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Convergence Results for Optimal Control Problems
Governed by Elliptic Quasivariational Inequalities

Mircea Sofoneaa and Domingo A. Tarziab

aLaboratoire de Math�ematiques et Physique, University of Perpignan Via Domitia, Perpignan,
France; bDepartamento de Matematica-CONICET, Universidad Austral, Rosario, Argentina

ABSTRACT
We consider an optimal control problem Q governed by an
elliptic quasivariational inequality with unilateral constraints.
We associate to Q a new optimal control problem ~Q,
obtained by perturbing the state inequality (including the set
of constraints and the nonlinear operator) and the cost func-
tional, as well. Then, we provide sufficient conditions which
guarantee the convergence of solutions of Problem ~Q to a
solution of Problem Q: The proofs are based on convergence
results for elliptic quasivariational inequalities, obtained by
using arguments of compactness, lower semicontinuity, mono-
tonicity, penalty and various estimates. Finally, we illustrate
the use of the abstract convergence results in the study of
optimal control associated with two boundary value problems.
The first one describes the equilibrium of an elastic body in
frictional contact with an obstacle, the so-called foundation.
The process is static and the contact is modeled with normal
compliance and unilateral constraint, associated to a version
of Coulomb’s law of dry friction. The second one describes a
stationary heat transfer problem with unilateral constraints.
For the two problems we prove existence, uniqueness and
convergence results together with the corresponding physical
interpretation.

ARTICLE HISTORY
Received 22 January 2020
Revised 18 May 2020
Accepted 18 May 2020

KEYWORDS
Convergence results;
frictional contact; heat
transfer; optimal control;
optimal pair;
quasivariational inequality;
unilateral constraint

2010 MATHEMATICS
SUBJECT
CLASSIFICATION
47J20; 49J27; 49J40; 49K20;
74M15; 74M10

1. Introduction

The study of optimal control problems is motivated by important applica-
tions in Physics, Mechanics, Automatics and Systems Theory. For instance,
the control of mathematical models which describe the contact of deform-
able bodies, as well as their optimal shape design, is of considerable theor-
etical and applied interest in Civil Engineering, Automotive Industry and
Mechanics of Structures. Moreover, the control of the temperature field in
heat transfer proccesses is important in various industrial settings like
metal forming, among others.
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Most of the models in Physics, Mechanics and Engineering Science are
expressed in terms of strongly nonlinear boundary value problems with
partial differential equations which, in a weak formulation, lead to vari-
ational inequalities. The theory of variational inequalities was developed
based on arguments of monotonicity and convexity, including properties of
the subdifferential of a convex function. Because of their importance in
engineering applications, a considerable effort has been put into their ana-
lysis, control and numerical simulations and the literature in the field is
extensive. Basic references in the field are [2–6], for instance. Results in the
study of optimal control for variational and variational-hemivariational
inequalities have been discussed in several works, including [7–13] and [14,
15], respectively. Applications of variational inequalities in Mechanics could
be found in the books [16–22], for instance. Reference on optimal control
for inequality problems arising in Mechanics and Physics include
[1, 23–30].
In this paper we consider an optimal control problem for a general class

of elliptic quasivariational inequalities. The functional framework is the fol-
lowing: X and Y are real Hilbert spaces endowed with the inner products
ð�, �ÞX and ð�, �ÞY , respectively, K � X,A : X ! X, j : X � X ! R, f 2 Y and
p : X ! Y: Then, the inequality problem we consider is the following.

Problem P: Find u such that

u 2 K, ðAu, v�uÞX þ jðu, vÞ�jðu, uÞ � ðf , pv�puÞY 8 v 2 K: (1.1)

We associate to Problem P the set of admissible pairs defined by

Vad ¼ fðu, f Þ 2 K � Y such that ð1:1Þ holdsg (1.2)

and we consider a cost functional L : X � Y ! R: Here and below, X�Y
represents the product of the Hilbert spaces X and Y, equipped with the
canonical inner product. Then, the optimal control problem we study in
this paper is the following.

Problem Q: Find ðu�, f �Þ 2 Vad such that

Lðu�, f �Þ ¼ min
ðu, f Þ2Vad

Lðu, f Þ: (1.3)

Next, consider a set ~K � X, an operator ~A : X ! X and an element ~f 2 Y:
With these data we construct the following perturbation of Problem P:

Problem ~P : Find ~u such that

~u 2 ~K , ð~A~u, v�~uÞX þ jð~u, vÞ�jð~u, ~uÞ � ð~f , pv�p~uÞY 8 v 2 ~K : (1.4)

We associate to Problem ~P the set of admissible pairs given by

~V ad ¼ fð~u,~f Þ 2 ~K � Y such that ð1:4Þ holdsg (1.5)
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and, for a cost functional ~L : X � Y ! R, we construct the following per-
turbation of the optimal control problem Q:

Problem ~Q: Find ð~u�,~f
�Þ 2 ~V ad such that

~Lð~u�,~f
�Þ ¼ min

ð~u,~f Þ2~V ad

~Lð~u,~f Þ: (1.6)

The unique solvability of problems P and ~P , on one hand, and the solv-
ability of problems Q and ~Q, on the other hand, follow from well known
results obtained in the literature, under appropriate assumptions on the
data. Here, we shall use the existence and uniqueness results in [1], which
will be resumed in the next section.
Now, a brief comparation between problems P and ~P shows that

Problem ~P is obtained from Problem P by replacing the set K with the set
~K , the operator A with the operator ~A and the element f with ~f : A similar
remark can be made concerning the optimal problems Q and ~Q, in which
the set Vad was replaced by the set ~V ad and the functional L was replaced
with ~L: Therefore, since problems ~P and Q represent perturbations of P
and Q, respectively, a natural question is to establish the link between the
solutions of these problems.
In this paper we provide a partial answer to the question above. Our aim

is three folds. The first one is to formulate sufficient assumptions on the
data which guarantee the convergence of the solution ~u of Problem ~P to
the solution u of Problem P: Our result in this matter is Theorem 4 below,
which represents the first novelty of this paper. Our second aim is to prove
that, under appropriate conditions, the solutions of Problem ~Q converge to
a solution of Problem Q: Our result in this matter is Theorem 6, which
represent the second novelty of this work. Finally, our third aim is to illus-
trate the use of these abstract results in the study of two relevant examples.
The first one arises from Contact Mechanics and the second one describe a
heat transfer process.
The rest of this manuscript is structured as follows. In Section 2 we resume

the existence and uniqueness results in [1] obtained in the study of problems
P and Q: Then, in Section 3 we state and prove our main result concerning
the link between the solutions of problems P and ~P , Theorem 4. In Section 4
we state and prove our main result concerning the link between the solutions
of problems Q and ~Q, Theorem 6. The proofs of the theorems are based on
arguments of compactness, lower semicontinuity, monotonicity, penalty and
various estimates. In Section 5 we illustrate these abstract results in the study
of a mathematical model which describes the frictional contact of an elastic
material with a rigid-deformable foundation. The process is static and the
contact is described with normal compliance and unilateral constraint,

1328 M. SOFONEA AND D. A. TARZIA



associated to a version of Coulomb’s law of dry friction. We apply the
abstract result in Sections 3 and 4 in the study of this problem and provide
the corresponding mechanical interpretations. We end this paper with
Section 6 in which we prove that Theorems 4 and 6 can be used to obtain a
version of our previous convergence results obtained in [23], in the study of a
heat transfer model with unilateral constraints.

2. Problem statement and preliminaries

In Sections 2–4 below we use the functional framework described in the
Introduction and we denote by jj � jjX, jj � jjY the norms on the spaces X
and Y, respectively. All the limits, upper and lower limits below are consid-
ered as n ! 1, even if we do not mention it explicitly. The symbols
“*“and “!“ denote the weak and the strong convergence in various
spaces which will be specified, except in the case when these convergence
take place in R:
In the study of Problem P we consider the following assumptions.

K is a nonempty, closed, convex subset of X: (2.1)

A is a strongly monotone Lipschitz continuous operator, i:e:,
there exists m> 0 and M> 0 such that
ðaÞðAu�Av, u�vÞX � mku�vk2X 8 u, v 2 X,
ðbÞkAu�AvkX � M ku�vkX 8 u, v 2 X:

8>><
>>: (2.2)

ðaÞ For all g 2 X, jðg, �Þ : X ! R is convex and lower semicontinuous
ðl:s:c:Þ,

ðbÞ There exists a � 0 such that
jðg1, v2Þ�jðg1, v1Þ þ jðg2, v1Þ�jðg2, v2Þ
� a jjg1�g2jjXjjv1�v2jjX 8 g1, g2, v1, v2 2 X:

8>>>><
>>>>:

(2.3)
m> a: (2.4)
f 2 Y: (2.5)

p is a linear continuous operator, i:e:,
there exists c0>0 such that
jjpvjjY � c0 jjvjjX 8 v 2 X:

8<
: (2.6)

We now recall the following existence and uniqueness result, proved
in [1].

Theorem 1. Assume that (2.1)–(2.6) hold. Then, the quasivariational
inequality (1.1) has a unique solution.
In the study of Problem Q we assume that

Lðu, f Þ ¼ gðuÞ þ hðf Þ 8 u 2 X, f 2 Y , (2.7)
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where g and h are functions which satisfy the following conditions.

g : X ! R is continuous, positive and bounded, i:e:,
ðaÞ vn ! v in X ) gðvnÞ ! gðvÞ:
ðbÞ gðvÞ � 0 8 v 2 X:
ðcÞ g maps bounded sets in X into bounded sets in R:

8>><
>>: (2.8)

h : Y ! R is weakly lower semicontinuous and coercive, i:e:,
ðaÞ f n * f in Y ) lim inf hðf nÞ � hðf Þ:
ðbÞ kf nkY ! 1 ) hðf nÞ ! 1:

8<
: (2.9)

There exist b, c � 0 such that
jðg, v1Þ�jðg, v2Þ � ðbþ cjjgjjXÞ jjv1�v2jjX 8 g, v1, v2 2 X:

�
(2.10)

m>c: (2.11)

For any sequences fgng � X, fung � X such that
gn * g 2 X, un * u 2 X one has
lim sup ðjðgn, vÞ�jðgn, unÞÞ � jðg, vÞ�jðg, uÞ 8 v 2 X:

8<
: (2.12)

For any sequence fvng � X such that
vn * v in X one has pvn ! pv in Y:

�
(2.13)

The following existence result was obtained in [1].

Theorem 2. Assume that (2.1)–(2.4) (2.6)–(2.13), Then, there exists at least
one solution ðu�, f �Þ 2 Vad of Problem Q:

The proofs of Theorems 1 and 2 are based on arguments of compactness,
lower semicontinuity and monotonicity. We shall use these theorems in
Sections 3 and 4 below, in the study of specific perturbed versions of prob-
lems P and Q:

3. A convergence result

In this section we state and prove a convergence result for the solution of
Problem ~P , in the case when this problem has a specific structure. To this
end, we consider two sequences fkng � R, ffng � Y and an operator G :
X ! X: For each n 2 N let An : X ! X be the operator defined by

Anu ¼ Auþ 1
kn

Gu 8 u 2 X, (3.1)

and denote by Pn the following version of Problem ~P , obtained with ~A ¼
An and ~f ¼ fn:
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Problem Pn: Find un such that

un 2 ~K , ðAun, v�unÞX þ 1
kn

ðGun, v�unÞX þ jðun, vÞ�jðun, unÞ
� ðfn, pv�punÞY 8 v 2 ~K :

(3.2)

Note that in the case when ~K ¼ X, under appropriate assumptions on
G, Problem Pn represents a penalty problem of P: Penalty methods have
been widely used in the literature as an approximation tool to treat con-
straints in variational inequalities, as explained in [4, 21, 31] and the refer-
ences therein.
To prove the unique solvability of Problem Pn we use the following

assumptions.

~K is a nonempty, closed, convex subset of X: (3.3)
G : X ! X is a monotone Lipschitz continuous operator: (3.4)

kn>0 8 n 2 N: (3.5)
fn 2 Y 8 n 2 N: (3.6)

We have the following existence and uniqueness result.

Proposition 3. Assume (2.2)–(2.4), (2.6), (3.3)–(3.6). Then, for each n 2 N,
there exists a unique solution un 2 X to Problem Pn:

Proof. Let n 2 N: Assumptions (2.2), (3.4), (3.5) imply that the operator An

satisfies inequality (2.2)(a) with the same constant m as the operator A and,
moreover, it is Lipschitz continuous. We conclude from above that the
operator An satisfies condition (2.2). Recall also assumptions (3.3) and (3.6)
on ~K and fn, respectively. These properties allows us to use Theorem 1 with
~K , An and fn instead of K, A and f, respectively. In this way we obtain the
unique solvability of the inequality (3.2) which concludes the proof. w

To study the behavior of the solution of Problem Pn as n ! 1 we con-
sider the following additional hypotheses.

kn ! 0 as n ! 1: (3.7)
fn * f in Y as n ! 1: (3.8)

K � ~K : (3.9)

ðaÞ ðGu, v�uÞX � 0 8 u 2 ~K , v 2 K
ðbÞ u 2 ~K , ðGu, v�uÞX ¼ 0 8 v 2 K ) u 2 K:

�
(3.10)

Note that, in the case when ~K ¼ X, condition (3.10) is satisfied for any
penalty operator of the set K, see Definition 23 in [32] for details.
Our main result in this section is the following.
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Theorem 4. Assume (2.1)–(2.6), (2.10)–(2.13), (3.3)–(3.10) and, for each
n 2 N, denote by un the solution of Problem Pn. Then un ! u in X, as
n ! 1, where u is the solution of Problem P:

Proof. The proof of Theorem 4 is carried out in several steps.

i) A first weak convergence result. We claim that there is an element ~u 2
~K and a subsequence of fung, still denoted by fung, such that un *
~u in X, as n ! 1:

To prove the claim, we establish the boundedness of the sequence fung
in X. Let n 2 N: We use assumption (3.9) and take v¼ u in (3.2) to see
that

ðAun, un�uÞX � 1
kn

ðGun, u�unÞX þ jðun, uÞ�jðun, unÞ þ ðfn, pun�puÞY :

Then, using the strong monotonicity of the operator A we obtain that

m jjun�ujj2X � ðAu, u�unÞX þ 1
kn

ðGun, u�unÞX
þ jðun, uÞ�jðun, unÞ þ ðfn, pun�puÞY :

(3.11)

Next, assumption (3.10)(a) implies that

ðGun, u�unÞX � 0, (3.12)

and assumptions (2.3), (2.10) yield

jðun, uÞ�jðun, unÞ ¼ ðjðun, uÞ�jðun, unÞ þ jðu, unÞ�jðu, uÞÞ þ ðjðu, uÞ�jðu, unÞÞ
� ajjun�ujj2X þ ðbþ cjjujjXÞjjun�ujjX:

(3.13)

On the other hand, using (2.6) we find that

ðAu, u�unÞX þ ðfn, pun�puÞY � ðjjAujjX þ c0jjfnjjYÞjjun�ujjX: (3.14)

We now combine inequalities (3.11)–(3.14) to see that

m jjun�ujj2X � ðjjAujjX þ c0jjfnjjYÞjjun�ujjX
þ ajjun�ujj2X þ ðbþ cjjujjXÞjjun�ujjX:

(3.15)

Note that by (3.8) we know that the sequence ffng is bounded in Y.
Therefore, using inequality (3.15) and the smallness assumption (2.4),
we deduce that there exists a constant C> 0 independent of n such
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that jjun�ujjX � C: This implies that the sequence fung is bounded
in X. Thus, from the reflexivity of X, by passing to a subsequence, if
necessary, we deduce that

un * ~u in X, as n ! 1, (3.16)

with some ~u 2 X: Moreover, assumption (3.3) and the convergence
(3.16) implies that ~u 2 ~K and completes the proof of the claim.

ii) A property of the weak limit. Next, we show that ~u is a solution to
Problem P:

Let v be a given element in ~K and let n 2 N: We use (3.2) to obtain that

1
kn

ðGun, un�vÞX � ðAun, v�unÞX
þ jðun, vÞ�jðun, unÞ þ ðfn, pun�pvÞY :

(3.17)

Then, by conditions (2.2), (3.8), (2.10), (2.6), using the boundedness
of the sequence fung, we deduce that each term in the right hand
side of inequality (3.17) is bounded. This implies that there exists a
constant D> 0 which does not depend on n such that

ðGun, un�vÞX � knD:

We now pass to the upper limit in this inequality and use the conver-
gence (3.7) to deduce that

lim sup ðGun, un�vÞX � 0: (3.18)

Next, we take v ¼ ~u in (3.18) and find that

lim sup ðGun, un�~uÞX � 0: (3.19)

Therefore, using assumption (3.4) and a standard pseudomonotonicity
argument (Proposition 1.23 in [31]) we obtain that

lim inf ðGun, un�vÞX � ðG~u, ~u�vÞX 8 v 2 X: (3.20)

We now combine inequalities (3.20) and (3.18) to find that
ðG~u, ~u�vÞX � 0 for all v 2 ~K : Using now assumption (3.10)(b) we
deduce that ~u 2 K:
Consider now an element v 2 K: We use (3.9) and (3.2) to obtain
that
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ðAun, un�vÞX � 1
kn

ðGun, v�unÞX
þ jðun, vÞ�jðun, unÞ þ ðfn, pun�pvÞY :

Therefore, using assumption (3.10)(a) we find that

ðAun, un�vÞX � jðun, vÞ�jðun, unÞ þ ðfn, pun�pvÞY : (3.21)

Next, using (3.16) and assumption (2.12) we have

lim sup ðjðun, vÞ�jðun, unÞÞ � jð~u, vÞ�jð~u, ~uÞ: (3.22)

On the othe hand, assumption (3.8), (2.13) and the convergence
(3.16) yield

ðfn, pun�vÞX ! ðf , p~u�pvÞY : (3.23)

We now use relations (3.21)–(3.23) to see that

lim sup ðAun, un�vÞX � jð~u, vÞ�jð~u, ~uÞ þ ðf , p~u�pvÞX: (3.24)

Now, taking v ¼ ~u 2 K in (3.24) we obtain that

lim sup ðAun, un�~uÞX � 0: (3.25)

This inequality together with (3.16) and the pseudomonotonicity of A
implies that

ðA~u, ~u�vÞX � lim inf ðAun, un�vÞX8 v 2 X: (3.26)

Combining now (3.26) and (3.24), we have

ðA~u, ~u�vÞX � jð~u, vÞ�jð~u, ~uÞ þ ðf , p~u�pvÞY
for all v 2 K: Hence, it follows that ~u 2 K is a solution to Problem
P, as claimed.

iii) A second weak convergence result. We now prove the weak conver-
gence of the whole sequence fung:

Since Problem P has a unique solution u 2 K, we deduce from the previ-
ous step that ~u ¼ u: Moreover, a careful analysis of the proof in step ii)
reveals that every subsequence of fung which converges weakly in X has
the weak limit u. In addition, we recall that the sequence fung is bounded
in X. Therefore, using a standard argument we deduce that the whole
sequence fung converges weakly in X to u, as n ! 1:
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iv) Strong convergence. In the final step of the proof, we prove that un ! u
in X, as n ! 1:

We take v ¼ ~u 2 K in (3.26) and use (3.25) to obtain

0 � lim inf ðAun, un�~uÞX � lim sup ðAun, un�~uÞX � 0,

which shows that ðAun, un�~uÞX ! 0, as n ! 1: Therefore, using equal-
ity ~u ¼ u, the strong monotonicity of A and the convergence un * u in
X, we have

mAjjun�ujj2X � ðAun�Au, un�uÞX ¼ ðAun, un�uÞX�ðAu, un�uÞX ! 0,

as n ! 1: Hence, it follows that un ! u in X, which completes the
proof. w

4. Convergence of optimal pairs

In this section we associate to Problem Pn an optimal control problem for
which we prove a convergence result. To this end we keep the notation
and assumptions in the previous section and we define the set of admissible
pairs for Problem Pn by

Vn
ad ¼ fðun, fnÞ 2 ~K � Y such that ð3:2Þ holdsg: (4.1)

Then, the optimal control problem associated to Problem Pn is
the following.

Problem Qn: Find ðu�n, f �n Þ 2 Vn
ad such that

Lnðu�n, f �n Þ ¼ min
ðun, fnÞ2Vn

ad

Lnðun, fnÞ: (4.2)

In the study of Problem Qn we assume that

Lnðu, f Þ ¼ gnðuÞ þ hnðf Þ 8 u 2 X, f 2 Y , (4.3)

where gn and hn are functions which satisfy assumptions (2.8) and (2.9),
respectively, for each n 2 N: Note than when we use these assumptions for
the functions gn and hn we refer to them as assumption (2.8)n and (2.9)n,
respectively. Using Theorem 2 we have the following existence result.

Proposition 5. Assume that (2.2)–(2.4), (2.6), (4.3), (2.8)n, (2.9)n,
(2.10)–(2.13) and (3.3)–(3.6) hold. Then, for each n 2 N, there exists at
least one solution ðu�n, f �n Þ 2 Vn

ad of Problem Qn:
To study the behavior of the sequence of solutions of Problems Qn as

n ! 1 we consider the following additional hypotheses.

un ! u in X ) gnðunÞ ! gðuÞ: (4.4)
fn * f in Y ) lim inf hnðfnÞ � hðf Þ: (4.5)
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jjfnjjY ! 1 ) hnðfnÞ ! 1: (4.6)

hnðf Þ ! hðf Þ 8 f 2 Y: (4.7)

Our main result in this section is the following.

Theorem 6. Assume that (2.1)–(2.4), (2.6)–(2.13), (3.3)–(3.7), (3.9), (3.10),
(2.8)n, (2.9)n, (4.3)–(4.7) hold and, moreover, assume that fðu�n, f �n Þg is a
sequence of solutions of Problem Qn. Then, there exists a subsequence of the
sequence fðu�n, f �n Þg, again denoted by fðu�n, f �n Þg, and an element ðu�, f �Þ 2
X � Y such that

f �n * f � in Y as n ! 1, (4.8)

u�n ! u� in X as n ! 1, (4.9)

ðu�, f �Þ is a solution of Problem Q: (4.10)

Proof. The proof is carried out in several steps, as follows.

i) A boundedness result.We claim that the sequence ff �n g is bounded in Y.

Arguing by contradiction, assume that ff �n g is not bounded in Y.
Then, passing to a subsequence still denoted ff �n g, we have

jjf �n jjY ! þ1 as n ! þ1: (4.11)

We use equality (4.3) and assumption (2.8)n(b) to see that

Lnðu�n, f �n Þ � hnðf �n Þ:
Therefore, passing to the limit as n ! 1 in this inequality and using
(4.11) combined with assumption (4.6) we deduce that

lim Lnðu�n, f �n Þ ¼ þ1: (4.12)

On the other hand, since ðu�n, f �n Þ represents a solution to Problem Qn,
for each n 2 N we have

Lnðu�n, f �n Þ � Lnðun, fnÞ 8 ðun, fnÞ 2 Vn
ad: (4.13)

We now denote by u0n the solution of Problem Pn for fn ¼ f. Then
ðu0n, f Þ 2 Vn

ad and, therefore, (4.13) and (4.3) imply that

Lnðu�n, f �n Þ � gnðu0nÞ þ hnðf Þ: (4.14)

Note that the convergences (3.7) and (3.8) allows us to apply Theorem 4 in
order to see that

u0n ! u in X as n ! 1 (4.15)

where, recall, u represents the solution of Problem P: Then, assumptions
(4.4) and (4.7) imply that
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gnðu0nÞ þ hnðf Þ ! gðuÞ þ hðf Þ: (4.16)

Relations (4.12), (4.14) and (4.16) lead to a contradiction, which con-
cludes the claim.

ii) Two convergence results. In this step we prove the convergences (4.8)
and (4.9).

First, since the sequence ff �n g is bounded in Y we can find a subse-
quence again denoted by ff �n g and an element f � 2 Y such that (4.8)
holds. Next, we denote by u� the solution of Problem P for f ¼ f �:
Then, we have

ðu�, f �Þ 2 Vad: (4.17)

Moreover, assumption (3.7), the convergence (4.8) and Theorem 4 imply
that (4.9) holds, too.

iii) Optimality of the limit. We now prove that ðu�, f �Þ is a solution to the
optimal control problem Q:

We use the convergences (4.8), (4.9) and assumptions (4.4), (4.5), to
see that

lim infðgnðu�nÞ þ hnðf �n ÞÞ � gðu�Þ þ hðf �Þ
and, therefore, the structure (4.3) and (2.7) of the functionals Ln and
L shows that

Lðu�, f �Þ � lim inf Lnðu�n, f �n Þ: (4.18)

Next, we fix a solution ðu�0, f �0 Þ of Problem Q and, in addition, for each
n 2 N we denote by ~u0

n the solution of Problem Pn for fn ¼ f �0 : It follows
from here that ð~u0

n, f
�
0 Þ 2 Vn

ad and, by the optimality of the pair ðu�n, f �n Þ, we
have that

Lnðu�n, f �n Þ � Lnð~u0
n, f

�
0 Þ 8 n 2 N:

We pass to the upper limit in this inequality to see that

lim sup Lnðu�n, f �n Þ � lim sup Lnð~u0
n, f

�
0 Þ: (4.19)

Now, remember that u�0 is the solution of the inequality (1.1) for f ¼ f �0
and ~u0

n is the solution of the inequality (1.1) for fn ¼ f �0 : Therefore, the
convergence (3.7) and Theorem 4 imply that

~u0
n ! u�0 in X as n ! 1

and, using assumptions (4.4) and (4.7), we find that
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gnð~u0
nÞ ! gðu�0Þ, hnðf �0 Þ ! hðf �0 Þ as n ! 1: (4.20)

We now use (4.3), (4.20) and (2.7) to deduce that

lim Lnð~u0
n, f

�
0 Þ ¼ Lðu�0, f �0 Þ: (4.21)

Therefore, (4.18), (4.19) and (4.21) imply that

Lðu�, f �Þ � Lðu�0, f �0 Þ: (4.22)

On the other hand, since ðu�0, f �0 Þ is a solution of Problem Q, we have

Lðu�0, f �0 Þ ¼ min
ðu, f Þ2Vad

Lðu, f Þ: (4.23)

and, therefore, inclusion (4.17) implies that

Lðu�0, f �0 Þ � Lðu�, f �Þ: (4.24)

We now combine the inequalities (4.22) and (4.24) to see that

Lðu�, f �Þ ¼ Lðu�0, f �0 Þ: (4.25)

Finally, relations (4.17), (4.25) and (4.23) imply that (4.10) holds, which
completes the proof of the Theorem. w

5. A frictional contact problem

The abstract results in Sections 2–4 are useful in the study of various math-
ematical models which describe the equilibrium of elastic bodies in fric-
tional contact with a foundation. In this section we provide an example of
such model and, to this end, we need some notations and preliminaries.
Let d 2 f2, 3g: We denote by S

d the space of second order symmetric
tensors on R

d and use the notation “�”, jj � jj, 0 for the inner product, the
norm and the zero element of the spaces Rd and S

d, respectively. Let X �
R

d be a domain with smooth boundary oX divided into three measurable
disjoint parts C1,C2 and C3 such that meas ðC1Þ>0: A generic point in
X [ C will be denoted by x ¼ ðxiÞ and m¼ �i reptresents the unit outward
normal to C. We use the standard notation for Sobolev and Lebesgue
spaces associated to X and C. In particular, we use the spaces
L2ðXÞd, L2ðC2Þd, L2ðC3Þ and H1ðXÞd, endowed with their canonical inner
products and associated norms. Moreover, for an element v 2 H1ðXÞd we
still write v for the trace of v to C. In addition, we consider the space

V ¼ fv 2 H1ðXÞd : v ¼ 0 on C1g,
which is a real Hilbert space endowed with the canonical inner product

ðu, vÞV ¼
ð
X
eðuÞ � eðvÞ dx (5.1)
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and the associated norm jj � jjV : Here and below e represents the deform-
ation operator, i.e.,

eðuÞ ¼ ðeijðuÞÞ, eijðuÞ ¼ 1
2

ðui, j þ uj, iÞ,
where an index that follows a comma denotes the partial derivative with
respect to the corresponding component of x, e.g., ui, j ¼ oui

oj : The complete-
ness of the space V follows from the assumption meas ðC1Þ>0 which
allows us to use Korn’s inequality. We denote by 0V the zero element of V
and we recall that, for an element v 2 V, the normal and tangential com-
ponents on C are given by vm ¼ v � m and vs ¼ v�vmm, respectively. We also
recall the trace inequality

jjvjjL2ðCÞd � d0jjvjjV 8 v 2 V (5.2)

in which d0 represents a positive constant.
For the inequality problem we consider in this section we use the data

F , p, f 0, f 2, l and k which satisfy the following conditions.

ðaÞ F : Sd ! S
d:

ðbÞ There exists LF>0 such that
jjF e1�F e2jj � LF jje1�e2jj for all e1, e2 2 S

d:
ðcÞ There exists mF>0 such that

ðF e1�F e2Þ � ðe1�e2Þ � mF jje1�e2jj2 for all e1, e2 2 S
d:

8>>>>><
>>>>>:

(5.3)

ðaÞ p : R ! Rþ:
ðbÞ There exists Lp>0 such that

jpðr1Þ�pðr2Þj � Lpjr1�r2j for all r1, r2 2 R:
ðcÞ ðpðr1Þ�pðr2ÞÞ ðr1�r2Þ � 0 for all r1, r2 2 R:
ðcÞ pðrÞ ¼ 0 iff r � 0:

8>>>><
>>>>:

(5.4)

f 0 2 L2ðXÞd, f 2 2 L2ðC2Þd: (5.5)

l>0: (5.6)

d20lLp<mF : (5.7)

k>0: (5.8)

Moreover, we use Y for the product space L2ðXÞd � L2ðC3Þd equipped with
the canonical inner product, and K for the set defined by

K ¼ fv 2 V : v� � k a:e: on C3g: (5.9)

Then, the inequality problem we consider in this section is the following.
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Problem Pc: Find u such that

u 2 K,
ð
X
F eðuÞ � ðeðvÞ�eðuÞÞ dxþ

ð
C3

pðu�Þðv��u�Þ da

þ
ð
C3

l pðu�Þðjjvsjj�jjusjjÞ da �
ð
X
f 0 � ðv�uÞ dx

þ
ð
C2

f 2 � ðv�uÞ da 8 v 2 K:

(5.10)

Following the arguments in [31, 32], it can be shown that Problem Pc

represents the variational formulation of a mathematical model that
describes the equilibrium of an elastic body X which is acted upon by
external forces, is fixed on C1, and is in frictional contact on C3: The con-
tact takes place with a rigid foundation covered by a layer of deformable
material of thickness k. In (5.10) and below we shall refer to this founda-
tion as foundation Fk. Here F is the elasticity operator, f 0 and f 2 denote
the density of applied body forces and tractions which act on the body and
the surface C2, respectively, p is a given function which describes the reac-
tion of the deformable material and l represents the coefficient of friction.
Next, we consider the constants a0, a2, a3 and a function h such that

a0>0, a2>0, a3>0, h 2 L2ðC3Þ: (5.11)

We associate to Problem Pc the set of admissible pairs Vc
ad and the cost

functional L given by

Vc
ad ¼ fðu, f Þ 2 K � Ysuch that f ¼ ðf 0, f 2Þ 2 Y and ð5:10Þ holdsg,

(5.12)

Lðu, f Þ ¼ a0

ð
X
jjf 0jj2 dxþ a2

ð
C2

jjf 2jj2 daþ a3

ð
C3

ju��hj2 da (5.13)

for all u 2 V, f ¼ ðf 0, f 2Þ 2 Y: Moreover, we consider the following optimal
control problem.

Problem Qc: Find ðu�, f �Þ 2 Vc
ad such that

Lðu�, f �Þ ¼ minðu, f Þ2Vc
ad
Lðu, f Þ: (5.14)

Next, we consider a function q and a constant ~k which satisfy the follow-
ing conditions.

ðaÞ q : R ! Rþ:
ðbÞ there exists Lq>0 such that

jqðr1Þ�qðr2Þj � Lqjr1�r2j for all r1, r2 2 R:
ðcÞ ðqðr1Þ�qðr2ÞÞ ðr1�r2Þ � 0 for all r1, r2 2 R:
ðdÞ qðrÞ ¼ 0 iff r � 0:

8>>>><
>>>>:

(5.15)
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~k � k>0: (5.16)

We introduce the set

~K ¼ fv 2 V : v� � ~k on C3g (5.17)

and we assume that for each n 2 N the functions f 0n, f 2n, hn and the con-
stant kn are given and satisfy the following conditions:

f 0n 2 L2ðXÞd, f 2n 2 L2ðC3Þd, (5.18)

kn>0, hn 2 L2ðC3Þ: (5.19)

Then, for each n 2 N, we consider the following perturbation of
Problem Pc:

Problem Pc
n: Find un such that

un 2 ~K ,
ð
X
F eðunÞ � ðeðvÞ�eðunÞÞ dxþ

ð
C3

pðun�Þðv��un�Þ da

þ 1
kn

ð
C3

qðun��kÞðv��un�Þ daþ l
ð
C3

pðun�Þðjjvsjj�jjunsjjÞ da

�
ð
X
f 0n � ðv�uÞ dxþ

ð
C2

f 2n � ðv�unÞ da 8 v 2 ~K :

(5.20)

Following [31, 32], Problem Pc
n represents the variational formulation of

the contact problem with a foundation made of a rigid body covered by a
layer of deformable material of thickness ~k: This layer is divided into two
parts: a first layer of thickness ~k�k>0 located on the top of the rigid body,
and a second layer of thickness k, located above. Here, kn is the deform-
ability coefficient of the first layer and, therefore, 1

kn
represents its stiffness

coefficient. In addition, q is a given normal compliance function which
describes the reaction of this first layer. We shall refer to this foundation as
foundation F~k : A short comparation between the variational inequalities
(5.10) and (5.20) reveals the fact that replacing the foundation Fk with
foundation F~k give rise to an extra term in the corresponding variational
foumulation, governed by the stiffness coefficient 1

kn
:

We associate to Problem Pc
n the set of admissible pairs Vcn

ad and the cost
function Ln given by

Vcn
ad ¼ fðun, f nÞ 2 ~K � Y such that f ¼ ðf 0n, f 2nÞ and ð5:20Þ holdsg, (5.21)

Lnðun, f nÞ ¼ a0

ð
X
jjf 0njj2 dxþ a2

ð
C2

jjf 2njj2 daþ a3

ð
C3

jun��hnj2 da (5.22)

for all un 2 V, f n ¼ ðf 0n, f 2nÞ 2 Y:
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Our main result in this section, which represents a continuation of our
previous results in [1], is the following.

Theorem 7. Assume that (5.3)–(5.8), (5.11), (5.15), (5.16), (5.18) and (5.19)
hold. Then:

a) Problem Pc has a unique solution and, for each n 2 N, Problem Pc
n has

a unique solution. Moreover, if

kn ! 0, f 0n * f 0 in L2ðXÞ, f 2n * f 2 in L2ðC3Þ as n ! 1, (5.23)

the solution of Problem Pc
n converges to the solution of Problem Pc, i.e.,

un ! u inV as n ! 1: (5.24)

b) Problem Qc has at least one solution and, for each n 2 N, Problem Qc
n

has at least one solution. Moreover, if

kn ! 0, hn ! h in L2ðC3Þ as n ! 1 (5.25)

and fðu�n, f �nÞg is a sequence of solutions of Problem Qc
n, there exists a subse-

quence of the sequence fðu�n, f �nÞg, again denoted by fðu�n, f �nÞg, and a solu-
tion ðu�, f �Þ of Problem Qc, such that

f �n * f � in Y, u�n ! u� in V as n ! 1: (5.26)

Proof. We start with some additional notation. First, we denote by p : V !
Y the operator v 7!ðiv, c2v) where i : V ! L2ðXÞd is the canonic embedding
and c2 : V ! L2ðC2Þd is the restriction to the trace map to C2: Next, we
consider the operators A : V ! V,G : V ! V, the function j : V � V !
IR and the element f 2 Y defined as follows:

ðAu, vÞV ¼
ð
X
F eðuÞ � eðvÞ dxþ

ð
C3

pðu�Þv� da, (5.27)

ðGu, vÞV ¼
ð
C3

qðu��kÞv� da, (5.28)

j : V � V ! R, jðu, vÞ ¼ l
ð
C3

pðu�Þjjvsjj da, (5.29)

f ¼ ðf 0, f 2Þ, (5.30)

for all u, v 2 V: Then it is easy to see that

u is a solution of Problem Pc if and only if
u 2 K, ðAu, v�uÞV þ jðu, vÞ�jðu, uÞ � ðf , pv�puÞY 8 v 2 K:

�
(5.31)
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Moreover, for each n 2 N,

un is a solution of Problem Pc
n if and only if

un 2 ~K , ðAun, v�unÞV þ 1
kn

ðGun, v�unÞV þ jðun, vÞ�jðun, unÞ
� ðf n, v�uÞY 8 v 2 ~K :

8>><
>>: (5.32)

We now proceed with the proof of the two parts of the theorem.

a) We use the abstract results in Sections 2 and 3 with X ¼ V, Y ¼
L2ðXÞd � L2ðC2Þd, K and ~K defined by (5.9) and (5.17), respectively, A
defined by (5.27), G defined by (5.28), j defined by (5.29) and f given by
(5.30). It is easy to see that in this case conditions (2.1)–(2.6),
(3.3)–(3.10) are satisfied.

For instance, using assumption (5.3) we see that

ðAu�Av, u�vÞV � mF jju�vjj2V , jjAu�AvjjV � ðLF þ d20LpÞ jju�vjjV
for all u, v 2 V: Therefore, condition (2.2) holds with m ¼ mF :
Condition (2.3)(a) is obviously satisfied and, on the other hand, an
elementary calculation based on the definition (5.29) and the trace
inequality (5.2) shows that

jðu1, v2Þ�jðu1, v1Þ þ jðu2, v1Þ�jðu2, v2Þ
� d20lLp jju1�u2jjV jjv1�v2jjV

for all u1, u2, v1, v2 2 V: Therefore, condition (2.3)(b) holds with
a ¼ d20lLp: Next, condition (2.10) holds with b¼ 0 and c ¼ d20lLp
and, using (5.7) it follows that the smallness conditions (2.4) and
(2.11), too. We also note that conditions (2.12), and (2.13) arise from
standard compactness arguments and, finally, condition (3.10) is a
direct consequence of the definitions (5.28), (5.17) and (5.9), com-
bined with the properties (5.15) of the function q.
Therefore, we are in a position to apply Theorem 1 and Proposition
3 in order to deduce the existence of a unique solution of the vari-
ational inequalities in (5.31) and (5.32), respectively. Moreover, if
(5.23) holds, by Theorem 4 we deduce the convergence (5.24). These
results combined with (5.31) and (5.32) allows us to conclude the
proof of the first part of the theorem.

b) Next, we use the abstract results in Sections 2 and 4 in the functional
framework already described above, with the functionals L and Ln given
by (5.13) and (5.22), respectively. It is easy to see that in this case condi-
tions (2.1)–(2.4), (2.6)–(2.13), (3.3)–(3.6), ð2:8Þn ð2:9Þn, (4.3)–(4.7) hold,
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with an appropriate choice of the functions g, h, gn and hn. Therefore,
we are in a position to apply Proposition 5 in order to deduce the exist-
ence of a solution of the optimal control problems in Qc and Qc

n, and
Theorem 6 in order to prove the convergence (5.26), as well. w

We now end this section with the following mechanical interpretation of
Theorem 7.

i) The convergence result (5.24) shows that the solution of the frictional
contact with foundation Fk can be approximated by the solution of the
frictional contact problem with foundation F~k , with a large stiffness
coefficient of the first layer of the deformable material. In other words,
if this layer is almost rigid, then the solution of the corresponding con-
tact problem is close to the solution of the contact problem in which
this layer is perfectly rigid.

ii) The mechanical interpretation of the optimal control Problem Qc is the
following: given a contact process governed by the variational inequality
(5.10) with the data F , p, k and l which satisfy condition (5.3), (5.4),
(5.6), (5.7) and (5.8), we are looking for a couple of applied forces
ðf 0, f 2Þ 2 L2ðXÞd � L2ðC2Þd such that the normal displacement of the
solution on the contact surface is as close as possible to the “desired”
displacement h. Furthermore, this choice has to fulfill a minimum
expenditure condition. Theorem 7 guarantees the existence of at least
one optimal couple of applied forces ðf �0, f �2Þ: A similar comment can be
made on the optimal control Problem Qc

n: Finally, the optimal solutions
of the contact problem associated to foundation F~k converge (in the
sense given by Theorem 7 c)) to an optimal solution of the contact
problem associated foundation Fk, as the stiffness coefficient of the first
deformable layer goes to infinity.

6. A heat transfer boundary value problem

In this section we apply the abstract results in Sections 2–4 in the study of
a mathematical model which describes a heat transfer phenomenon. The
problem we consider represents a version of the problem already consid-
ered in [23] and, for this reason, we skip the details. Its classical formula-
tion is the following.

Problem Ct: Find a temperature field u : X ! R such that

u � 0, Duþ f � 0, uðDuþ f Þ ¼ 0 a:e: in X, (6.1)
u ¼ 0 a:e: on C1, (6.2)
u ¼ b a:e: on C2, (6.3)
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� @u
@�

¼ q a:e: on C3: (6.4)

Here, as in Section 5, X is a bounded domain in R
d (d¼ 1, 2, 3 in appli-

cations) with smooth boundary oX ¼ C1 [ C2 [ C3 and outer normal unit
m: We assume that C1,C2,C3 are disjoint measurable sets and, moreover,
meas ðC1Þ>0: In addition, in (6.1)–(6.4) we do not mention the depend-
ence of the different functions on the spatial variable x 2 X [ oX: The
functions f, b and q are given and will be described below. Here we men-
tion that f represents the internal energy, b is the prescribed temperature
field on C2 and q represents the heat flux prescribed on C3: Moreover, ou

om
denotes the normal derivative of u on C3:
For the variational analysis of Problem Ct we consider the space

V ¼ fv 2 H1ðXÞ : v ¼ 0 on C1g:
We denote in what follows by ð�, �ÞV the inner product of the space H1ðXÞ
restricted to V and by jj � jjV the associated norm. Since meas ðC1Þ>0, it is
well known that ðV, ð�, �ÞVÞ is a real Hilbert space. Next, we assume that

f 2 L2ðXÞ, b 2 L2ðC2Þ, q 2 L2ðC3Þ, (6.5)
there exists v0 2 V such that v0 � 0 in X and v0 ¼ b on C2 (6.6)

and, finally, we introduce the set

K ¼ fv 2 V : v � 0 in X, v ¼ b on C2 g: (6.7)

Note that assumption (6.6) represents a compatibilty assumption on the
data b which guarantees that the set K is not empty. Then, it is easy to see
that the variational formulation of problem Ct, obtained by standard argu-
ments, is as follows.

Problem Pt: Find u such that

u 2 K,
ð
X
ru � ðrv�ruÞ dxþ

ð
C3

qðv�uÞ da �
ð
X
f ðv�uÞ dx 8 v 2 K:

(6.8)

We now introduce the set of admissible pairs for inequality (6.8) defined by

Vt
ad ¼ fðu, f Þ 2 K � L2ðXÞ such that ð6:8Þ holdsg: (6.9)

Moreover, we consider two constants x, d and a function / such that

x>0, d>0, / 2 L2ðXÞ (6.10)

and, with these data, we associate to Problem Pt the following optimal con-
trol problem.
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Problem Qt: Find ðu�, f �Þ 2 Vt
ad such that

x
ð
X
ðu��/Þ2 dxþ d

ð
X
ðf �Þ2 dx ¼ minðu, f Þ2Vt

ad

�
x
ð
X
ðu�/Þ2 dxþ d

ð
X
f 2 dx

�
:

(6.11)

Next, we introduce the set

~K ¼ fv 2 V : v � 0 in Xg (6.12)

and we assume that for each n 2 N the functions fn, /n and the constants
kn, xn, dn, are given and satisfy the following conditions:

fn 2 L2ðXÞ, (6.13)

kn>0, xn>0, dn>0, /n 2 L2ðXÞ: (6.14)

Then, for each n 2 N, we consider the following perturbation of
Problem Pt:

Problem Pt
n: Find un such that

un 2 ~K ,
Ð
Xrun � ðrv�runÞ dxþ Ð

C3
qðv�unÞ da

þ 1
kn

ð
C2

ðun � bÞðv�unÞ da �
ð
X
fnðv�unÞ dx 8 v 2 ~K :

(6.15)

Using standard arguments it is easy to see that Problem Pt
n represents

the variational formulation of the following boundary value problem.

Problem Ctn: Find a temperature field un : X ! R such that

un � 0, Dun þ fn � 0, unðDun þ fnÞ ¼ 0 a:e: in X, (6.16)

un ¼ 0 a:e: on C1, (6.17)

� @un
@�

¼ 1
kn

ðun�bÞ a:e: on C2, (6.18)

� @un
@�

¼ q a:e: on C3: (6.19)

Note that Problem Ctn is obtained from Problem Ct by replacing the
Dirichlet boundary condition (6.3) with the Neumann boundary condition
(6.18) and prescribing the internal energy fn in X, instead of the internal
energy f. Here kn is a positive parameter, and its inverse hn ¼ 1

kn
represents

the heat transfer coefficient on the boundary C2: In contrast to Problem Pt

(in which the temperature is prescribed on C2), in Problem Pt
n this condi-

tion is replaced by a condition on the flux of the temperature, governed by
a positive heat transfer coefficient.
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The set of admissible pairs for inequality (6.15) is defined by

Vtn
ad ¼ fðun, fnÞ 2 ~K � L2ðXÞ such that ð6:15Þ holdsg (6.20)

and, moreover, the associated optimal control problem is the following.

Problem Qt
n: Find ðu�n, f �n Þ 2 Vtn

ad such that

xn

ð
X
ðu�n�/nÞ2 dxþ dn

ð
X
ðf �n Þ2 dx

¼ minðu, f Þ2Vtn
ad

�
xn

ð
X
ðu�/nÞ2 dxþ dn

ð
X
f 2 dx

�
:

(6.21)

Our main result in this section is the following.

Theorem 8. Assume that (6.5)–(6.6), (6.10), (6.13) and (6.14) hold. Then:

a) Problem Pt has a unique solution and, for each n 2 N, Problem Pt
n

has a unique solution. Moreover, if

kn ! 0 and fn * f in L2ðXÞ as n ! 1, (6.22)

the solution of Problem Pt
n converges to the solution of Problem Pt, i.e.,

un ! u in V as n ! 1: (6.23)

b) Problem Qt has at least one solution and, for each n 2 N, Problem Qt
n

has at least one solution. Moreover, the solution of Problem Qt is unique
if / ¼ 0L2ðXÞ and, for each n 2 N, the solution of Problem Qtn is unique,
if /n ¼ 0L2ðXÞ:

c) Assume that

kn ! 0, xn ! x, dn ! d, /n ! / in L2ðXÞ as n ! 1 (6.24)

and let fðu�n, f �n Þg be a sequence of solutions of Problem Qt
n. Then, there

exists a subsequence of the sequence fðu�n, f �n Þg, again denoted by fðu�n, f �n Þg,
and a solution ðu�, f �Þ of Problem Qt, such that

f �n * f � in L2ðXÞ, u�n ! u� in V as n ! 1: (6.25)

Moreover, if / ¼ 0L2ðXÞ, then the whole sequence fðu�n, f �n Þg satisfies (6.25)
where ðu�, f �Þ represents the unique solution of Problem Qt:

Proof. We start by introducing some notation which allow us to write the
problems in an equivalent form. To this end, we denote by p : V ! L2ðXÞ
the canonical inclusion of V in L2ðXÞ: Moreover, we consider the operators
A : V ! V,G : V ! V defined as follows:

ðAu, vÞV ¼
ð
X
ru � rv dxþ

ð
C3

qv da 8 u, v 2 V, (6.26)
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ðGu, vÞV ¼
ð
C2

ðu� bÞv da 8 u, v 2 V: (6.27)

Then, it is easy to see that

u is a solution of Problem Pt if and only if
u 2 K, ðAu, v�uÞV � ðf , v�uÞL2ðXÞ 8 v 2 K:

(
(6.28)

Moreover, for each n 2 N,

un is a solution of Problem Pt
n if and only if

un 2 ~K , ðAu, v�uÞV þ 1
kn

ðGun, v�unÞV
� ðfn, v�unÞL2ðXÞ 8 v 2 ~K :

8>>><
>>>:

(6.29)

Next, denote by L : V � L2ðXÞ ! R and Ln : V � L2ðXÞ ! R the cost
functionals given by

Lðu, f Þ ¼ xjju�/jj2L2ðXÞ þ djjf jj2L2ðXÞ , (6.30)

Lnðu, f Þ ¼ xnjju�/njj2L2ðXÞ þ dnjjf jj2L2ðXÞ (6.31)

for all ðu, f Þ 2 V � L2ðXÞ: Then, it is easy to see that

ðu�, f �Þ is a solution of Problem Qt if and only if
ðu�, f �Þ 2 Vt

ad and Lðu�, f �Þ ¼ minðu�f �Þ2Vt
ad
Lðu, f Þ

(
(6.32)

Moreover, for each n 2 N,

ðu�n, f �n Þ is a solution of Problem Qt if and only if
ðu�n, f �n Þ 2 Vtn

ad and Lnðu�n, f �n Þ ¼ min
ðu�f �Þ2V tn

ad

Lnðu, f Þ

8<
: (6.33)

We now proceed with the proof of the two parts of the theorem.

a) We use the abstract results in Sections 2 and 3 with X ¼ V, Y ¼
L2ðXÞ, K and ~K defined by (6.7) and (6.12), respectively, A defined by
(6.26), G defined by (6.27), and j 	 0: It is easy to see that in this case
conditions (2.1)–(2.6), (3.3)–(3.10) are satisfied. Therefore, we are in a
position to apply Theorem 1 and Proposition 3 in order to deduce the
existence of a unique solution of the variational inequalities in (6.28)
and (6.29), respectively. Moreover, by Theorem 4 we deduce the con-
vergence (6.23). These results combined with (6.28) and (6.29) allows
us to conclude the proof of the statement a) in Theorem 8.

b) We use the abstract results in Sections 2 and 4 in the functional frame-
work described above, with the functionals L and Ln given by (6.30)
and (6.31), respectively. It is easy to see that in this case conditions
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(2.1)–(2.4), (2.6)–(2.13), (3.3)–(3.6), (2.8)n, (2.9)n (4.3) and (4.4)–(4.5)
hold, with an appropriate choice of the functions g, h, gn and hn.
Therefore, we are in a position to apply Theorem 2 and Proposition 5
in order to deduce the existence of a solution of the optimal control
problems in (6.32) and (6.33), respectively.

The uniqueness of the solution of Problem Qt in the case / ¼ 0L2ðXÞ fol-
lows from a strict convexity argument. Indeed, for any f 2 L2ðXÞ let u(f)
denote the solution of the variational inequality in (6.28). Then it was
proved in [23] that the functional

f 7!Lðuðf Þ, f Þ ¼ xjjuðf Þjj2L2ðXÞ þ djjf jj2L2ðXÞ
is strictly convex and, therefore, the optimal control problem in (6.32)
has a unique solution. The uniqueness of the solution of Problem Qt

n
in the case /n ¼ 0L2ðXÞ follows from the same argument. These results
combined with the equivalence results (6.32) and (6.33) allows us to
conclude the proof of the statement b) in Theorem 8.

c) The convergence (6.25) is a direct consequence of Theorem 6. The
convergence (6.25) of the whole sequence fðu�n, f �n Þg in the case / ¼
0L2ðXÞ follows from a standard argument, since in this case Problem
Qt has a unique solution. w

We end this section with the following physical interpretation of
Theorem 8.

i) First, the solutions of Problems Pt and Pt
n represent weak solutions of

the heat transfer problems Ct and Ctn, respectively. Therefore, Theorem 8
provides the unique weak solvability of these problems. Moreover, the
weak solution of the problem with prescribed temperature on C2 can be
approximated by the solution of the problem with heat transfer on C2,
for a large heat transfer coefficient, as shown in [33].

ii) The physical interpretation of the optimal control Problem Qt is the
following: given a heat transfer process governed by the variational
inequality (6.8) with the data b and q which satisfy condition (6.5) and
(6.6), we are looking for an internal energy f � 2 L2ðXÞ such that the
temperature u is as close as possible to the “desired” temperature /:
Furthermore, this choice has to fulfill a minimum expenditure condi-
tion which is taken into account by the last term in the cost functional.
In fact, a compromise policy between the two aims (“u close to /“and
“minimal energy f”) has to be found and the relative importance of
each criterion with respect to the other is expressed by the choice of
the weight coefficients x and d. Theorem 8 guarantees the existence of
at least one optimal energy function f � and, if the target / vanishes,
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the optimal energy is unique. A similar comment can be made on the
optimal control Problem Qt

n: Finally, the optimal solutions of the heat
transfer problem converge (in the sens given by Theorem 8 c)) to an
optimal solution of the thermal problem with prescribed temperature
on C2, as the heat transfer coefficient converges to infinity.
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[28] Matei, A., Micu, S., Niţ�a, C. (2018). Optimal control for antiplane frictional contact
problems involving nonlinearly elastic materials of Hencky type. Math. Mech. Solids
23(3):308–328. DOI: 10.1177/1081286517718605.

[29] Mig�orski, S. A note on optimal control problem for a hemivariational inequality
modeling fluid flow. Discrete Contin. Dyn. Syst. Dynamical systems, differential
equations and applications, 9th AIMS Conference. Suppl. (2013), 545–554. DOI: 10.
3934/proc.2013.2013.545

[30] Sofonea, M., Xiao, Y.B. (2019). Boundary optimal control of a nonsmooth frictionless con-
tact problem. Comput. Math. Appl. 78(1):152–165. DOI: 10.1016/j.camwa.2019.02.027.

[31] Sofonea, M., Matei, A. (2012). Mathematical Models in Contact Mechanics, London
Mathematical Society Lecture Note Series, Vol. 398, Cambridge: Cambridge University
Press.

[32] Sofonea, M., Mig�orski, S. (2018). Variational-Hemivariational Inequalities with
Applications, Pure and Applied Mathematics. Boca Raton-London: Chapman &
Hall/CRC Press.

[33] Tarzia, D.A. (1979). Sur le probl�eme de Stefan �a deux phases. C. R. Acad. Sc. Paris,
S�erie A. 288:941–944.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 1351

https://doi.org/10.1137/17M1144404
https://doi.org/10.1137/17M1144404
https://doi.org/10.1016/j.nonrwa.2011.01.003
https://doi.org/10.1007/s10589-011-9438-7
https://doi.org/10.1080/01630560008816987
https://doi.org/10.1016/j.na.2010.10.034
https://doi.org/10.1007/s00245-017-9410-8
https://doi.org/10.1007/s00245-017-9410-8
https://doi.org/10.1177/1081286517718605
https://doi.org/10.3934/proc.2013.2013.545
https://doi.org/10.3934/proc.2013.2013.545
https://doi.org/10.1016/j.camwa.2019.02.027

	Abstract
	Introduction
	Problem statement and preliminaries
	A convergence result
	Convergence of optimal pairs
	A frictional contact problem
	A heat transfer boundary value problem
	References


