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Abstract
We consider a mathematical model which describes the equilibrium of two viscoelastic
membranes situated in parallel plans, submitted to the action of external forces.As a result, the
membranes could arrive in contact with two obstacles and could arrive in contact each other,
too. The contact is frictionless and is described bothwith normal compliance and the Signorini
unilateral contact condition. We list the assumption on the data, then we derive a variational
formulation of the model which is in a form of a history-dependent variational inequality
for the displacement field. We prove the unique weak solvability of the contact model, then
we consider an associated optimization problem, for which we prove the existence of the
solution. We also provide some conclusions and list related problems for further research.

Keywords Viscoelastic membrane · Unilateral contact · Normal compliance ·
History-dependent variational inequality · Weak solution · Optimal design

Mathematics Subject Classification 74K15 · 74M15 · 74G22 · 74G30 · 49J40 · 35B30

1 Introduction

Contact involving thin structures like membranes and shells arise in industry and everyday
life. They lead to interesting mathematical problems and their analysis represents a first
step in the study of more complicate problems stated in the three-dimensional setting. For
this reason, there is a real interest in the analysis and numerical simulation of such kind or
problems, and the literature in the field is extensive. It includes [2–4, 12, 13, 19], for instance
and, more recently, [11, 14, 20]. A brief description of the models and results obtained in
these papers follows.
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First, [4] deals with study of the shape of an elastic membrane in a confining box, by
introducing a repulsive confinement pressure that prevents themembrane from intersecting an
obstacle, say awall. Reference [11] dealwith a contactmodel inwhich the process is dynamic,
the membrane is supposed to have a viscoelastic behaviour and the contact is assumed to
be unilateral. For the model studied in [19] the material behaviour is given by Christensen’s
large deformation viscoelastic law and the contact is with a rigid obstacle. Reference [20]
focus on the study of a hyperelasticmembrane in contact with rigid obstacleswhose geometry
admits an analytical description. The numericalmethods developed there allow to identify the
evolution of the contact interface. The results in [2, 3] concern the finite element discretization
of contact models for elastic membranes. In contrast, the references [12, 13] deal with the
modelling of contact problems involving membranes. To this end, the authors use arguments
of asymptotic analysis which consists to consider contact models for shells with a nontrivial
curvature, and to pass to the limit as the thickness converges to zero. In [14] a mathematical
model which describes the equilibrium of two elastic membranes fixed on their boundary
and attached to an adhesive body, say a glue, was considered. The variational analysis of the
model was provided, including existence, uniqueness and convergence results. Numerical
simulations have also been obtained, together with their mechanical interpretations. The
results in this reference have been obtained by using arguments of elliptic quasivariational
inequalities.

The current paper represents a continuation of [14]. In contrast with [14], in the current
paper we deal with a model which describes the equilibrium of two viscoelastic membranes
which could arrive in contact with two obstacles and/or could arrive in contact, each other,
too.We use a constitutive lawwith long termmemory to describe thematerial behaviour. As a
result, the variational formulation of the problem is expressed in termsof an history-dependent
variational inequality, for which we state and prove existence, uniqueness and convergence
results. The first trait of novelty of our work consists in the contact model we consider,
which seams to be new, and for which we provide a rigorous description of the equations
and boundary conditions. The second novelty comes from the variational formulation of this
model, whose derivation requires the use of nonstandard computations and estimates. Finally,
the last novelty is provided by the existence result of an optimal design problem we consider,
which could have real-word applications.

The rest of paper is structured as follows. In Sect. 2 we describe the physical setting, then
we list the mechanical assumptions and state the corresponding mathematical model (Prob-
lemM). It is in the form of a system coupling partial differential equations and inequalities,
associated to homogeneous boundary conditions. In Sect. 3 we deduce a variational formu-
lation of the model which is in a form of a history-dependent variational inequality for the
displacement field (Problem P). We start Sect. 4 by recalling an abstract general existence
and uniqueness result of history-dependent variational inequalities in Hilbert spaces. Then,
we use this result and prove the unique solvability of Problem P . In Sect. 5 we prove the
solvability of an associated optimization problem (Problem Q). The main ingredient of the
proof consists in a continuous dependence result of the solution with respect to the distances
which define the physical setting. Finally, in Sect. 6 we provide some concluding remarks.

2 Themodel

The physical setting of the contact problem we consider is depicted in Fig. 1 and is described
as follows.
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Fig. 1 Physical setting: a The reference configuration. b Equilibrium configuration—the membranes are in
contact with the obstacles. c Equilibrium configuration—the membranes are in contact each other

Consider a bounded domain � ⊂ R
2 situated in the plan x3 = 0 of the carthesian system

Ox1x2x3. The boundary of �, supposed to be regular, is denoted by �. We also denote by
� = � ∪ � the adherence of � and let l > 0, k1 > 0, k2 > 0. Moreover, we consider
two membranes situated in the plans x3 = l and x3 = −l, respectively, such that their
orthogonal projection on the plan Ox1x2 is�. In other words, in the reference configuration,
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the membranes occupy the sets

�1 = { x = (x1, x2, x3) ∈ R
3 (x1, x2) ∈ �, x3 = l },

�2 = {x = (x1, x2, x3) ∈ R
3 (x1, x2) ∈ �, x3 = −l },

as depicted in Fig. 1a. We refer to the membranes which ocupy the domains �1 and �2 as
the first and the second membrane, respectively. We assume that the membranes are fixed on
their boundary �1 and �2, defined by

�1 = { x = (x1, x2, x3) ∈ R
3 (x1, x2) ∈ �, x3 = l },

�2 = {x = (x1, x2, x3) ∈ R
3 (x1, x2) ∈ �, x3 = −l },

respectively. Moreover, they are submitted to the action of time-dependent vertical forces of
density f1 and f2, respectively. As a result, they deform and they could arrive in frictionless
contact with two rectangular obstacles situated at the distance k1 and k2 from the plane of
the first and second membrane, respectively (see Fig. 1b). The upper obstacle is assumed
to be rigid and, therefore, its penetration is not allowed. In contrast, the lower obstacle is
assumed to be deformable and, therefore, it allows penetration. In addition, under the action
of these applied forces the membranes could approach each other and could arrive in contact
(as depicted in Fig. 1c). We assume that their contact is unilateral and frictionless.

We are interested to construct amathematicalmodelwhich describes the abovemechanical
process of contact, in the time interval of interest I = [0, T ] with T > 0 given. To this end,
we denote by u1, u2 the vertical displacements field in the two membranes and assume
that these are real-valued functions on x1, x2 and t , i.e., u1 : � × [0, T ] → R+ and
u2 : � × [0, T ] → R+. Nevertheless, for simplicity, we sometimes skip the dependence of
various variables form x1, x2 and/or t , that is, for instance, we write u1 or u1(t) instead of
u1(x1, x2, t). Since the membranes are fixed on their boundary it follows that the functions
u1 and u2 satisfy the following Dirichlet boundary conditions:

u1(t) = 0, u2(t) = 0 on �, (2.1)

for any t ∈ [0, T ].
Next, let u = (u1, u2) : � × [0, T ] → R

2 and note that in the deformed configuration
the distance between the points of the membranes which are situated on the same vertical is
given by

θ(u(t)) = 2l + u1(t) − u2(t). (2.2)

Note that, even if we do not mention explicitly, equality (2.2) as well as the equalities and
inequalities below are valid in �, at any moment t ∈ [0, T ]. Since we assume that there is no
penetration between the first membrane and the upper obstacle as well as between the two
membranes, we impose the unilateral conditions

u1(t) ≤ k1, (2.3)

θ(u(t)) ≥ 0. (2.4)

To proceed, we model the material’s behavior of the membranes with a viscoelastic con-
stitutive law with long memory, in whichμ1 > 0 andμ2 > 0 represent the Lamé coefficients
and b1, b2 denote the relaxation functions. Following the assumptions above, the resultant
forces acting on each membrane is vertical. Therefore, denoting by F1(t) and F2(t) their
magnitude at the moment t , we deduce that the equilibrium of the membranes is described
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by the balance equations

μ1�u1(t) +
∫ t

0
b1(t − s)�u1(s) ds + F1(t) = 0, (2.5)

μ2�u2(t) +
∫ t

0
b2(t − s)�u2(s) ds + F2(t) = 0. (2.6)

These equations are obtained by combining the equilibrium equation, the constitutive law
and the antiplane shear arguments. Details can be found in [15, Ch.8].

We now describe in detail the forces F1 and F2. First, using the principle of superposition,
the force F1(t) is given by

F1(t) = f1(t) + R1(t) + Rc
1(t) (2.7)

where R1(t) denotes the reaction of the rigid obstacle on the first membrane and Rc
1(t) the

contact force exerted by the secondmembrane on the first one, both at the moment t ∈ [0, T ].
Note that the time-dependent force f1 in (2.7) is given. In contrast, the forces R1 and Rc

1 are
unknown and depend on the contact process. These forces satisfy the followingSignorini-type
conditions:

R1(t) = 0 if u1(t) < k1 and R1(t) ≤ 0 if u1(t) = k1. (2.8)

Rc
1(t) = 0 if θ(u(t)) > 0 and Rc

1(t) ≥ 0 if θ(u(t)) = 0. (2.9)

Condition (2.8) shows that the force R1(t) is inactive when there is no contact, i.e., when
u1(t) < k1. It is active when the contact between the first membrane with the upper obstacle
arises and, in this case, it is oriended toward the first membrane. Condition (2.9) concerns
the contact between the two membranes and has a similar interpretation.

For the force F2 we have a similar description. We have

F2(t) = f2(t) + R2(t) + Rc
2(t) (2.10)

where R2(t) denotes the reaction of the lower obstacle on the second membrane and Rc
2(t)

is the contact force exerced by the first membrane on the second one, both at the instant
t ∈ [0, T ]. Again, note that in (2.10) the time-dependent force f2 is given but the forces R2

and Rc
2 are unknown and depend on the contact process. Since the lower obtacle is deformable,

we assume that the force R2 satisfies the so-called normal compliance contact condition, that
is,

R2(t) = −p(u2(t) + k2), (2.11)

in where p is a negative real valued function which vanishes for a positive argument. There-
fore, equality (2.11) shows that when the second membrane touch the lower obstacle (i.e.,
when u2(t)+k2 ≤ 0) then the force R2(t) is in the positive sense of the Ox3 axis. In contrast,
when the secondmembrane does not touch the lower obstacle (i.e., when u2(t)+k2 > 0) then
the reaction R2(t) vanishes. The normal compliance condition was introduced for the first
time in [10], in the study of a dynamic viscoelastic three dimensional contact problem. Then,
it was used in many papers and surveys, as it resuts from [16] and the references therein. The
term “normal compliance" was introduced in [8, 9]. Moreover, using the principle of action
and reaction, the contact force Rc

2 satisfies equality

Rc
2(t) = −Rc

1(t) (2.12)

and, therefore, (2.9) yields

Rc
2(t) = 0 if θ(u(t)) > 0 and Rc

2(t) ≤ 0 if θ(u(t)) = 0. (2.13)
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The contact model we consider have as the unknowns the displacement field u = (u1, u2).
Therefore, to state it there is a need to eliminate the unknown functions R1, R2 and Rc

1 and
Rc
2 described above. To this end, we proceed as follows. First, we add the equations (2.5) and

(2.6), use equalities (2.7), (2.10), (2.11) and (2.12) to find that

μ1�u1(t) + μ2�u2(t) +
∫ t

0

[
b1(t − s)�u1(s) + b2(t − s)�u2(s)

]
ds

+ f1(t) + f2(t) + R1(t) − p(u2(t) + k2) = 0. (2.14)

It follows from here that

R1(t) = p(u2(t) + k2) − [
μ1�u1(t) + μ2�u2(t)

]

−
∫ t

0

[
b1(t − s)�u1(s) + b2(t − s)�u2(s)

]
ds − [

f1(t) + f2(t)
]
.

and, therefore, conditions (2.8) imply that

p(u2(t) + k2) − [
μ1�u1(t) + μ2�u2(t)

]

−
∫ t

0

[
b1(t − s)�u1(s) + b2(t − s)�u2(s)

]
ds − [

f1(t) + f2(t)
] ≤ 0, (2.15)

(
p(u2(t) + k2) − [

μ1�u1(t) + μ2�u2(t)
]

−
∫ t

0

[
b1(t − s)�u1(s) + b2(t − s)�u2(s)

]
ds − [

f1(t) + f2(t)
])

(u1(t) − k1) = 0

(2.16)

On the other hand, from (2.6), (2.10) and (2.11) we deduce that

Rc
2(t) = p(u2(t) + k2) − μ2�u2(t) −

∫ t

0
b2(t − s)�u2(s) ds − f2(t)

and, therefore, conditions (2.13) imply that

p(u2(t) + k2) − μ2�u2(t) −
∫ t

0
b2(t − s)�u2(s) ds − f2(t) ≤ 0, (2.17)

(
p(u2(t) + k2) − μ2�u2(t) −

∫ t

0
b2(t − s)�u2(s) ds − f2(t)

)
θ(u(t)) = 0. (2.18)

We now gather the above equations and inequalities to deduce the following mathematical
modelwhich describes the equilibriumof the twomembranes in the physical setting described
above.

ProblemM. Find a displacement field u = (u1, u2) : �×[0, T ] → R
2 such that, relations

(2.3), (2.4), (2.15)–(2.18) hold in � at any t ∈ [0, T ] and the boundary conditions (2.1) are
satisfied on �, at any t ∈ [0, T ], with θ being given by equality (2.2), valid in �, at any
t ∈ [0, T ].

We end this section with the remark that Problem M represents a non-standard problem
stated in a form of a non-linear system which includes partial differential equations and
inequalities, associated to homogeneous boundary conditions and unilateral constraints. It
represents a free boundary problem. For this reason, its analysis will be performed by using
a variational formulation that we derive in the next section.

123



Modelling and analysis of a viscoelastic contact. . .

3 Variational formulation

We start this section with a description of the function spaces we use, then we turn to the
variational formulation of Problem M.

Function spaces. Everywhere in the paper we denote by “·" the canonical inner product on
the space R2 and by “‖ · ‖" the associated Euclidean norm. We use the standard notation for
Lebesgue and Sobolev spaces associated to � and �. Moreover, we use the symbol “→" to
represent the convergence in various space will be specified. We recall that

‖ξ‖2H1(�)
= ‖ξ‖2L2(�)

+ ‖∇ξ‖2L2(�)2
∀ ξ ∈ H1(�)

and, therefore,

‖ξ‖L2(�) ≤ ‖ξ‖H1(�) ∀ ξ ∈ H1(�). (3.1)

In addition, we have the Friedrichs-Poincaré inequality

‖ξ‖H1(�) ≤ c0‖∇ξ‖L2(�)2 ∀ ξ ∈ H1
0 (�) (3.2)

with c0 being a positive constant which depends on �. As a consequence of this inequality
it follows that H1

0 (�) is a Hilbert space endowed with the inner product

(η, ξ)H1
0 (�) = (∇η,∇ξ)L2(�)2 ∀ ξ ∈ H1

0 (�). (3.3)

and the associated norm ‖ · ‖H1
0 (�).

Next, we need the product Hilbert space

V = H1
0 (�) × H1

0 (�). (3.4)

It follows from above that V is a real Hilbert space with the inner product

(u, v)V =
∫

�

∇u1 · ∇v1 dx +
∫

�

∇u2 · ∇v2 dx ∀ u = (u1, u2), v = (v1, v2) ∈ V

and the associated norm denoted by ‖ · ‖V . Thus,
‖ξ‖2V = ‖∇ξ1‖2L2(�)2

+ ‖∇ξ2‖2L2(�)2
∀ ξ = (ξ1, ξ2) ∈ V . (3.5)

Moreover, we denote by 0V the zero element of V .
Finally, for any Hilbert space X and we denote by C([0, T ]; X) the space of continuous

functions defined on [0, T ] with values in X . It is well known that C([0, T ]; X) is a Banach
space equipped with the norm of the uniform convergence given by

‖v‖C([0,T ];X) = max
t∈[0,T ] ‖v(t)‖X . (3.6)

Variational formulation of Problem M. We now turn to the variational formulation of
ProblemM and, to this end, we start with the list of conditions we impose on the data. First,
we assume that the densities of applied forces and the relaxation functions have the regularity

f1 ∈ C([0, T ]; L2(�)), f2 ∈ C([0, T ]; L2(�)), (3.7)

b1 ∈ C([0, T ]), b2 ∈ C([0, T ]). (3.8)

Here and below C([0, T ]) represents the space of real-valued continuous functions defined
on the interval I , that is, C([0, T ]) = C([0, T ];R). We also recall the inequalities

μ1 > 0, μ2 > 0, (3.9)
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l > 0, (3.10)

k1 > 0, k2 > 0 (3.11)

and we assume that the normal compliance function p satisfies the following condition.
⎧⎪⎪⎨
⎪⎪⎩

(a) p : R → R.

(b) There exists L p > 0 such that
|p(r) − p(s)| ≤ L p|r − s| ∀ r , s ∈ R.

(c) p(r) ≤ 0 ∀ r ∈ R and p(r) = 0 ∀ r > 0.

(3.12)

Note that conditions (3.12) (c) are imposed by physical reasons. Indeed, combined with
equality (2.11), these conditions guarantee that the reaction of the lower obstacle is towards
the secondmembrane and vanishes when there is no contact. An example of function pwhich
satisfies condition (3.12) is given by p(r) = −αr− where α is a positive stiffness coefficient
and r− represents the negative part of r , that is r− = max {−r , 0}.

Finally, we assume that

c20L p < min {μ1, μ2} (3.13)

and we interpret this assumption as a smallness condition for the constant L p . Note that in
this condition c0 is the positive constant given by the Freiderichs-Poincaré inequality (3.2).

In the study of Problem M we use the Hilbert space V given by (3.4). In addition, we
define the operators θ : V → L2(�), A : V → V , S : C([0, T ]; V ) → C([0, T ]; V ), the
set K , the function j : V × V → R and the element f ∈ V by equalities

θ(v) = 2l + v1 − v2 ∀ v = (v1, v2) ∈ V , (3.14)

K = { v = (v1, v2) ∈ V : v1 ≤ k1, θ(v) ≥ 0 a.e. in � }, (3.15)

(Au, v)V = μ1

∫
�

∇u1 · ∇v1 dx + μ2

∫
�

∇u2 · ∇v2 dx

∀ u = (u1, u2), v = (v1, v2) ∈ V , (3.16)

(Su(t), v)V =
∫

�

( ∫ t

0
b1(t − s)∇u1(s) ds

)
· ∇v1 dx (3.17)

+
∫

�

( ∫ t

0
b2(t − s)∇u2(s) ds

)
· ∇v2 dx

∀ u = (u1, u2) ∈ C([0, T ]; V ), v = (v1, v2) ∈ V , t ∈ [0, T ],
j(u, v) =

∫
�

p(u2 + k2)v2 dx ∀ u = (u1, u2), v = (v1, v2) ∈ V , (3.18)

( f , v)V =
∫

�

( f1v1 + f2v2) dx ∀ v = (v1, v2) ∈ V . (3.19)

Note that the definition of the operator S follows from the Riesz representation theorem
since, for any u = (u1, u2) and t ∈ [0, T ], the functional

v �→
∫

�

( ∫ t

0
b1(t − s)∇u1(s) ds

)
· ∇v1 dx +

∫
�

( ∫ t

0
b2(t − s)∇u2(s) ds

)
· ∇v2 dx

is linear and continuous on the space V . A similar argument is used in order to define the
operator A by equality (3.16). Also, note that in (3.17) and below in this paper we use
the shorthand notation Su(t) to represent the value of the function Su at the point t , i.e.,
Su(t) = (Su)(t), for all t ∈ [0, T ].
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With these preliminaries we are in a position to derive the variational formulation of
Problem M. Assume that u = (u1, u2) is a solution to Problem M, t ∈ [0, T ] and v =
(v1, v2) ∈ K . Then, using (2.1), (2.3) and (2.4) we deduce that

u(t) ∈ K . (3.20)

On the other hand, using (3.14) we see that

(v2 − u2(t)) = (v1 − u1(t)) − (θ(v) − θ(u(t))) (3.21)

and, using this identity we find that

μ1�u1(t)(v1 − u1(t)) +
( ∫ t

0
b1(t − s)�u1(s) ds

)
(v1 − u1(t))

+μ2�u2(t)(v2 − u2(t)) +
( ∫ t

0
b2(t − s)�u2(s) ds

)
(v2 − u2(t))

=
(
μ1�u1(t) + μ2�u2(t) +

∫ t

0

[
b1(t − s)�u1(s) + b2(t − s)�u2(s)

]
ds

)

(v1 − u1(t)) −
(
μ2�u2(t) +

∫ t

0
b2(t − s)�u2(s) ds

)(
θ(v) − θ(u(t))

)

= E(t)(v1 − u1(t)) − F(t)
(
θ(v) − θ(u(t))

)
(3.22)

where, here and below, we employ the short-hand notation

E(t) = μ1�u1(t) + μ2�u2(t) +
∫ t

0

[
b1(t − s)�u1(s) + b2(t − s)�u2(s)

]
ds, (3.23)

and

F(t) = μ2�u2(t) +
∫ t

0
b2(t − s)�u2(s) ds. (3.24)

We now write

E(t)(v1 − u1(t)) =
(
E(t) + f1(t) + f2(t) − p(u2(t) + k2)

)
(v1 − u1(t))

+p(u2(t) + k2)(v1 − u1(t)) − ( f1(t) + f2(t))(v1 − u1(t))

=
(
E(t) + f1(t) + f2(t) − p(u2(t) + k2)

)
(v1 − k1)

+
(
E(t) + f1(t) + f2(t) − p(u2(t) + k2)

)
(k1 − u1(t))

+p(u2(t) + k2)(v1 − u1(t)) − ( f1(t) + f2(t))(v1 − u1(t))

and, using notation (3.23), inequalities (2.15), v1 ≤ k1 and equality (2.16) we deduce that

E(t)(v1 − u1(t)) ≤ p(u2(t) + k2)(v1 − u1(t)) − ( f1(t) + f2(t))(v1 − u1(t)). (3.25)

Similarly, we write

F(t)
(
θ(v) − θ(u(t))

)

=
(
F(t) + f2(t) − p(u2(t) + k2)

)
θ(v) −

(
F(t) + f2(t) − p(u2(t) + k2)

)
θ(u(t))

+p(u2(t) + k2)
(
θ(v) − θ(u(t))

)
− f2(t)

(
θ(v) − θ(u(t))

)
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and, using notation (3.24), inequalities (2.17), θ(v) ≥ 0 and equality (2.18) we deduce that

F(t)(θ(v) − θ(u(t)) ≥ p(u2(t) + k2)
(
θ(v) − θ(u(t))

)
− f2(t)

(
θ(v) − θ(u(t))

)
.

and, therefore,

− F(t)
(
θ(v) − θ(u(t))

)
≤ −p(u2(t) + k2)

(
θ(v) − θ(u(t))

)
+ f2(t)

(
θ(v) − θ(u(t))

)
.

(3.26)

We now combine identity (3.22) with inequalities (3.25) and (3.26) to deduce that

μ1�u1(t)(v1 − u1(t)) +
( ∫ t

0
b1(t − s)�u1(s) ds

)
(v1 − u1(t))

+μ2�u2(t)(v2 − u2(t)) +
( ∫ t

0
b2(t − s)�u2(s) ds

)
(v2 − u2(t))

≤ p(u2(t) + k2)(v1 − u1(t)) − ( f1(t) + f2(t))(v1 − u1(t))

−p(u2(t) + k2)

(
θ(v) − θ(u(t))

)
+ f2(t)

(
θ(v) − θ(u(t))

)

and, using identity (3.21) we see that

μ1�u1(t)(v1 − u1(t)) +
( ∫ t

0
b1(t − s)�u1(s) ds

)
(v1 − u1(t))

+μ2�u2(s)(v2 − u2(t)) +
( ∫ t

0
b2(t − s)�u2(s) ds

)
(v2 − u2(t))

≤ p(u2(t) + k2)(v2 − u2(t)) − f1(t)(v1 − u1(t)) − f2(t)(v2 − u2(t)).

We now integrate this inequality on�, then we use the definitions (3.18) and (3.19) to deduce
that

μ1

∫
�

�u1(t)(v1 − u1(t)) dx +
∫

�

( ∫ t

0
b1(t − s)�u1(s) ds

)
(v1 − u1(t)) dx

+μ2

∫
�

�u2(t)(v2 − u2(t)) dx +
∫

�

( ∫ t

0
b2(t − s)�u2(s) ds

)
(v2 − u2(t)) dx

≤ j(u(t), v) − j(u(t), u(t)) − ( f (t), v − u(t))V .

Next, using the boundary conditions (2.1), identity
∫

�

�u v dx = −
∫

�

∇u · ∇v dx, (3.27)

valid for any u, v ∈ H1
0 (�), and the definition (3.16) of the operator A we find that

∫
�

( ∫ t

0
b1(t − s)�u1(s) ds

)
(v1 − u1(t)) dx

+
∫

�

( ∫ t

0
b2(t − s)�u2(s) ds

)
(v2 − u2(t)) dx

≤ j(u(t), v) − j(u(t), u(t)) − ( f (t), v − u(t))V + (Au(t), v − u(t)V . (3.28)
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On the other hand, using the Fubini theorem and identity (3.27) we see that

∫
�

( ∫ t

0
b1(t − s)�u1(s) ds

)
(v1 − u1(t)) dx

=
∫ t

0
b1(t − s)

( ∫
�

�u1(s)(v1 − u1(t)) dx

)
ds

= −
∫ t

0
b1(t − s)

( ∫
�

∇u1(s) · ∇(v1 − u1(t)) dx
)
ds

= −
∫

�

( ∫ t

0
b1(t − s)∇u1(s) ds

)
· ∇(v1 − u1(t)) dx

and, similarly,

∫
�

( ∫ t

0
b2(t − s)�u2(s) ds

)
(v2 − u2(t)) dx

= −
∫

�

( ∫ t

0
b2(t − s)∇u2(s) ds

)
· ∇(v2 − u2(t)) dx

We now add these eaualities and use the definition (3.17) to deduce that

∫
�

( ∫ t

0
b1(t − s)�u1(s) ds

)
(v1 − u1(t)) dx

+
∫

�

( ∫ t

0
b2(t − s)�u2(s) ds

)
(v2 − u2(t)) dx = (Su(t), v − u(t))V . (3.29)

Finally, we substitute identity (3.29) in (3.28) and use the regularity (3.20) to deduce the
following variational formulation of Problem M.

ProblemP . Find a displacement field u = (u1, u2) such that, for all t ∈ [0, T ] the following
inequality holds:

u(t) ∈ K , (Au(t), v − u(t))V + (Su(t), v − u(t))V

+ j(u(t), v) − j(u(t), u(t)) ≥ ( f (t), v − u(t))V ∀ v ∈ K . (3.30)

The unique solvability of Problem P will be provided in the next section, under assump-
tions (3.7)–(3.13). We refer to the solution to this problem as a weak solution to the contact
problem M.

4 Weak solvability

We start this sction with an abstract existence and uniqueness result for history-dependent
variational inequalities, then we focus on the weak solvability of Problem P .

An existence and uniqueness result. Let X ba a real Hilbert space and T > 0. Moreover,
consider a subset K , the operators A, S and the functions j and f such that the conditions
below hold.

K is a nonempty closed convex subset of X . (4.1)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A : X → X is strongly monotone and Lipschitz continuous, i.e.:
(a) there exists mA > 0 such that

(Au − Av, u − v)X ≥ mA‖u − v‖2X for all u, v ∈ X ,

(b) there exists MA > 0 such that
‖Au − Av‖X ≤ MA‖u − v‖X for all u, v ∈ X .

(4.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S : C([0, T ]; X) → C([0, T ]; X) is a history-dependent operator,
i.e., there exists LS > 0 such that

‖Su(t) − Sv(t)‖X ≤ LS

∫ t

0
‖u(s) − v(s)‖X ds

for all u, v ∈ C([0, T ]; X), t ∈ [0, T ].

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j : X × X → R is such that:
(a) j(u, ·) : X → R is convex and lower semicontinuous

for all u ∈ X ,

(b) there exists α j ≥ 0 such that
j(u, ṽ) − j(u, v) + j (̃u, v) − j (̃u, ṽ)

≤ α j‖u − ũ‖X ‖v − ṽ‖X for all u, ũ, v, ṽ ∈ X .

(4.4)

α j < mA. (4.5)

f ∈ C([0, T ]; X). (4.6)

Example of operators which satisfy condition (4.3) are the integral operators and various
Volterra-type operators. Details can be found in [16], where various properties of history-
dependent operators have been studied. Here we restrict ourselves to recall that such kind of
operators arise in the statement of constitutive laws for solids, slip-dependent friction laws,
as well as in study of various mathematical models of contact with elastic and viscoplastic
materials.

The following result represents an existence and uniqueness result in the study of
variational inequalities with history-dependent operators, the so-called history-dependent
variational inequalities.

Theorem 1 Assume (4.1)–(4.6). Then, there exists a unique function u ∈ C([0, T ]; X) such
that, for all t ∈ [0, T ] the the following inequality holds:

u(t) ∈ K , (Au(t), v − u(t))X + (Su(t), v − u(t))X

+ j(u(t), v) − j(u(t), u(t)) ≥ ( f (t), v − u(t))X ∀ v ∈ K . (4.7)

Theorem 1 represents a particular case of a more general existence and uniqueness result
proved in [18]. It’s proof is based on arguments on elliptic variational inequalities and a fixed
point property of history-dependent operators. We also mention that inequalities of the form
(4.7) have been studied in the recent paper [17], where a convergence criterion to the solution
was proved.

Weak solvability of Problem M. Our existence and uniqueness result in the study of
Problem P is the following.

Theorem 2 Assume (3.7)–(3.13). Then Problem P has a unique solution u ∈ C([0, T ]; V ).

Proof We use Theorem 1 on the space X = V . To this end we use definition (3.15) to see
that condition (4.1) is satisfied. Moreover, for any u = (u1, u2), v = (v1, v2) ∈ V , using
(3.5) we have
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(Au, v)V = μ1

∫
�

∇u1 · ∇v1 dx + μ2

∫
�

∇u2 · ∇v2 dx

≤ μ1‖∇u1‖L2(�)2‖∇v1‖L2(�)2 + μ2‖∇u2‖L2(�)2‖∇v2‖L2(�)2

≤ (μ1 + μ2)‖u‖V ‖v‖V ,

(Av, v) = μ1

∫
�

∇v1 · ∇v1 dx + μ2

∫
�

∇v2 · ∇v2 dx

= μ1‖∇v1‖2L2(�)2
+ μ2‖∇v2‖2L2(�)2

≥ min {μ1, μ2}‖v‖2V ,

which implies that

‖Au‖V ≤ MA‖u‖V , (4.8)

(Av, v)V ≥ mA‖v‖2V , (4.9)

with

MA = μ1 + μ2, mA = min {μ1, μ2}. (4.10)

It follows from here that the linear operator A : V × V → R satisfies condition (4.2).
Let u = (u1, u2), v = (v1, v2) ∈ C([0, T ]; V ), t ∈ [0, T ] and let w = (w1, w2) ∈ V .

We use assumption (3.8) to consider the positive numbers B1 and B2 defined by

B1 = max
r∈[0,T ] |b1(r)|, B2 = max

r∈[0,T ] |b2(r)|. (4.11)

Then, an elementary calculus base on the definition (3.17), the Cauchy-Schwarz inequality,
the properties of the integral and notation (3.5) show that

(Su(t) − Sv(t), w)V =
∫

�

( ∫ t

0
b1(t − s)∇(u1(s) − v1(s)) ds

)
· ∇w1 dx

+
∫

�

( ∫ t

0
b2(t − s)∇(u2(s) − v2(s)) ds

)
· ∇w2 dx

≤
∫

�

( ∫ t

0
|b1(t − s)|‖∇(u1(s) − v1(s))‖ ds

)
‖∇w1‖ dx

+
∫

�

( ∫ t

0
|b2(t − s)|‖∇(u2(s) − v2(s))‖ ds

)
‖∇w2‖ dx

≤ B1

∫ t

0

( ∫
�

‖∇(u1(s) − v1(s))‖‖∇w1‖ dx
)
ds

+B2

∫ t

0

( ∫
�

‖∇(u2(s) − v2(s))‖‖∇w2‖ dx
)
ds

≤ B1

∫ t

0
‖∇(u1(s) − v1(s))‖L2(�)2‖∇w1‖L2(�)2

)
ds

+B2

∫ t

0
‖∇(u2(s) − v2(s))‖L2(�)2‖∇w2‖L2(�)2

)
ds

≤ (B1 + B2)

( ∫ t

0
‖u(s) − v(s)‖V ds

)
‖w‖V .

We conclude from here that the operator S satisfies condition (4.3) with LS = B1 + B2.
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Next, it is easy to see that the functional j given by (3.18) satisfies condition (4.4)(a).
Assume now that u = (u1, u2), ũ = (̃u1, ũ2), v = (v1, v2), ṽ = (̃v1, ṽ2) ∈ V . Then, using
(3.18) and assumption (3.12)(b) it follows that

j(u, ṽ) − j(u, v) + j (̃u, v) − j (̃u, ṽ) =
∫

�

(
(p(u2 + k2) − p(̃u2 + k2)

)
(̃v2 − v2) dx

≤ L p

∫
�

|u2 − ũ2||v2 − ṽ2| dx ≤ L p‖u2 − ũ2‖L2(�‖u2 − ũ2‖L2(�).

Therefore, using inequality (3.2) and equality (3.5) we deduce that

j(u, ṽ) − j(u, v) + j (̃u, v) − j (̃u, ṽ) ≤ c20L p‖u − ũ‖V ‖v − ṽ‖V , (4.12)

which shows that the function j : V × V → R satisfies condition (4.4)(b) with

α j = c20L p. (4.13)

We now combine (4.10), (4.13) with the smallness assumption (3.13) to see that condi-
tion (4.5) is satisfied. Note also that condition (4.6) holds, too. Theorem 2 is now a direct
consequence of Theorem 1. �

We end this section with two consequences of inequalities (4.3) and (4.4)(b) obtained in
the proof of Theorem 2, which will be used in the next section.

Corollary 1 The operator S and function j defined by (3.17) and (3.18), respectively, satisfy
the following inequalities:

‖Su(t)‖V ≤ LS

∫ t

0
‖u(s)‖V ds ∀ u ∈ C([0, T ]; V ), t ∈ [0, T ], (4.14)

| j(u, ṽ) − j(u, v)| ≤ c20L p‖u‖V ‖̃v − v‖V ∀ u, ṽ, v ∈ V . (4.15)

Proof Let t ∈ [0, T ]. We use definition (3.17) to see that (S0V (t), u(t))V = 0. Inequality
(4.14) is now obtained by taking v ≡ 0V in (4.3). Next, we use the definition (3.18) combined
with assumptions k2 ≥ 0 and (3.12) (c) to see that j(0V , v) = 0 for all v ∈ V . We use this
equality and inequality (4.12) with ũ = 0V to see that (4.15) holds. �

5 An optimization problem

Note that the solution u of Problem P depends on the data k1, k2 and l, among others.
Therefore, using the notation g = (k1, k2, l)we denote in what follows this solution by ug =
(ug1, u

g
2) andwe recall, that, under the assumptions of Theorem 2we have ug ∈ C([0, T ]; V ).

In this section we consider the problem of finding a parameter g such that the norm of the
solution ug in the space C([0, T ]; V ) is as small as possible. In other words, denoting by G
the set given by G = R

∗+ × R
∗+ × R

∗+ with R
∗+ = (0,+∞), the problem we consider is the

following.

Problem Q. Given a nonempty set G0 ⊂ G, find g∗ = (k∗
1 , k

∗
2 , l

∗) ∈ G0 such that

‖ug∗‖C([0,T ];V ) ≤ ‖ug‖C[0,T ];V ) ∀ g = (k1, k2, l) ∈ G0. (5.1)

Themechanical interpretation of this problem is the following: given a viscoelastic contact
process described by ProblemM, we are looking for a triple of optimal distances representing
the distance of the first membrane to the upper obstacle, the distance of the secondmembrane
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to the lower obstacle and the distance between the twomembranes such that this triple belongs
in a given set G0 and, in the equilibrium configuration, the resulting displacement field of
the two membranes is minimal, at any time interval. To conclude, Problem Q represents an
optimization problem and its solution governs the geometry of the physical setting.

Our main result in this section is the following.

Theorem 3 Assume (3.7)–(3.9), (3.12), (3.13) and, moreover, assue that G0 is a nonempty
compact subset of R3. Then Problem Q has at least one solution solution g∗ ∈ G.

The proof of Theorem 3 is based on two preliminary results that we present in what
follows. To this end, below, we assume that (3.7)–(3.9), (3.12) and (3.13) hold, even if we
do not mention it explicitly.

Lemma 1 Then there exists a constant M > 0 such that

‖ug(t)‖V ≤ M, ‖Aug(t)‖V ≤ M, ‖Sug(t)‖V ≤ M ∀ t ∈ [0, T ], g ∈ G. (5.2)

Proof Let t ∈ [0, T ], g = (k1, k2, l) ∈ G and, for simplicity, denote u instead of ug . We note
that definition (3.15) implies that 0V ∈ K . Thus, taking v = 0V in (3.30) we deduce that

(Au(t), u(t))V ≤ ( f (t), u(t)V − (Su(t), u(t))V + j(u(t), 0V ) − j(u(t), u(t)).

Then, using inequalities (4.9), (4.14) and (4.15) we find that

mA‖u(t))‖2V ≤ ‖ f (t)‖V ‖u(t)‖V + LS

( ∫ t

0
‖u(s)‖V ds

)
‖u(t)‖V + c20L p‖u(t))‖2V .

Next, we use the smallness assumption (3.13), equality (4.10) and the regularity (4.6) to see
that there exists a constant C > 0 which does not depend on g such that

‖u(t)‖V ≤ C + C
∫ t

0
‖u(s)‖V ds.

Then, exploiting the Gronwall argument we find that

‖u(t)‖V ≤ CeCt ≤ CeCT

which proves the first inequality in (5.2). The last two inequalities in (5.2) are a direct
consequence of (4.8) and (4.14). �

Lemma 2 The function g �→ ug is continuous from G to C([0, T ]; V ).

Proof Let g = (k1, k2, l) ∈ G and consider a sequence {gn} ⊂ G such that gn → g in R
3.

Then, if gn = (kn1 , k
n
2 , l

n), we have

kn1 → k1, kn2 → k2, ln → l, as n → ∞. (5.3)

Let n ∈ N, t ∈ [0, T ] and, for simplicity denote by un and u the functions ugn and ug ,
respectively. Then u is the solution of the variational inequality (3.30) and un is the solution
of the variational inequality

un(t) ∈ Kn, (Aun(t), v − un(t))V + (Sun(t), v − un(t))V

+ jn(un(t), v) − jn(un(t), un(t)) ≥ ( f (t), v − un(t))X ∀ v ∈ Kn, (5.4)

in which the set Kn and the function jn are defined by equalities

θn(v) = 2ln + v1 − v2 ∀ v = (v1, v2) ∈ V , (5.5)
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Kn = { v = (v1, v2) ∈ V : v1 ≤ kn1 , θn(v) ≥ 0 a.e. in � }, (5.6)

jn(u, v) =
∫

�

p(u2 + kn2 )v2 dx ∀ u = (u1, u2), v = (v1, v2) ∈ V . (5.7)

Let an and bn be the positive reals defined by

an = min

{
kn1
k1

,
ln

l

}
, bn = min

{
k1
kn1

,
l

ln

}
. (5.8)

Then, it is easy to see that anv ∈ Kn if v ∈ K , and bnv ∈ K if v ∈ Kn . This property allows
us to test with anu(t) in (5.4) and with bnun(t) in (3.30) to obtain that

(Aun(t), anu(t) − un(t))V + (Sun(t), anu(t) − un(t))V (5.9)

+ jn(u(t), anu(t)) − jn(un(t), u(t)) ≥ ( f (t), anu(t) − un(t))V ,

(Au(t), bnun(t) − u(t))V + (Su(t), bnun(t) − u(t))V

+ j(u(t), bnun(t)) − j(u(t), u(t)) ≥ ( f (t), bnun(t) − u(t))V . (5.10)

We now substitute the identities

anu(t) − un(t) = u(t) − un(t) + (an − 1)u(t) (5.11)

bnun(t) − u(t) = un(t) − u(t) + (bn − 1)un(t) (5.12)

in (5.9) and (5.10), then we add the resulting inequalities to find that

(Aun(t) − Au(t), un(t) − u(t))V ≤ (an − 1)(Aun(t), u(t))V + (bn − 1)(Au(t), un(t))V

+(Sun(t) − Su(t), u(t) − un(t))V

+(an − 1)(Sun(t), u(t))V + (bn − 1)(Su(t), un(t))V

+ jn(un(t), anu(t)) − jn(un(t), un(t))

+ j(u(t), bnun(t)) − j(u(t), u(t))

+(1 − an)( f (t), u(t))V + (1 − bn)( f (t), un(t))V

Next, we use the bounds (5.2) and the regularity f ∈ C([0, T ]; V ) to see that

(Aun(t) − Au(t), un(t) − u(t))V ≤ C1
(|an − 1| + |bn − 1|)

+(Sun(t) − Su(t), u(t) − un(t))V

+ jn(un(t), anu(t)) − jn(un(t), un(t))

+ j(u(t), bnun(t)) − j(u(t), u(t))

where, here and below, Ci (i = 1, 2, . . .) represent various positive constants which does
not depend on n ant t and whose value may change from place to place. Then, using the
properties (4.2) and (4.3) of the operators A and S it follows that

mA‖un(t) − u(t)‖2V ≤ C2
(|an − 1| + |bn − 1|)

+LS

( ∫ t

0
‖un(s) − u(s)‖V ds

)
‖un(t) − u(t)‖V

+ jn(u(t), anu(t)) − jn(un(t), u(t))

+ j(u(t), bnun(t)) − j(u(t), u(t)) (5.13)

where, recall, mA = min {μ1, μ2} and LS = B1 + B2 with B1 and B2 given by (4.11).
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On the other hand, an elemetary calcul based on the definitions (3.18) and (5.7) show that

jn(un(t), anu(t)) − jn(un(t), un(t)) + j(u(t), bnun(t)) − j(u(t), u(t))

=
∫

�

[
p(un2(t) + kn2 )(anu2(t) − un2(t)) + p(u2(t) + k2)(bnu

n
2(t) − u2(t))

]
dx

and, using identities (5.11), (5.12) we find that

jn(un(t), anu(t)) − jn(un(t), un(t)) + j(u(t), bnun(t)) − j(u(t), u(t))

=
∫

�

[
p(un2(t) + kn2 ) − p(u2(t) + k2)

]
(u2(t) − un2(t)) dx

+(an − 1)
∫

�

p(un2(t) + kn2 )u2(t) dx + (bn − 1)
∫

�

p(u2(t) + k2)u
n
2(t) dx

≤
∫

�

|p(un2(t) + kn2 ) − p(u2(t) + k2)||u2(t) − un2(t)| dx

+|an − 1|
∫

�

|p(un2(t) + kn2 )||u2(t)| dx + |bn − 1|
∫

�

|p(u2(t) + k2)||un2(t)| dx .

Next, we use equalities p(kn2 ) = 0, p(k2) = 0, assumption (3.12)(b), inequalities (3.1), (3.2),
definition (3.5) and the bound (5.2) to deduce that

jn(un(t), anu(t)) − jn(un(t), un(t)) + j(u(t), bnun(t)) − j(u(t), u(t))

≤ c20L p‖un(t) − u(t)‖2V + C3
(|an − 1| + |bn − 1|) + C4|kn2 − k2|‖un(t) − u(t)‖V .

(5.14)

We now combine inequalities (5.13) and (5.14) then we use the smallness assumption
(3.13) to find that

‖un(t) − u(t)‖2V ≤ C5
(|an − 1| + |bn − 1|)

+C6

( ∫ t

0
‖un(s) − u(s)‖V ds + |kn2 − k2|

)
‖un(t) − u(t)‖V .

Then, using the elementary inequality

x2 ≤ ax + b �⇒ x ≤ a + √
b ∀ x, a, b ∈ R+

we find that

‖un(t) − u(t)‖V ≤
√
C5

(|an − 1| + |bn − 1|) + C6|kn2 − k2| + C6

∫ t

0
‖un(s) − u(s)‖V ds.

We now use the Gronwall argument to see that

‖un(t) − u(t)‖V ≤
(√

C5
(|an − 1| + |bn − 1|) + C6|kn2 − k2|

)
eC6t

which, combined with (3.6), implies that

‖un − u‖C([0,T ];V ) ≤
(√

C5
(|an − 1| + |bn − 1|) + C6|kn2 − k2|

)
eC6T . (5.15)

Finally, we note that equalities (5.8) and convergences (5.3) show that an → 1, bn → 1
and kn2 → k2. Therefore, inequality (5.15) implies that un → u in C([0, T ]; V ), which
concludes the proof. �

We now have all the ingredients to provide the proof of Theorem 3.
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Proof of Theorem 3 We use Lemma 2 to see that the real valued function g �→ ‖ug‖C([0,T ];V )

is continuous. Recall also that G0 is supposed to be a non-empty compact subset of R3.
Theorem 3 is now a direct consequence of the well-known Weierstrass theorem. �

6 Conclusion

In this paperwe described amathematicalmodel for the equilibrium of two viscoelasticmem-
branes in contact. The novelty of the model consists in its non-standard structure, given by a
non-linear system involving partial differential equations and inequalities. In the variational
formulation, the problem leads to a history-dependent variational inequality with unilateral
constraints. We used an abstract existence and uniqueness result for such kind of inequalities
in order to prove the unique weak solvability of the contact model. Then, we considered an
optimization problem and proved its solvability.

Our research in this paper could be continued in several directions. First, it could be inter-
esting to obtain additional convergence results of the solution which show its continuous
dependence with respect to the rest of the data, including the forces f1 and f2. Such kind of
results could be used in the study of associated optimal control and optimization problems.
Second, it is possible to use the recent result in [17] in order to derive two equivalent formula-
tions of Problem P . These formulations are given by a nonlinear equation or a minimization
problem, both governed by the so-called gap function, introduced in [1] in the case of elliptic
variational inequalities. Moreover, it would be useful to follow the methods described in
[5–7] in order to construct discrete schemes in the study of Problem P and to provide the
corresponding error estimates.

Another direction of research would be to change the contact model. Thus, replacing
equality (2.11) with a multivalued condition of the form

−R2 ∈ ∂h(h2 + k2)

where h : R → R is a locally Lipschitz function and ∂h denotes its Clarke subdifferential
would lead to a variational formulation expressed in terms of a history-dependent variational-
hemivariational inequality. Then, the results presented in this paper could be easily transposed
in this case, following the arguments and the results presented in [16], for instance. Further,
an extension of the results obtained in this current paper could be considered in the case
when the membrane are supposed to be viscoelastic with short memory or with both short
and long memory.
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