? El

1 ks, ¢y (R18) where &, is given as in case 5 and &,, as in
case 7
ky o2 P‘:n"z
Ca= ) k, =
2 F & 1 _E?—
12 ¢y, ky (R19) where &, is given as in case 1 and §,, as in
case 8
Table 2(b)
Necessary and
sufficient
conditions

for the exist-
Unknown ence of at
coeffi- least one
Case No. cients solution Solution

= _ki
k,>0, Ct‘ﬁ("l)“,,? &1(kq)
13 ¢, ky (R20), (R21) where, for each k, >0, &,(k,) is the unique solution

of the equation
V@) =ﬁ:—kﬁ L(a—‘;) x>0
1=1(¢ )=Ee,p(_(n£)z) . T )=E;1f
! po 2 () ! e &
14 Lk, (R20), (R22) with &, > &5, where &7 is the unique solution of the equation
Qx)= p:‘f' exp(a/a,)?, x>0

ho o\? dk k
11y =s2exp(~() ) ooz VED. =)= 8

with 0 < &, < &5, where

5 te e g (2 ((2))

a2

Because of physical considerations, in Section III, we take the moving boundary s(¢) defined
by (4), with 0 >0 given, and we face the problem (P2): to find the temperature T = T(x, t) as
in (1) and two of the six thermal coefficients of the material, so that condition (2) is satisfied.

Results obtained for all fifteen cases are summarized in Tables 2(a) and 2(b). The solution
for problem (P2) is given by (3), where the two thermal coefficients to be determined are
obtained as a solution for system of equations (5). We shall prove that:

(i) if (p, k;) are unknown, the corresponding moving boundary problem always has a
unique solution of the Neumann type;
(i) if (/, k1), (I, c,) or (ky, c,) are unknown, the corresponding moving boundary problem
has infinite solutions whenever the complementary conditions are verified;
(iii) in the remaining eleven cases, the corresponding moving boundary problem has a
unique solution of the Neumann type iff complementary conditions are verified.

In Section IV, we obtain estimations for the coefficient o which characterizes the free
boundary of the Neumann solution for a semi-infinite material undergoing a phase-change
process as the one described in this paper.

The experimental determination of the coefficients 2o >0 and o0 >0 (when necessary) can be
obtained respectively through the least squares in the following expressions

ho = —t3k, T, (0, t) = —t} - (heat flux in x =0 at time ¢) (2viii bis)
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forallt>0 ( )
, forall¢t>0, (4 bis)

through a discrete number of measurement at time ¢;,f;,...,!, of the corresponding
quantities. An experimental work [2] is in preparation to evaluate the theoretical results of this
paper. Other methods for the calculation of thermal coefficients have been given. for example,
in [3, 5, 6] (in [35] we can obtain numerous references on physical and mathematical methods
for the determination of thermal coefficients).

The results of this paper have been presented in [28] and generalize those obtained for the
Lamé-Clapeyron problem [7, 11, 17,27,29-31] in [33, 35}.

From now on, we shall consider the new variables:

a) & =;"; (ii) §2=a—‘z ©6)

II. DETERMINATION OF A THERMAL COEFFICIENT. SOLUTION OF
PROBLEM (P1)

To simplify the building of Table 1, let us consider the following restrictions:
dk,

<
hoal\_/n 1 (R1)

(R1) with
bk
—MWZ— f(So), where S is the unique positive zero of 7. (R2)
—ﬁ—< f(x0), where x, is the unique positive zero of k(x, 0). (R3)
bk, . . -
W <f(x,), where x, is the unique positive zero of k(x, dc,). (R4)
bk,  dk, ( k,b ) ho
2ho  pla,Vr~ \2hoa,/ ~ pl (R3)

The six possible cases for determining the thermal coefficients are considered in Table 1 (in all
cases o is also unknown). The necessary and sufficient condition to be verified by the data for
the existence and uniqueness of problem (P1) are given together with the expression of o and
the corresponding unknown coefficient.

Now we shall only prove the following property for case 3 (determination of ¢,):

Property 1
The necessary and sufficient condition for problem (P1) with ¢, unknown to have a unique

solution is that data ho >0, b >0, d >0 and coefficients I, p, c,, k;, k, of the phase-change
material do verify condition (R3). In such a case, the solution is given by (3), (4), where

ag= a2§2, C =— (?) (7)
R 2
with
§z=f“(kzb/azho\/3?) ®)
V(&) =4, £ >0
9)
where A, = 218252V “252\/— P22V 1 (&,, 0).
Proor. If
kb

hanVn <1
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is verified, from (5ii) and (6ii), we obtain (8). Therefore, from (5i) it follows that &, should
verify equation (9). The latter has a unique solution iff A, >0 (because V(0) =0, V(+x) = +x,
V'>0), that is, iff

§2<xo ‘ (10)

where x, is the only positive root of k(x, 0). Now, considering (8), condition (10) is equivalent
to (R3), and so the property is proved.

III. DETERMINATION OF TWO UNKNOWN COEFFICIENTS. SOLUTION OF
PROBLEM (P2)

Let us consider the following restrictions, to be used in Table 2 [we denote by f,g the
composition of functions f and g, i.e. (fo8)(x) =f(g(x))):

k,b 2 . . .
F(so) < m < % , where s, is the unique positive zero of W. (R6)
kb
2hoo <1 (R7)
plo dk,
WK(G/al) <1l (R8)
M> K(o/ay). (R9)
dk,
(R9) with
pboc, o (R10)
PRV T 1, with ry=t(a,hoVr/dk,K(0/a;))
(R9) with
kb 2 . (R11)
F(ro) <m<v—, where r, was defined in (R10).
pla
ho (R12)
(R12) with
(Fot)(ho/ plo) <R <VE (R13)
po(de, +1) l)
ho (R14)
(R14) with
Uot)holpo(dey + 1)) > 22 ”02” g (R15)
k b 2
(Fog~)(hoac,/lk;) < —2\/= e (R16)
(Fog ™) hoe,k(de, + ) <= kb 2 (R17)
08 2/ K\dcCy hoVn V=
R12) with
R12) wi b (R18)
Uot)(ho/plo) > 2 2\/;[
(R14) with
kb

(Rt)(ho/po(de, + 1) < _\T \/— (R19)
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kb
ho = FalaVa (R20)
h
,7‘; > exp(0®/dd). (R21)
pozcl>exr>(02/a%) (R22)

In Table 2, we consider the fifteen possible cases for the determination of two. thermal
coefficients. The first part [Table II(a)] corresponds to the twelve cases where, with or without
restrictions, the existence and uniqueness of the solution for problem (P2) is assured. In the
second part [Table II(b)], the sufficient and necessary conditions that assure the existence of
the solution in the three remaining cases are given, together with the expression of the infinite
pairs of the corresponding unknown coefficients.

Next, only five of the fifteen results (corresponding to cases 3, 5, 13, 8 and 7) are proved,
through the following Properties:

Property 2 (determination of p and k)

Whatever the data ho, o, b, d >0 and whatever the coefficients of the phase-change material
I, ki, ¢;, ¢;>0, problem (P2) with p and k, unknown, has solution (3), where p and k, are
given by

. ho\/— . ohoVrx
O =" 5f G () = T L (a
2
being &, the unique solution for the equation
W D(x)=h(x, A), x>0
ociho (12)
with A=—1
Ik,
Proor: From (6) we obtain:
Y
T, ’ &/

On the other hand, from (5ii) we obtain (11i) and system (5) is equivalent to finding &,, &, so
that they verify

ho dk, LT .
Texp(-g- kg TP (130
5= "clho\/— T B (). (13ii)

From (13ii) it follows that &, =I(§,), where I is a strictly increasing positive function that
verifies 1(0) =0 and I(+%) = +. Then, by replacing &, =1"'(§,) in (13i), we obtain for &,,
equation (12). It is easy to verify that W, is a strictly increasing function that verifies W,(0) = 0
and W;(+x) = +o, thus there exists a unique solution of equation (12), and so the property has
been proved.

Property 3 (determination of k; and )

The necessary and sufficient condition for problem (P2), with k, and ! unknown, to have a
unique solution is that data ho >0, >0, d >0, 0>0 and coefficients p, c¢,, ¢,, k; of the
phase-change material do verify condition (R10). In such case, the solution is given by (3),
where

0 =52, 6@ k-

po’c,

EZ

(14)
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being &, the unique solution of equation
pboc,

J(x) = oV’

x>0 (15)

Proor: Condition (5ii) is equivalent to (15), which obviously possesses a unique solution &,.
(14ii) is obtained trivially and (14i) by solving for ! from (5i). Since we expect to find >0, it
should be Z(&;) >0.
As Z is a strictly decreasing function,
dk, exp(—§3)
01;“ 1-£(&) ’

then / >0 exists (and it is unique) iff

{2(0) >0 (i.e., (R9))
E,<ry, where ryis the unique zero of Z.

dk, exP(‘&%) <0

Z(O)=ho - PRY-Z TR

Z(+0) = —

Condition &, <r, is equivalent to &,f(5;) <r,f(r), and, from (15), the latter is equivalent to
(R10).

Property 4 (determination of ¢, and k)

The necessary and sufficient condition for problem (P2), with ¢, and k; unknown, to have at
least one solution is that conditions (R20) and (R21) are verified. In such case, there exist
infinite solutions that, for each k, >0 have the form (3) with

k
a=ck)= p_(;z (k1) (16)
where &,(k,) is the unique solution of equation
lo®
Vi) =2 dk\/; L(o/a)), x>0. 17)
1

Proor: In this case, none of the two unknowns appears in (5ii). Therefore, (R20) is a
necessary condition for the existence of at least one solution.

On the other hand, (5i) is equivalent to (17), which, for each k, >0, is an equation on &,.
The necessary and sufficient condition for that equation to have a solution is

L(f) >0,
a;
that is, (R21).

Property 5 (determination of k; and k)

The necessary and sufficient condition for problem (P2), with k; and k, unknown, to have a
unique solution is that data ho >0, >0, d>0, 0>0 and coefficients p, I/, c;, ¢, of the
phase-change material do verify condition (R15). In such case, the solution is given by (3), with

o\2 . o\?

@) ky=pcil =) (ii) kz=pc\ — (18)

& &
where
_ bo
and &, is the unique solution of equation
de, [ h -1
00) =22 | 2 exp(-£9)—1| , x>0 (20)
! Lplo

Proor: Using (6) we obtain (18) and system (5) is equivalent to finding &, >0, &, >0 so that

ES 27111-1
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they verify
’ ho (-8 dc,o 1 exp(=§}) _ 21
ol P T R E TG ° @
_ bCza _1— .
f(&)= hoVr g (21ii)

From (21ii) it follows (19). Let us point out that J is a strictly increasing function that verifies
J(0)=0, J(+x) = +x. By replacing §, in (21i) we obtain an equation which is equivalent to
(20).

Since Q is a strictly increasing function with Q(0)=0, Q(+%)=1, equation (20) has a
solution (and in this case, it is unique) iff 0<A <1, where A is the constant which appears in
the second member of (20). This condition is nothing but (R15). In fact,

1 lo (d
0<A<1&—>1eexp(= 52)>”:( Ic‘+1)

ho ( ho )
—_— <t ———= e R15
po(dc, +1) >1 <t po(dc, +1) (R15)

Property 6 (determination of ¢, and c)

The necessary and sufficient condition for problem (P2), with ¢, and ¢, unknown, to have a
unique solution is that data ho >0, b>0, d >0, 0>0 and coefficients p, I, k;, k, of the
phase-change material do verify condition (R13). In such case, the solution is given by (3), with

@) o —% (%) , ) = (%) @)

where

and &, is the unique solution of equation

pla*Vn [ ho
cky

plo

OF (-8 - 1], x>0 (24)

Proor: Using (6) we obtain (22) and system (5) becomes one of finding &, >0, &, >0 so that
they verify

ho o dk1 exp(—§1) _ .
k2b ..
(&)= hooVr & (25ii)

Since F is a strictly decreasing function, with F(0) =%, F(+) =0, if (R7) is verified, then

we can solve &, from equation (25ii) and we obtain (23).

Now, assuming that (R7) is verified and replacing &, in (25i), we obtain for &, an equation
which is equivalent to (24). Since V is a strictly increasing function with V(0)=0,
V(+®) = +x, the necessary and sufficient condition for (24) to have a unique solution is that

:—-exp( E)-1>0

that is,

&< t(ﬁ), ho >1
plo plo
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and this is equivalent to

ho ho
> —_ bt
F(52) (Fot)(pla)’ pla> 1
that is,
kb (ho) ho
> — —>1.
hooVn (For) pla)’  plo 1 (26)

In short, we have proved that the necessary and sufficient condition for system (25) to have a
unique solution is that (R7) and (26) are verified, that is, that (R13) is verified.

IV. ESTIMATIONS FOR THE THERMAL COEFFICIENTS

Restrictions (R1)-(R19) are necessary and sufficient conditions for the existence and
uniqueness of the various problems presented. Now, let us assume that we have a
unidimensional, homogeneous, semi-infinite material, all its thermal coefficients being con-
stant, which undergoes a phase-change process as the one described in the present paper. We
can assume that any of its coefficients is unknown, for example, ¢,. We now wonder whether
restriction (R3) is satisfied or not. If we assume that the mathematical model corresponds
exactly to the physical reality, then we would have an affirmative answer to our previous
question, since the fact that (R3) does not occur would indicate the non-existence of c;;
however, coefficient ¢, exists and it constitutes nothing but the specific heat of the solid phase
of the material we are considering. More precisely, there are two possibilities: either restriction
(R3) is satisfied or the mathematical problem corresponding to the determination of c,, as is
presented in this paper, fits in the category of the so-called improperly-posed problems
[18, 19, 25]. The same can be said in relation to any of the restrictions (R1)—(R19).

Conversely, the problems used for determining (cy, k4), (I, k;), (I, c,) are improperly-posed
problems, whether the corresponding restrictions (R20, R21, R22) are satisfied or not, since, in
the cases where the corresponding restriction occurs, the problem has infinite solutions and in
the cases where it does not occur, the problem has no solution. On the other hand, restrictions
(R1)-(R22) can be interpreted in the following way: by using (5ii) to elminate ho, we obtain
estimations in which the thermal coefficients (k,, k, ¢;, ¢;, [, p), the coefficient o which
characterizes the free boundary, the initial temperature —d and the fixed face temperature b
are present. We obtain estimations that can be interpreted as a priori bounds for the thermal
coefficients and, in particular, for the coefficient which characterizes the free boundary. For
example:

(RO f(o/a) <2 (22 (see (30) in [14),
(R4) :>;“—Z <IN bey/(l + de)V7),
(R8)®£ < Y~Y(be,/IV7),

(R21) &~ < R~ (bea/IVm),

(R22) @aﬂ < R~Y(be,/de, V).
2

We point out that the restrictions (R1)-(R22) are not all independent of each other, for
example:

(i) x1<xo, so (R4)>(R3);

(i) x,<S, so (R1) and (Ry)=>(R2), etc.
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NOMENCLATURE

k thermal conductivity ho>0 coefficient which characterizes the heat flux
c specific heat of the fixed face x =0
l latent heat of fusion T temperature
s position of phase-change location Greek symbols
t time variable P mass density
x space variable g coefficient which characterizes s(f)
-d<0 initial temperature E=o0/a dimensionless parameter
b>0 temperature of the fixed face x =0 Subscripts
a=a=%X thermal diffusivity i=1 solid phase

pc i=2 liquid phase

Functions

f(x)=erf(x) = \/fr eXP( u’)du,  g(x)=x*exp(x?),

h(x, A)=Aexp(-x?), k(x, A)= h(x, Flh:—A)) - a,x,
L(x)= h(x, :lo ) 1, t(x) = (log x)i,
_.@ _ k,b x
FO=50 OW = e VaTGy
Iy =3f(),  Hex) =S h ‘/— 20}
oc hoVn _ exp(—xz)
=[] k-2
P&, 0, B, 7, 8)="B2 D) ki) v(x)=xK(x)
R TT®) ’ ’
0() = Vaxexpd(1—f(x),  Ux)=x+ ‘”‘\’f K@),
dk, _[ayx dk e\
T(x) = h(x, ho) ——\/'—; (i) W) =hx, o) = LV ((ﬁ) x),
Wy(x) = 2% + 2L ,\,- VG),  Z0)=h(x, ho) - “% x(2)
1



