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Abstract. We consider an elliptic hemivariational inequality in a real reflexive Banach space X which,
under appropriate assumptions on the data, has a unique solution u ∈ X . We recall the concepts of well-
posedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these
concepts by introducing new well-posedness concepts, constructed with a larger set of approximating
sequences. We also prove that, under additional assumptions, these new well-posedness concepts are
optimal in the sense that all the sequences of elements of X which converge to the solution u are approx-
imating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions
for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a con-
vergence criterion to the solution of the hemivariational inequality. This criterion can be used in various
applications. To provide an example, we illustrate its use in the study of a penalty method associated to
an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact
with a obstacle, the so-called foundation.
Keywords. Elliptic hamivariational inequality; Well-posedness results; Elastic membrane; Contact with
normal compliance and unilateral constrain.
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1. INTRODUCTION

A large number of mathematical models in Physics, Mechanics, and Engineering Sciences
are expressed in terms of nonlinear boundary value problems which lead, in their variational
formulation, to various type of inequalities. Their analysis, including existence and uniqueness
results, well-posedness results, optimal control, and error estimates for numerical schemes had
made the object of many books and papers and, therefore, the literature in the field is extensive.
Here we restrict ourselves to mention the books [9, 12, 15, 21, 22, 23] and, more recently, [1,
19, 25], as well as the survey paper [11]. The results presented in [1, 9, 22] concern the analysis
of various classes of variational inequalities and are based on arguments of monotonicity and
convexity, including properties of the subdifferential of a convex function. The results in [11, 12,
19, 21, 23, 25] concern the analysis of hemivariational inequalities and are based on properties
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of the subdifferential in the sense of Clarke, defined for locally Lipschitz functions, which may
be nonconvex.

The concept of Tykhonov well-posedness was introduced in [29] for a minimization problem,
and then it has been generalized for different optimization problems; see, e.g., [7, 13, 14, 16, 32].
It has been extended in the recent years to various mathematical problems like inequalities, in-
clusions, fixed point and saddle point problems. The well-posedness of variational inequalities
was studied for the first time in [17, 18] and the study of well-posedness of hemivariational
inequalities was initiated in [10]. References in the field include [30], among others. A gen-
eral framework which unifies the well-posedness theories of abstract problems in metric spaces
was recently introduced in [24]. There are, the concept of T -well-posedness was introduced
and studied, based on the notion of a new and nonstandard mathematical object, the so-called
Tykhonov triple, denoted by T . The two ingredients of the concept are the followings: a) any
Tykhonov triple T generates a class of special sequences, the so-called T -approximating se-
quences; b) a problem P is T well-posed if it has a unique solution and any T -approximating
sequence converge to this solution.

Given a problem P , which has a unique solution u in a normed or metric space X , one of
the main questions is to find a well-posedness concept such that any sequence which converge
to the solution u is an approximating sequence. This question is strongly related to the problem
of finding convergence criteria to the solution of the corresponding problem P . Such kind of
convergence criteria were obtained in [8, 26, 27] in the study of variational inequalities, min-
imization problems, fixed point problems, and differential equations, respectively. Moreover,
they have been obtained in [28] the study of stationary inclusions.

In this current paper, we continue our research in [8] by considering the case elliptic hemi-
variational inequalities. The functional framework that we use everywhere in the rest of the
paper is the following: X is a real reflexive Banach space, K ⊂ X , A : X → X∗, j : X → R, and
f ∈ X∗. Here and below, we use X∗ for the dual of X , 〈·, ·〉 for the duality paring between X∗

and X and 0X for the zero element of X . Moreover, we assume that the function j is locally
Lipschitz and we use the notation j0(u;v) for the generalized directional derivative of j at u∈X ,
in the direction v ∈ X . With these notations, we consider the following inequality problem.

Problem P . Find an element u such that

u ∈ K, 〈Au,v−u〉+ j0(u;v−u)≥ 〈 f ,v−u〉 ∀v ∈ K. (1.1)

Besides the mathematical interest in such kind of inequalities, our study is motivated by pos-
sible applications in Solid and Contact Mechanics. Indeed, a large number of mathematical
models which describe the contact of an elastic body with an obstacle lead to variational for-
mulations of the form (1.1) in which u represents the displacement field. References in the field
are the books [19, 24, 25], for instance. Moreover, such an example of elastic contact problem
will be provided in the last section of the current paper.

The rest of this paper is structured as follows. In Section 2, we introduce some preliminary
material. Next, in Section 3, we recall the concepts of Tykhonov and Levitin-Polyak well-
posedness for hemivariational inequality (1.1). We then state and prove a new convergence
result, Theorem 3.1, and use it to extend the Tykhonov and Levitin-Polyak well-posedness con-
cepts for inequality (1.1). In Section 4, we state and prove our main result, Theorem 4.1. It
provides necessary and sufficient conditions, which guarantee the convergence of a sequence
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{un} ⊂ X to the solution u of Problem P . Based on this result, we conclude that, under ad-
ditional assumptions on the data, the new well-posedness concepts that we introduce in this
paper are optimal. Finally, in Section 5, we apply these abstract results in the study of a math-
ematical model which describes an elastic membrane in contact with an obstacle, the so-called
foundation.

2. PRELIMINARIES

Everywhere in this paper, unless it is specified otherwise, we use the functional framework
described in Introduction. Moreover, we denote by ‖ · ‖X the norm on X , and 2X represents the
set of parts of X . All the limits, lower limits and upper limits below are considered as n→ ∞

even if we do not mention it explicitly. The symbols “→” and “ ⇀ ” denote the strong and
the weak convergence in various spaces which will be specified, except in the case that these
convergence take place in R. For a sequence {εn} ⊂ IR+ which converges to zero, we use the
short hand notation 0≤ εn→ 0. Finally, we denote by d(u,M) the distance between an element
u ∈ X and the set M ⊂ X , that is, d(u,M) = infv∈M ‖u− v‖X .

Sets and Operators. For the subsets of X , we recall the following definition.

Definition 2.1. Let X be a normed space. A subset K ⊂ X is called:
(a) closed if the limit of each convergent sequence of elements of K belongs to K, that is,

{un} ⊂ K, un→ u in X =⇒ u ∈ K.

(b) weakly closed if the limit of each weakly convergent sequence of elements of K belongs
to K, that is,

{un} ⊂ K, un ⇀ u in X =⇒ u ∈ K.

(c) convex if it has the property

u, v ∈ K =⇒ (1− t)u+ t v ∈ K ∀ t ∈ [0,1].

Evidently, every weakly closed subset of X is closed, but the converse is not true, in general.
An exception is provided by the class of convex subsets of a Banach space which are strongly
closed if and only are weakly closed.

We now recall the following definition for the convergence of sequences of subsets of X ,
introduced in [20].

Definition 2.2. Let X be a normed space, {Kn} be a sequence of nonempty subsets of X , K be
a nonempty subset of X . We say that the sequence {Kn} converges to K in the sense of Mosco
and we write Kn

M−→ K if the following conditions hold:
(a) for each u ∈ K, there exists a sequence {un} such that un ∈ Kn for each n ∈ N and un→ u

in X .
(b) for each sequence {un} such that un ∈ Kn for each n ∈N and un ⇀ u in X , we have u ∈ K.

Next, we recall the definition of some classes of operators.

Definition 2.3. Let X be a normed space. An operator A : X → X∗ is called:
(a) bounded if A maps bounded sets of X into bounded sets of X∗.
(b) monotone if 〈Au−Av,u− v〉 ≥ 0 for all u, v ∈ X .
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(c) strongly monotone if there exists mA > 0 such that

〈Au−Av,u− v〉 ≥ m‖u− v‖2
X ∀u, v ∈ X .

(d) pseudomonotone if it is bounded and un ⇀ u in X together with

limsup〈Aun,un−u〉 ≤ 0

imply that
liminf〈Aun,un− v〉 ≥ 〈Au,u− v〉 ∀v ∈ X .

(e) hemicontinuous if, for all u, v, w ∈ X , the function λ 7→ 〈A(u+λv),w〉 is continuous on
[0,1].
(f) Lipschitz continuous if there exists LA > 0 such that

‖Au−Av‖X ≤ LA‖u− v‖X ∀u, v ∈ X .

Examples and various properties of the nonlinear operators which satisfy the definitions
above can be found in [4, 5, 19, 31], for instance. For the following result, we refer the reader
to [6, Section 1.9] and [31, Proposition 27.6].

Proposition 2.1. Let A, B : X → X∗ be operators on a reflexive Banach space X. The following
statements hold:

(a) if A is bounded, hemicontinuous and monotone, then it is pseudomonotone;

(b) if A and B are pseudomonotone, then A+B is pseudomonotone.

Locally Lipschitz functions. We now recall the basic definitions and properties of the general-
ized subdifferential in the sense of Clarke [2].

Definition 2.4. Let X be a Banach space. A function j : X→R is said to be locally Lipschitz, if,
for every x∈X , there exist Ux a neighborhood of x and a constant Lx > 0 such that | j(y)− j(z)| ≤
Lx‖y− z‖X for all y, z ∈Ux.

We note that a convex continuous function j : X → R is locally Lipschitz. Also, if a function
j : X → R is Lipschitz continuous on bounded sets of X , then it is locally Lipschitz, while the
converse does not hold, in general.

Definition 2.5. Let j : X → R be a locally Lipschitz function. The generalized (Clarke) direc-
tional derivative of j at x ∈ X in the direction v ∈ X , denoted by j0(x;v), is defined by

j0(x;v) = limsup
y→x, λ↓0

j(y+λv)− j(y)
λ

.

The subdifferential in the sense of Clarke (or, equivalently, the generalized gradient) of j at x,
denoted by ∂ j(x), is a subset of the dual space X∗ given by

∂ j(x) =
{

ζ ∈ X∗ : j0(x;v)≥ 〈ζ ,v〉 ∀v ∈ X
}
.

A locally Lipschitz function j is said to be regular (in the sense of Clarke) at x ∈ X if for all
v ∈ X the one-sided directional derivative

j′(x;v) = lim
λ↓0

j(x+λv)− j(x)
λ

exists and j0(x;v) = j′(x;v).
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The following result collects some properties of the generalized directional derivative and the
generalized gradient.

Proposition 2.2. Assume that j : X → R is a locally Lipschitz function on a Banach space X.
Then, the following hold.

(i) For every x ∈ X, the function X 3 v 7→ j0(x;v) ∈ R is positively homogeneous, i.e.,
j0(x;λv) = λ j0(x;v) for all λ ≥ 0 and subadditive, i.e., j0(x;v1 + v2) ≤ j0(x;v1)+ j0(x;v2)
for all v1, v2 ∈ X.

(ii) The function X×X 3 (x,v) 7→ j0(x;v) ∈ R is upper semicontinuous, i.e., for all x, v ∈ X,
{xn}, {vn} ⊂ X such that xn→ x and vn→ v in X, limsup j0(xn;vn)≤ j0(x;v).

(iii) For every x, v ∈ X, we have j0(x;v) = max
{
〈ζ ,v〉 : ζ ∈ ∂ j(x)

}
.

We refer to [3, 5, 19] for additional results on the generalized gradient, its relation to classical
notions of differentiability, and other calculus rules.

An existence and uniqueness result. In the study of (1.1), we consider the following assump-
tions

K is a nonempty closed convex subset of X . (2.1)

A : X → X∗ is pseudomonotone and strongly monotone, i.e.:

(a) A is bounded and un ⇀ u in X with limsup〈Aun,un−u〉 ≤ 0
implies that liminf〈Aun,un− v〉 ≥ 〈Au,u− v〉 ∀v ∈ X .

(b) there exists mA > 0 such that
〈Au−Av,u− v〉 ≥ mA‖u− v‖2

X ∀u, v ∈ X .

(2.2)



j : X → R is such that:

(a) j is locally Lipschitz.

(b) ‖ξ‖X∗ ≤ c0 + c1 ‖v‖X ∀v ∈ X , ξ ∈ ∂ j(v)
with c0,c1 ≥ 0.

(c) there exists α j ≥ 0 such that

j0(v1;v2− v1)+ j0(v2;v1− v2)≤ α j ‖v1− v2‖2
X

∀v1,v2 ∈ X .

(2.3)

α j < mA. (2.4)

f ∈ X∗. (2.5)

The unique solvability of inequality (1.1) is given by the following result.

Theorem 2.1. Assume (2.1)–(2.5). Then, inequality (1.1) has a unique solution u ∈ K.

A proof of Theorem 2.1 can be found in [25], based on a surjectivity argument for pseu-
domonotone multivalued operators.
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3. WELL POSEDNESS RESULTS

We start this section by recalling the concept of Tykhonov well-posedness and Levitin well-
posedness for hemivariational inequality (1.1). For more details and results in the field, we refer
to [24, 30].

Definition 3.1. A sequence {un}⊂X is called an approximting sequence for the hemivariational
inequality (1.1) if there exists 0≤ εn→ 0 such that

un ∈ K, 〈Aun,v−un〉+ j0(un;v−un)+ εn‖v−un‖X ≥ 〈 f ,v−un〉 ∀v ∈ K, n ∈ N.

Problem P is well-posed in the sense of Tykhonov if it has a unique solution u and every
approximating sequence converges in X to u.

Definition 3.2. A sequence {un} ⊂ X is called an LP-approximting sequence for the hemivaria-
tional inequality (1.1) if there exists two sequences {wn} ⊂ X and {εn} ⊂R such that wn→ 0X
in X , 0≤ εn→ 0 and

un +wn ∈ K, 〈Aun,v−un〉+ j0(un;v−un)+ εn‖v−un‖X ≥ 〈 f ,v−un〉 ∀v ∈ K, n ∈ N.

Problem P is well-posed in the sense of Levitin-Polyak if it has a unique solution u and every
LP-approximating sequence converges in X to u.

It is easy to see that any approximating sequence is an LP-approximating sequence. There-
fore, if problem P is well-posed in the sense of Levitin-Polyak, then it is well-posed in the
sense of Tykhonov, too. Some elementary examples (see [26], for instance) can be constructed
in order to see that the converse of this statement is not true. We conclude from here that the
Levitin-Polyak well-posedness of inequality (1.1) implies its Tykhonov well-posedness and,
for this reason, we say that the Levitin-Polyak well-posedness concept is “stronger” than the
Tykhonov well-posedness concept. With this remark in mind, our aim in this section is to intro-
duce three new well-posedness concepts in the study of inequality (1.1) which are stronger (in
the sense defined above) than the Levitin-Polyak and Tykhonov well-posedness concepts. Our
construction requires some preliminaries that we introduce in what follows. First, everywhere
below we assume that (2.1)–(2.5) hold, and we denote by u the solution of Problem P provided
by Theorem 2.1. Moreover, we assume the following additional condition on the function j

For all sequence {un} ⊂ X such that

un ⇀ u in X and for any v ∈ X , we have

limsup j0(un;v−un)≤ j0(u;v−u).

(3.1)

Note that this condition can be avoided in the proof of Theorem 3.1 below. Nevertheless, we
keep it for two reasons: first, it allows us to simplify the proof of this theorem; second, it is
satisfied in the example we present in Section 5 below. Moreover, we mention that examples of
functions j which satisfy this conditions are given in [25].

Next, given a sequence {un} ⊂ X , we consider the following statements:

(S1) d(un,K)→ 0,

(S2) ∃{wn} ⊂ X such that wn→ 0X in X and un +wn ∈ K ∀n ∈ N,

(S3) ∃{Kn} ⊂ 2X such that Kn
M−→ K and un ∈ Kn ∀n ∈ N,
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(S4) ∃{εn}→ 0 such that

〈Aun,v−un〉+ j0(un;v−un)+ εn(1+‖v−un‖X)≥ 〈 f ,v−un〉 ∀v ∈ K, n ∈ N.

(S5) un→ u in X .

In addition, we define the following sets of sequences:

T 1 =
{
{un} ⊂ X : {un} satisfies the statements (S1) and (S4)

}
,

T 2 =
{
{un} ⊂ X : {un} satisfies the statements (S2) and (S4)

}
,

T 3 =
{
{un} ⊂ X : {un} satisfies the statements (S3) and (S4)

}
,

TP =
{
{un} ⊂ X : {un} satisfies the statements (S5)

}
.

The inclusions between these sets represent the main result in this section and is provided by
the following theorem.

Theorem 3.1. Assume (2.1)–(2.5). Then:
a) T1 = T2 ⊂T3.
b) T3 ⊂TP if, in addition, (3.1) holds.

Everywhere below we assume that the hypothesis of Theorem 2.1 hold, even if we do not
mention it explicitly. The proof of Theorem 3.1 is based on some preliminary results that we
state and prove in what follows.

Lemma 3.1. The statements (S1) and (S2) are equivalent.

Proof. We recall that any reflexive Banach space X can be always considered as equivalently
renormed strictly convex. Therefore, without loosing the generality, we assume that (X ,‖ · ‖X)
is strictly convex and, using assumption (2.1), we can consider the projection operator on PK :
X → K, defined by

ξ = PK f ⇐⇒ ξ ∈ K and ‖ξ − f‖X = d( f ,K) ∀ f ∈ K. (3.2)

Assume that (S1) holds, i.e., d(un,K)→ 0 and, for each n ∈N, take wn = PKun−un. Then, it is
easy to see from (3.2) that un +wn ∈ K for each n ∈ N and, moreover,

‖wn‖X = ‖un−PKun‖X = d(un,K)→ 0.

This shows that {wn} satisfies the requirements in (S2).
Conversely, if (S2) holds, then d(un,K)≤ ‖un− (un +wn)‖X = ‖wn‖X for each n ∈N. Since

wn→ 0X , we deduce that (S1) holds, which concludes the proof. �

Lemma 3.2. Statement (S2) implies statement (S3).

Proof. Let {un} ⊂ X be a sequence which satisfies condition (S2), and let {wn} ⊂ X be a se-
quence such that wn→ 0X in X and un +wn ∈ K, for each n ∈N. For each n ∈N, we define the
set Kn by equality Kn = K +B(0X ,‖wn‖X), where B(0X ,‖wn‖X) represents the ball of radius
‖wn‖X centered in 0X , i.e.,

B(0X ,‖wn‖X) =
{

v ∈ X : ‖v‖X ≤ ‖wn‖X

}
.
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We claim that the following property holds:

Kn
M−→ K. (3.3)

Indeed, since K⊂Kn for each n∈N, it follows that the condition (a) in Definition 2.2 is satisfied.
Next, let v ∈ K and let {vn} ⊂ X be a sequence such that vn ∈ Kn for each n ∈ N and vn ⇀ v in
X . Then, for each n ∈ N, there exist some elements ṽn and w̃n such that

vn = ṽn + w̃n, ṽn ∈ K, w̃n ∈ B(0X ,‖wn‖X),

which means that ‖w̃n‖X ≤ ‖wn‖X . Thus assumption (S2) implies that w̃n → 0X in X . We
combine this convergence with the convergence vn ⇀ v in X and equality vn = ṽn + w̃n to see
that ṽn ⇀ v in X . Thus, since K is weakly closed, we deduce that v ∈ K. This proves that the
condition (b) in Definition 2.2 is satisfied, which concludes the proof of (3.3).

Finally, we write un = (un +wn)−wn to see that un ∈ Kn for all n ∈ N. We now use this
inclusion and implication (3.3) to see that the sequence {Kn} satisfies the requirements in the
convergence (S3). �

Lemma 3.3. Any sequence {un} which satisfies the statement (S4) is bounded.

Proof. Let v0 ∈ K be fixed. Using assumption (2.2)(b), we have

mA‖v0−un‖2
X ≤ 〈Av0−Aun,v0−un〉= 〈Av0,v0−un〉−〈Aun,v0−un〉

and, therefore, inequality (3.2) yields

mA‖v0−un‖2
X ≤ ‖Av0− f‖X∗‖v0−un‖X + j0(un;v0−un)+ εn(1+‖v0−un‖X).

Moreover, using assumption (2.3) and the properties of the Clarke directional derivative, we
have

j0(un;v0−un) = j0(un;v0−un)+ j0(v0;un− v)− j0(v0;un− v0)

≤ j0(un;v0−un)+ j0(v0;un− v0)+ | j0(v0;un− v0)|

≤ α j‖un− v0‖2
X +

∣∣∣max
{
〈ξ ,un− v0〉 : ξ ∈ ∂ j(v0)

}∣∣∣
≤ α j‖un− v0‖2

X +(c0 + c1‖v0‖X)‖un− v0‖X .

Thus
j0(un;v0−un)≤ α j‖un− v0‖2

X +(c0 + c1‖v0‖X)‖un− v0‖X , (3.4)

which implies that

(mA−α j)‖un− v0‖2
X ≤ ‖Av− f‖X∗‖un− v0‖X + εn + εn‖un− v0‖X

+(c0 + c1‖v0‖X)‖un− v0‖X .

Using the smallness assumption (2.4), we deduce that there exists two positive constants C and
D, which depend on v0 and the rest of the data but do not depend on n, such that

‖un− v0‖2
X ≤C(1+ εn)‖un− v0‖X +Dεn.

We now use the elementary inequality

x2 ≤ ax+b =⇒ x≤ a+
√

b ∀x, a, b≥ 0.
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to see that
‖un− v0‖X ≤C(1+ εn)+

√
Dεn.

Since 0≤ εn→ 0, we deduce that {un−v0} is bounded in X . This implies that {un} is a bounded
sequence in X , which concludes the proof of the lemma. �

We now have all the ingredients to provide the proof of the theorem.

Proof of Theorem 3.1. a) This part of the theorem represents a direct consequence of Lemmas
3.1 and 3.2, combined with the definitions of the sets T1, T2, and T3.

b) We now move to the proof of the second part of the theorem. To this end, we assume that
(3.1) holds and we consider a sequence {un} ∈ T3. Then, there exists a sequence {Kn} ⊂ 2X

and a sequence n ∈ N such that

Kn
M−→ K, (3.5)

un ∈ Kn ∀n ∈ N, (3.6)

εn→ 0, (3.7)

and the inequality in (S4) holds. We next prove that un→ u in X . To this end, we divide the
proof in two steps, described below.

Step i) {un} converges weakly to the solution u of Problem P . Using Lemma 3.3 and the
reflexivity of the space X we deduce that, passing to a subsequence if necessary,

un ⇀ ũ in X , as n→ ∞, (3.8)

with some ũ ∈ X . Then, using assumptions (3.5), (3.6) and Definition 2.2, it follows that

ũ ∈ K. (3.9)

Consider now an arbitrary element v ∈ K. We use the inequality in (S4) to see that

〈Aun,un− v〉 ≤ j0(un;v−un)+ εn(1+‖v−un‖X)+ 〈 f ,un− v〉. (3.10)

Moreover, the convergence (3.7), (3.8), and assumption (3.1) imply that

limsup j0(un;v−un)≤ j0(ũ;v− ũ), (3.11)

εn(1+‖v−un‖X)→ 0, (3.12)

〈 f ,un− v〉 → 〈 f , ũ− v〉. (3.13)

We now pass to the upper limit in inequality (3.10) and use (3.11)–(3.13) to find that

limsup〈Aun,un− v〉 ≤ j0(ũ;v− ũ)+ 〈 f , ũ− v〉. (3.14)

Recall that this inequality holds for each v ∈ K. Next, we take v = ũ in (3.14) and use the
property j0(ũ;0X) = 0 of the Clarke directional derivative to deduce that

limsup〈Aun,un− ũ〉 ≤ 0. (3.15)

Exploiting now the pseudomonotonicity of the operator A, from (3.8) and (3.15), we have

〈Aũ, ũ− v〉 ≤ liminf〈Aun,un− ũ〉 ∀v ∈ X . (3.16)

Next, from (3.9), (3.16), and (3.14) we obtain that ũ is a solution to Problem P , as claimed.
Thus, by the uniqueness of the solution we find that ũ = u.
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A careful analysis of the results presented above indicates that every subsequence of {un}
which converges weakly in X has the same weak limit u. On the other hand, {un} is bounded
in X . Therefore, using a standard argument we deduce that the whole sequence {un} converges
weakly to u in X , as n→ ∞, which concludes the proof of this step.

Step ii) {un} converges strongly to the solution of Problem P . We now take v = u = ũ in
inequalities (3.16) and (3.15) to see that 0 ≤ liminf〈Aun,un− u〉 ≤ limsup〈Aun,un− u〉 ≤ 0,
which shows that

〈Aun,un−u〉 → 0. (3.17)
On the other hand, the convergence (3.8) combined with equality ũ = u yields

〈Au,un−u〉 → 0. (3.18)

We now use the strong monotonicity of the operator A and write

mA‖un−u‖2
X ≤ 〈Aun,un−u〉−〈Au,un−u〉,

and then we use the convergence (3.17) and (3.18) to se that un→ u in X .
We proved above that any T3-approximating sequence converges to the solution of Problem

P . Therefore, T3 ⊂TP , which concludes the proof. �

Next, inspired by Definitions 3.1 and 3.2 now introduce the following definitions for i ∈
{1,2,3}.

Definition 3.3. A sequence {un} ⊂ X is called a Ti-approximting sequence for hemivariational
inequality (1.1) if {un} ∈ Ti. Problem P is Ti-well-posed if it has a unique solution u and
every Ti-approximating sequence converges to u in X , that is, Ti ⊂TP .

Remark 3.1. From Definition 3.3 and Theorem 3.1 we deduce the following.
a) Problem P is T1-well-posed if and only if it is T2-well-posed.
b) If Problem P is T3-well-posed; then it is T1- and T2-well-posed, too.
c) If conditions (2.1)–(2.5) and (3.1) are satisfied, then Problem P is Ti-well-posedness, for

any i ∈ {1,2,3}.
d) If Problem P is Ti-well-posed with some i ∈ {1,2,3}, then it is Tyknonov and Levitin-

Polyak well-posed, too.
e) If conditions (2.1)–(2.5) and (3.1) are satisfied, then Problem P is Tyknonov and Levitin-

Polyak well-posed.

Note that the statements c) and e) in Remark 3.1 allows us to identify classes of sequences
{un} ⊂ X which converge to the solution u. For instance, e) shows that, under assumptions
(2.1)–(2.5) and (3.1), any approximating sequence as well as any LP-approximating sequences
converges to u in X . This result is useful in various applications since, for instance, it can be
used to prove the continuous dependence of the solution with respect to f . Indeed, if u = u( f )
denotes the solution of inequality (1.1) with f ∈ X∗ and un = u( fn) is the solution of inequality
(1.1) with fn ∈ X∗, it is easy to see that un satisfies (3.1) with εn = ‖ fn− f‖X∗ for any n ∈ N.
Therefore, if fn→ f in X∗, {un} is an approximating sequence, un→ u in X , we conclude that

fn→ f in X∗ =⇒ u( fn)→ u( f ) in X ,

which represents a continuous dependence result, as claimed.
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We now proceed with the following example.

Example 3.1. Consider inequality (1.1) in the particular case X = R, K = [0,1] Au = u, j ≡ 0,
and f = 2. The solution of this problem is u = PK f = 1. Let {un} ⊂R be the sequence given by
un = 1− 1

n for all n ∈ N. Then un→ u. Taking wn = εn =
1
n for any n ∈ N, it is easy to see that

{un} is a T2-approximating sequence. Nevertheless, {un} is not a LP-approximating sequence.
Indeed, assume that {un} is a LP-approximating sequence. Then, there exists 0≤ εn→ 0 such
that, for all n ∈ N, un(v− un) + εn|v− un| ≥ f (v− un) for all v ∈ [0,1]. We now fix n ∈ N,
take v = 1− 1

2n in the previous inequality, and use equalities un = 1− 1
n , f = 2 to deduce that

εn ≥ 1+ 1
n , which contradicts the convergence εn→ 0.

Example 3.1 below shows that there exist sequences {un} ⊂ X which converge to u but are
neither approximating sequences, nor LP- approximating sequences. We conclude from here
that the neither the Tykhonov nor the Levitin-Polyak well-posedness of Problem P (see Re-
mark 3.1 e)) can be invoked to prove the convergence of these sequences. In contrast, the
Ti-well posedness result with i ∈ {1,2,3} (see Remark 3.1 c)) can be used to deduce the con-
vergence of the corresponding sequence to u = 1. This proves that any Ti-well-posedness result
implies Levitin-Polyak and Tykhonov well-posedness results. For this reason, as explained in
the previous section, we say that the Ti-well-posedness concepts are stronger than the classi-
cal Tykhonov and Levitin-Polyak well-posedness concepts introduced above, in the study of
inequality (1.1).

We end this section by recalling that Theorem 3.1 proves the inclusion

T3 ⊂TP . (3.19)

The question if this inclusion is strict deserves to be studied. This question is left open under
assumption (2.1)–(2.5) and (3.1). Nevertheless, we shall provide an answer to this question in
the next section, under additional assumptions on the operator A and function j.

4. A CONVERGENCE CRITERION

In this section, we state and prove a convergence criterion for the solution of inclusion (1.1).
To this end, we assume (2.1)–(2.5) and (3.1) even if we do not mention it explicitly, and we
denote by u the solution of the hemivariational inequality (1.1) provided by Theorem 2.1. We
also consider the following additional assumptions

A : X → X∗ is a continuous operator. (4.1){
There exists a function c j : R+→ R+ such that

j0(u,v1)− j0(u,v2)≤ c j(‖u‖X)‖v1− v2‖X for all u, v1, v2 ∈ X .
(4.2)

{
There exists a continuous function d j : R+→ R+ such that d(0) = 0 and

j0(u1;v)− j0(u2;v)≤ d j(‖u1−u2‖X)‖v‖X for all u1, u2, v ∈ X .
(4.3)

Our main result in this section is the following.

Theorem 4.1. Assume (2.1)-(2.5), (3.1) and, in addition, assume (4.1)-(4.3). Then T1 =T2 =
T3 = TP .
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Proof. Let {un} ⊂ TP , which implies that un→ u in X . We fix n ∈ N and v ∈ K. Since u ∈ K,
it follows that

d(un,u)≤ ‖un−u‖X → 0. (4.4)

Next, we write

〈Aun,v−un〉+ j0(un,v−un)−〈 f ,v−un〉

= 〈Aun−Au,v−un〉+ 〈Au,v−u〉+ 〈Au,u−un〉

+ j0(un;v−un)− j0(u;v−u)+ j0(u;v−u)−〈 f ,v−u〉+ 〈 f ,un−u〉.

Using (1.1), we deduce that

〈Aun,v−un)X + j0(un;v−un)− ( f ,v−un)X

≥ 〈Aun−Au,v−un〉+ 〈Au,u−un〉+ j0(un;v−un)− j0(u;v−u)+ 〈 f ,un−u〉.

Therefore,

〈Aun,v−un〉+ j0(un;v−un) (4.5)

+〈Aun−Au,un− v〉+ 〈Au,un−u〉+ j0(u;v−u)− j0(un;v−un)+ 〈 f ,u−un〉 ≥ 〈 f ,v−un〉.

We now use standard arguments to see that

〈Aun−Au,un− v〉 ≤ ‖Aun−Au‖X∗‖un− v‖X , (4.6)

〈Au,un−u〉 ≤ ‖Au‖X∗‖un−u‖X , (4.7)

〈 f ,un−u〉 ≤ ‖ f‖X∗‖un−u‖X . (4.8)

Moreover, we write

j0(u;v−u)− j0(un;v−un)

=
[

j0(u;v−u)− j0(u;v−un)
]
+
[

j0(u;v−un)− j0(un;v−un)
]
,

and then we use assumptions (4.2) and (4.3) to see that

j0(u;v−u)− j0(un;v−un)≤ c j(‖u‖X)‖un−u‖X +d j(‖un−u‖)X‖v−un‖X . (4.9)

We now combine inequalities (4.5)–(4.9) to see that

〈Aun,v−un〉+ j0(un,v−un)+
[
‖Aun−Au‖X∗+d j(‖un−u‖)

]
‖un− v‖X

+
[
‖Au‖X∗+ c j(‖u‖X)+‖ f‖X∗

]
‖un−u‖X ≥ 〈 f ,v−un〉. (4.10)

Then, using notation

εn = max
{
‖Aun−Au‖X∗+d j(‖un−u‖),

[
‖Au‖X∗+ c j(‖u‖X)+‖ f‖X∗

]
‖un−u‖X

}
(4.11)

and inequality (4.10), we see that the inequality in (3.2) holds. Moreover, assumptions (4.1),
(4.3), and notation (4.11) imply that εn→ 0.

It follows from above that condition (S4) is satisfied. Therefore, since the convergence (4.4)
shows that (S1) holds, too, we deduce that {un} is a T1-approximating sequence, i.e., {un} ∈
T1. To conclude we proved that TP ⊂ T1. Recall also that Theorem 3.1 guarantees that
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T1 = T2 ⊂ T3 ⊂ TP . Therefore, we deduce that T1 = T2 = T3 = TP , which concludes the
proof. �

We now complete the statement of Theorem 4.1 with the following comments.
First, we remark that Theorem 4.1 provides necessary and sufficient conditions which guar-

antee the convergence of a sequence {un} ∈ X to the solution of hemivariational inequality
(1.1). Therefore, it represents a convergence criterion to the solution of Problem P . On the
other hand, it provides an answer to the question that we stated at the end of Section 3, since it
shows that under assumptions the additional assumptions (4.1)–(4.3) the inclusion (3.19) is not
strict.

Next, we recall that, under the assumptions of this theorem, any convergent sequence is a
Ti-approximating sequence with i ∈ {1,2,3} and conversely. This shows that, under these
assumptions, the Ti-well-posedness concepts introduced in Definition 3.3 are optimal, since
the sets of Ti-approximating sequences are such that Ti = TP , that is, they are equal to the
largest subset of the set TP .

Finally, recall that Theorem 4.1 was proved under the additional assumptions (4.1)–(4.3) on
the operator A and function j. Relaxing or removing these assumptions represent an important
issue which deserves to be studied in the future.

5. AN EXAMPLE

In this section, we provide an application of Theorems 2.1 and 3.1 in the analysis of a non-
smooth nonlinear boundary value problems with unilateral constraints. The problem can be
stated as follow.

Problem M . Find u : Ω→ R and ξ : Ω→ R such that

u≤ g, µ∆u+ξ + f0 ≥ 0, (u−g)(µ∆u+ξ + f0) = 0 in Ω, (5.1)

−ξ ∈ ∂q(u) in Ω, (5.2)

u = 0 on Γ, (5.3)

Here Ω⊂R2 is a regular domain with boundary Γ, g and µ are positive constants, and f0 and q
are given functions. This problem models the equilibrium of an elastic membrane which occu-
pies the domain Ω, is fixed on its boundary and is in contact along its surface with an obstacle,
the so-called foundation. The unknown u is the vertical displacement of the membrane, µ is the
Lamé coefficient and f0 represents the density of applied body force. The obstacle is assumed
to be made of a rigid body covered of a layer of deformable material with thickness g. The un-
known ξ represents the reaction of this layer. The model (5.1)–(5.3) is obtained by taking into
account the equilibrium equation, the normal compliance contact condition for the deformable
layer and the Signorini contact condition for the rigid body. It represents a two-dimensional
version of various models of contact studied in [24, 25], for instance.

In parallel with problem M , we consider a second model of contact which can be formulated
as follows.
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Problem Mλ . Find uλ : Ω→ R, ξλ : Ω→ R, and ηλ : Ω→ R such that

uλ ≤ g̃, µ∆uλ +ξλ +ηλ + f0 ≥ 0,
(uλ − g̃)(µ∆uλ +ξλ +ηλ + f0) = 0

}
in Ω, (5.4)

−ξλ ∈ ∂q(u) in Ω, (5.5)

−ηλ =
1
λ

p(uλ −g) in Ω, (5.6)

uλ = 0 on Γ, (5.7)

where g̃ ≥ g and λ > 0 are given constants. Problem Mλ describes a similar physical setting.
Nevertheless, here we assume that the obstacle is made by a rigid body covered with two layers:
the first one of thickness g̃−g and the second one of thickness g. We model the reaction of these
two layers with the term ξλ +ηλ , in which ξλ and ηλ satisfy the normal compliance conditions
(5.5) and (5.6), respecively. There, λ represents the deformability coefficient of the first layer
and, therefore, 1

λ
is its stiffness coefficient. Moreover, p is a normal compliance function which

will be described below.
We now turn to the variational formulation of Problem M and Mλ . To this end, we use the

short hand notation V for the Sobolev space H1
0 (Ω) endowed with the inner product

(u,v)V = (∇u,∇v)L2(Ω)2 ∀u, v ∈V (5.8)

and the associated norm ‖·‖V . Recall that the Friedrichs-Poincaré inequality guarantee that V is
a Hilbert space. We denote in what follows by V ∗ the dual of V and by 〈·, ·〉 the duality pairing
between V ∗ and V . Moreover, 0V represents the zero element of V . In addition, we recall that
the inclusion V ⊂ L2(Ω) is compact and there exists a constant c0 > 0, which depend only on
Ω such that

‖u‖L2(Ω) ≤ c0‖u‖V ∀u ∈V. (5.9)
Next, we consider the following assumptions on the data

q : Ω×R→ R is such that

(a) q(·,r) is measurable on Ω for all r ∈ R and there
exists e ∈ L2(Ω) such that q(·,e(·)) ∈ L1(Ω),

(b) q(x, ·) is locally Lipschitz on R for a.e. x ∈Ω,

(c) |∂q(x,r)| ≤ c0 + c1 |r| for a.e. x ∈ Γ3, for all r ∈ R with c0, c1 ≥ 0,

(d) q0(x,r1;r2− r1)+q0(x,r2;r1− r2)≤ Lq |r1− r2|2
for a.e. x ∈Ω, all r1, r2 ∈ R with Lq ≥ 0.

(e) either q(x, ·) or −q(x, ·) is regular on R, for a.e. x ∈Ω.

(5.10)



p : Ω×R→ R+ is such that
(a) there exists Lp > 0 such that|p(x,r1)− p(x,r2)| ≤ Lp|r1− r2|

for allr1, r2 ∈ R, a.e. x ∈Ω,

(b) (p(x,r1)− p(x,r2))(r1− r2)≥ 0
for allr1, r2 ∈ R, a.e. x ∈Ω,

(c) p(·,r) is measurable on Ω for all r ∈ R,
(d) p(x,r) = 0 if and only if r ≤ 0, a.e. x ∈Ω.

(5.11)
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c2
0Lq < µ. (5.12)

f0 ∈ L2(Ω). (5.13)

Moreover, we recall the inequalities
g̃≥ g > 0. (5.14)

Next, we define the sets K and K̃, the operators A : V → V ∗ and G : V → V ∗, the function
j : V → R and the element f ∈V ∗ by equalities

K = {v ∈V : v≤ g a.e. in Ω}, (5.15)

K̃ = {v ∈V : v≤ g̃ a.e. in Ω}, (5.16)

〈Au,v〉= µ

∫
Ω

∇u ·∇vdx ∀u, v ∈V, (5.17)

〈Gu,v〉=
∫

Ω

p(u−g)vdx ∀u, v ∈V, (5.18)

j(v) =
∫

Ω

q(v)dx ∀v ∈V, (5.19)

〈 f ,v〉V =
∫

Ω

f0vdx ∀v ∈V. (5.20)

With these preliminaries, we are in a position to derive the variational formulation of Prob-
lem M and Mλ . Assume that (u,ξ ) is a regular solution to Problem M which implies that

u ∈ K. (5.21)

Consider an arbitrary element v ∈ K. We write

µ∆u(v−u) = (µ∆u+ξ + f0)(v−g)+(µ∆u+ξ + f0)(g−u)−ξ (v−u)− f0(v−u)

a.e. in Ω, then we use (5.1) and the definition (5.15) of the set K to find that

µ∆u(v−u)≤−ξ (v−u)− f0(v−u) a.e. in Ω. (5.22)

Next, recall that inclusion (5.2) and the definition of the directional derivative implies that

−ξ (v−u)≤ q0(u;v−u) a.e. in Ω. (5.23)

We now combine inequalities (5.22) and (5.23), and then integrate the resulting inequality on Ω

to see that ∫
Ω

µ∆u(v−u)dx≤
∫

Ω

q0(u;v−u)dx−
∫

Ω

f0(v−u)dx. (5.24)

Finally, we recall the identity ∫
Ω

∆uvdx =−
∫

Ω

∇u ·∇vdx, (5.25)

valid for any u, v ∈V . Combining relations (5.24) and (5.25), we obtain that

µ

∫
Ω

∇u · (∇v−∇u)dx+
∫

Ω

q0(u;v−u)dx≥
∫

Ω

f0(v−u)dx. (5.26)



16 M. SOFONEA, D.A. TARZIA

On the other hand, a standard argument based on assumption (5.10) on the function q and
definition (5.19) of the function j show that the function j : V → R is locally Lipschitz, satisfy
conditions (2.3) on the space X =V and, moreover,

j0(u;v) =
∫

Ω

q0(u;v)dx ∀u, v ∈V. (5.27)

We now use (5.21), (5.26), (5.27), and the definitions (5.17), (5.20) to deduce the following
variational formulation of Problem M , in terms of displacement.

Problem MV . Find a displacement field u such that the inequality below holds:

u ∈ K, 〈Au,v−u〉+ j0(u;v−u)≥ 〈 f ,v−u〉 ∀v ∈ K. (5.28)

Similar arguments, based on the definitions (5.15) and (5.18) of set K̃ and operator G, lead to
the following variational formulation of contact problem Mλ .

Problem MV
λ

. Find a displacement field uλ such that the inequality below holds:

uλ ∈ K̃, 〈Auλ ,v−uλ 〉+
1
λ
〈Guλ ,v−uλ 〉+ j0(uλ ;v−uλ )≥ 〈 f ,v−u〉 ∀v ∈ K̃. (5.29)

Our main result in this section is the following.

Theorem 5.1. Assume (5.10)–(5.14). Then Problem MV has a unique solution u ∈ K, and for
each λ > 0, Problem MV

λ
has a unique solution uλ ∈ K̃. Moreover, uλ → u in V as λ → 0.

Proof. The proof is divided into four steps, as follows.

Step i). Unique solvability of Problem MV . We use Theorem 2.1 on X = V . To this end, we
use definition (5.15) to see that condition (2.1) is satisfied. In addition, using (5.8), it is easy to
see that linear operator (5.17) satisfies condition (2.2) with mA = LA = µ . Moreover, as already
mentioned, function (5.19) satisfies condition (2.3). To compute α j, we use equality (5.27),
assumption (5.10)(d), and inequality (5.9) to see that

j0(u;v−u)+ j0(v;u− v) =
∫

Ω

[
q0(u;v−u)+q0(v;u− v)

]
dx

≤ Lq

∫
Ω

|u− v|2 dx≤ Lqc2
0‖u− v‖2

V ∀u, v ∈V.

It follows from here that the corresponding constant α j in (2.3)(d) is α j = c2
0Lq. Then, using

equality mA = µ and (5.12), we find that the smallness condition (2.4) holds, too. Finally, recall
that the element f in (5.20) satisfies condition (2.5). The existence of a unique solution to
Problem MV is now a direct consequence of Theorem 2.1.

Step ii). Some properties of the operator G. In this step, we state and prove some properties
of the operator G, which are used in the rest of the proof. Thus we claim that the operator G
defined by (5.18) has the following properties.

(a) G : V →V ∗ is a Lipschitz continuous monotone operator.

(b) 〈Gu,v−u〉 ≤ 0 ∀u ∈ K̃, v ∈ K.

(c) u ∈ K̃, 〈Gu,v−u〉= 0 ∀v ∈ K =⇒ u ∈ K.

(5.30)
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To prove this claim, we consider three elements u,v, and w in V . We use definition (5.18),
assumption (5.11)(a), and inequality (5.9) to see that

|〈Gu−Gv,w〉|=
∣∣∣∫

Ω

[
p(u−g)− p(v−g)

]
wdx

∣∣∣
≤
∫

Ω

|p(u−g)− p(v−g)| |w|dx≤ Lp

∫
Ω

|u− v| |w|dx≤ Lpc2
0‖u− v‖V‖w‖V .

This inequality implies that ‖Gu−Gv‖V ∗ ≤ Lpc2
0‖u−v‖V and shows that G is Lipschitz contin-

uous with constant LG = Lpc2
0. On the other hand, using again (5.18) and (5.11)(b), we deduce

that

〈Gu−Gv,u− v〉=
∫

Ω

[
p(u−g)− p(v−g)

][
(u−g)− (v−g)

]
dx≥ 0,

which shows that G is a monotone operator. We conclude from above that (5.30)(a) holds.
Assume now that u ∈ K̃ and v ∈ K. We use assumption (5.11)(d) to see that p(v−g) = 0 a.e.

in Ω. Thus

〈Gu,v−u〉=
∫

Ω

p(u−g)(v−u)dx =
∫

Ω

[
p(u−g)− p(v−g)

][
(v−g)− (u−g)

]
dx.

Now, it follows from assumption (5.11)(b) that 〈Gu,v− u〉 ≤ 0, which shows that condition
(5.30)(b) holds.

Assume now that u ∈ K̃ and 〈Gu,v−u〉= 0 for all v ∈ K, which implies that∫
Ω

p(u−g)(v−g)dx =
∫

Ω

p(u−g)(u−g)dx ∀v ∈ K. (5.31)

Recall that (5.11)(b) and (d) guarantee that

p(u−g)(v−g)≤ 0 a.e. in Ω, ∀v ∈ K, (5.32)

p(u−g)(u−g)≥ 0 a.e. in Ω. (5.33)

We now combine equality (5.31) with inequalities (5.32) and (5.33) to find that∫
Ω

p(u−g)(u−g)dx = 0. (5.34)

Next, (5.33) and (5.34) imply that p(u− g)(u− g) = 0 a.e. in Ω. Using condition (5.11) (d)
again, we find that u≤ g a.e. in Ω. This shows that (5.30)(c) holds and concludes the proof of
this step.

Step iii). Unique solvability of Problem MV
λ

. We let λ > 0 and use (5.30) (a) to deduce that
the operator G : V →V ∗ defined by (5.18) it is bounded, hemicontinuous, and monotone. Then,
using Proposition 2.1 (a), it follows that it is pseudomonotone and monotone. Moreover, as-
sumption (2.2) combined with inequality λ > 0 and Proposition 2.1 (b) shows that the operator

A+
1
λ

G : V →V ∗

is pseudomonotone and strongly monotone with constant mA+ 1
λ

G = µ , that is, it satisfies con-
dition (2.2). Recalling assumption (5.16), we see that we are in a position to use Theorem 2.1
again to deduce the unique solvability of Problem MV

λ
.



18 M. SOFONEA, D.A. TARZIA

Step iv). Proof of the convergence uλ → u as λ → 0. We shall use Theorem 3.1 (b) on space V .
To this end, we claim that condition (3.1) is satisfied. Indeed, if un ⇀ u ∈V and v ∈V , using a
standard compactness argument, identity (5.27), and Proposition (2.2)(ii) we have

limsup j0(un;v−un) = limsup
∫

Ω

q0(un;v−un)dx (5.35)

≤
∫

Ω

limsupq0(un;v−un)dx≤
∫

Ω

q0(u;v−u)dx = j0(u;v−u), (5.36)

which proves that condition (3.1) is satisfied.
Consider now a sequence {λn} such that

λn > 0 ∀n ∈ N, λn→ 0 as n→ ∞ (5.37)

and, for each n ∈ N, denote by un the solution of inequality (5.29) for λ = λn. We have

un ∈ K̃, 〈Aun,v−un〉+
1
λn
〈Gun,v−un〉+ j0(un;v−un)≥ 〈 f ,v−un〉 ∀v ∈ K̃. (5.38)

We use the property (5.30)(a) of operator G to see that 〈Gun,v− un〉 ≤ 0 for all v ∈ K, n ∈ N
and, therefore, (5.38) implies that

〈Aun,v−un〉+ j0(un;v−un)≥ 〈 f ,v−un〉 ∀v ∈ K, n ∈ N. (5.39)

This shows that
The sequence {un} satisfies condition (S4). (5.40)

We now use Lemma 3.3, the reflexivity of V , and a standard compactness argument to see that
by passing to a subsequence, if necessary, we have

un ⇀ ũ in V, as n→ ∞, (5.41)

with some ũ ∈ V . Moreover, inclusion un ∈ K̃ for each n ∈ N, the properties of set (5.16) and
the convergence (5.41) imply that ũ ∈ K̃. Let v be an element in K̃ and let n ∈ N. Then, (5.38)
implies that

1
λn
〈Gun,un− v〉 ≤ 〈Aun,v−un〉+ j0(un,v−un)+ 〈 f ,un− v〉. (5.42)

Next, using the arguments similar to those used in the proof of (3.4) and the boundedness of
{un}, we deduce that each term in the right hand side of inequality (5.42) is bounded. This
implies that there exists a constant M0 > 0, which depends on v but does not depend on n
such that 〈Gun,un− v〉 ≤ λnM0. We now pass to the upper limit in this inequality and use the
convergence (5.37) to deduce that

limsup〈Gun,un− v〉 ≤ 0. (5.43)

We now take v = ũ ∈ K̃ in (5.43) and find that

limsup〈Gun,un− ũ〉 ≤ 0. (5.44)

Therefore, using the pseudomonotonicity of operator G, guaranteed by property (5.30)(a) and
Proposition 2.1 (a), we obtain that

liminf〈Gun,un− v〉 ≥ 〈Gũ, ũ− v〉. (5.45)

We now combine inequalities (5.45) and (5.43) to find that 〈Gũ, ũ− v〉 ≤ 0, and recall that this
inequality holds for any v ∈ K̃. On the other hand, by (5.30)(b), we deduce that 〈Gũ, ũ− v〉 ≥ 0
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for any v ∈ K. Now, since (5.14) implies that K ⊂ K̃, we obtain from above that 〈Gũ, ũ−v〉= 0
for all v ∈ K. We now use the property (5.30)(c) of operator G to deduce that ũ ∈ K.

Next, we use (5.38) and inclusion K ⊂ K̃ again, to obtain that

〈Aun,un− v〉 ≤ 1
λn
〈Gun,v−un〉+ j0(un,v−un)+ 〈 f ,un− v〉,

v being an arbitrary element of K. Therefore, using (5.30)(b), we find that

〈Aun,un− v〉 ≤ j0(un,v−un)+ 〈 f ,un− v〉. (5.46)

We now pass to the upper limit in this inequality, and use (5.41) and the property (3.1) of the
function j to deduce that

limsup〈Aun,un− v〉 ≤ j0(ũ,v− ũ)+ 〈 f , ũ− v〉. (5.47)

Now, taking v = ũ ∈ K in (5.47) and using Proposition 2.2 (a), we obtain that

limsup〈Aun,un− ũ〉 ≤ 0. (5.48)

On the other hand, using the strong monotonicity of operator A, we have

mA‖un− ũ‖2
V ≤ 〈Aun,un− ũ〉−〈Aũ,un− ũ〉

and, using (5.41) and (5.48), we deduce that

un→ ũ in V, (5.49)

which shows that d(un,K) ≤ ‖un− ũ‖V → 0, i.e., condition (S1) holds. A careful analysis
demonstrates that this property is valid for any weakly convergent subsequence of sequence
{un}. To conclude, it follows from above that{

Any weakly convergent subsequence of the sequence {un}
satisfies condition (S1).

(5.50)

We now combine (5.40) and (5.50) to deduce that any weakly convergent subsequence of
the sequence {un} satisfies conditions (S1) and (S4), i.e., it belongs to the set T 1. Using now
Theorem 3.1 it follows that{

Any weakly convergent subsequence of the sequence {un}
converges in V to the solution u of inequality (1.1).

(5.51)

Finally, we argue by contradiction and, to this end, we assume that the convergence un→ u
in V does not hold. Then, there exists δ0 > 0 such that for all k ∈ N there exists unk ∈ X such
that

‖unk−u‖X ≥ δ0. (5.52)

Note that {unk} is a subsequence of sequence {un} and, therefore, Step i) and Lemma 3.3
imply that it is bounded in X . We now employ the reflexivity of V to deduce that there exists
a subsequence of sequence {unk}, again denoted by {unk}, which is weakly convergent in X .
Then, (5.51) guarantees that unk → u as k→ ∞. We now pass to the limit when k→ ∞ in (5.52)
and find that δ0 ≤ 0. This contradicts inequality δ0 > 0. Therefore, un→ u in V .

To summarize, we proved that for any sequence {λn} which satisfies condition (5.37) we
have that uλn → u in V , which concludes the proof of the theorem. �
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In addition to the mathematical interest in this convergence, it is important from mechanical
point of view since it shows that the weak solution of Problem M can be approached by the
week solution of Problem Mλ for a large stiffness coefficient.
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