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We consider a differential quasivariational inequality for which we state and prove 
the continuous dependence of the solution with respect to the data. This convergence 
result allows us to prove the existence of at least one optimal pair for an associated 
control problem. Finally, we illustrate our abstract results in the study of a 
free boundary problem which describes the equilibrium of a viscoelastic body in 
frictionless contact with a foundation made of a rigid body covered by a rigid-elastic 
layer.
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1. Introduction

The present paper is motivated by the study of mathematical models which describe the time-dependent 
unilateral contact of a deformable body with a foundation. Under appropriate mechanical assumptions on 
the constitutive law and the interface conditions, such kind of models leads to a weak formulation which is 
in the form of a system that couples an ordinary differential equation with a variational or quasivariational 
inequality. Despite the fact that the solvability of such systems can be obtained by using various abstract 
existence and uniqueness results available in the literature, at the best of our knowledge there are very few 
results on the optimal control of the corresponding contact models. In this current paper we try to fill this 
gap and, to this end, we use arguments of variational and differential variational inequalities.

The theory of variational inequalities begun with the pioneering works [39,25,7]. Later, various extensions 
and applications were provided and the literature in the field is extensive. Comprehensive references on 
this subject are [32,24,16,5,22,11,35,2,13]. A survey of several classes of time-dependent and evolutionary 
variational inequalities, with our without unilateral constraints, can be found in [17]. There, results on 
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existence and regularity for parabolic and hyperbolic evolutionary variational inequalities can be found. 
The theory plays an important role in Mechanics, Physics and Engineering Sciences where a large number 
of free boundary problems lead to elliptic or parabolic variational inequalities problems. Some relevant 
examples of such problems are the free boundary problems related to fluid flows through porous media [4], 
phase-change processes for the one-phase Stefan problem [14] and two-phase Stefan problem [40]. Variational 
inequalities arise in the study of mathematical models in Contact Mechanics too, as illustrated in the books 
[15,34,38,36,30,37]. Their optimal control has been studied in [23,33,21,41,10], for instance.

A differential variational inequality represents a system that couples a differential equation with a varia-
tional or quasivariational inequality. This terminology was used for the first time in [3]. Existence, uniqueness 
and convergence results have been obtained in [19,28,29,27], for instance. A stability result for the solution 
set of differential variational inequalities has been obtained in [18,20]. There, perturbations of the associated 
set-valued mapping and perturbations of the set of constraints have been considered and the Mosco conver-
gence of sets, introduced in [31], has been employed. The results in [20] allow, in particular, the treatment 
of quasistatic contact problems with short memory viscoelastic materials and Tresca’s friction law. A new 
class of differential quasivariational inequalities in Banach spaces has been considered in [26]. There, an 
existence and uniqueness result has been obtained by using a general fixed point principle. Moreover, some 
examples and applications have been presented, including the variational analysis of a contact problem with 
viscoplastic materials.

The current paper represents a continuation of [26]. Its aim is three-fold. The first one is to complete 
the abstract existence and uniqueness result in [26] with a general convergence result for the solution. Here 
we assume that all the problem data are perturbed, i.e., the second member and the initial condition of 
the differential equation, the monotone operator, the non-differentiable function, the convex set and the 
second member of the variational inequality, then we study the behaviour of the solution with respect to
these perturbations. The second aim is to complete our previous work [26] with an existence result for an 
associated optimal control problem. Finally, our third aim is to apply these new results in the study of a 
viscoelastic frictionless contact problem with history-dependent hardening parameter.

The rest of the paper is structured as follows. In Section 2 we introduce the differential quasivariational 
inequality we are interested in, denoted by P. Then, we recall some preliminary results which are needed 
later in this paper. In Section 3 we present our general convergence result, Theorem 3.1, which states the 
continuous dependence of the solution of Problem P on the data. The proof of the theorem is carried out in 
several steps, based on arguments on convexity, pseudomonotonicity and compactness. Then, in Section 4 we 
introduce an optimal control problem associated to the differential quasivariational inequality P and prove 
the existence of at least one optimal solution, Theorem 4.1. Its proof is based on arguments of compactness 
and lower semicontinuity. Finally, in Section 5, we present an application of our abstract results in the study 
of a mathematical model of contact with viscoelastic materials. We describe the model, list the assumption 
on the data, then we state and prove its unique weak solvability. Next, we prove the continuous dependence 
of the weak solution with respect to the data as well as the existence of the solution for an associated 
optimal control problem. We also provide the mechanical interpretation of our results.

2. Preliminaries

Throughout this paper I denotes either a bounded or an unbounded time-interval, i.e., I = [0, T ] with 
T > 0 or I = R+ = [0, +∞). We consider two real Banach spaces X, V and a real Hilbert space Z, 
endowed with the inner product (·, ·)Z . The norm on these spaces will be denoted by ‖ · ‖X , ‖ · ‖V and ‖ · ‖Z , 
respectively. The strong topological dual space of V is denoted by V ∗ and the duality paring of V and V ∗

is denoted by 〈·, ·〉. We shall use the symbols “⇀” and “→” for the weak and strong convergence in various 
normed spaces to be specified. All the limits, upper and lower limits are considered as n → ∞, even if we 
do not mention it explicitly. Moreover, we use the notation C(I; V ) and C(I; Z) for the space of continuous 
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functions on I with values in V and Z, respectively. In addition, we denote by a dot above the derivative 
with respect to the time and we adopt the notation C1(I; X) for the space of continuously differentiable 
function defined on I with values in X.

Consider the following data: F : I × X × V → X, x0 ∈ X, A : X × V → V ∗, j : X × V × V → R, 
π : V → Z, f : I → V and K ⊂ V . Then, the differential quasivariational inequality problem we consider 
in this paper is stated as follows.

Problem P. Find x ∈ C1(I; X) and u ∈ C(I; V ) such that

ẋ(t) = F (t, x(t), u(t)) ∀ t ∈ I, (2.1)

x(0) = x0, (2.2)

u(t) ∈ K, 〈A(x(t), u(t)), v − u(t)〉 + j(x(t), u(t), v) − j(x(t), u(t), u(t))

≥ (f(t), πv − πu(t))Z ∀ v ∈ K, t ∈ I. (2.3)

The study of Problem P requires some preliminaries that we present in what follows.

Definition 2.1. An operator B : V → V ∗ is said to be:

(i) Lipschitz continuous, if there exists LB > 0 such that

‖Bu1 −Bu2‖V ∗ ≤ LB‖u1 − u2‖V ∀u1, u2 ∈ V ;

(ii) strongly monotone, if there exists mB > 0 such that

〈Bu1 −Bu2, u1 − u2〉 ≥ mB‖u1 − u2‖2
V ∀u1, u2 ∈ V.

Consider now the following assumptions on the data of Problem P.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F : I ×X × V → X is such that:

(a) The mapping t → F (t, x, u) is continuous for all x ∈ X,u ∈ V.

(b) For any compact set J ⊂ I there exists LJ > 0 such that
‖F (t, x1, u1) − F (t, x2, u2)‖X ≤ LJ (‖x1 − x2‖X + ‖u1 − u2‖V )
for all x1, x2 ∈ X, u1, u2 ∈ V, t ∈ J.

(2.4)

x0 ∈ X. (2.5)

K is a nonempty closed convex subset of V. (2.6)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : X × V → V ∗ is such that:

(a) There exists L′ > 0 such that
‖A(x1, u) −A(x2, u)‖V ∗ ≤ L′‖x1 − x2‖X
for all x1, x2 ∈ X, u ∈ V.

(b) There exists L′′ > 0 such that
‖A(x, u1) −A(x, u2)‖V ∗ ≤ L′′‖u1 − u2‖V
for all x ∈ X, u1, u2 ∈ V.

(c) There exists m > 0 such that
〈A(x, u1) −A(x, u2), u1 − u2〉 ≥ m‖u1 − u2‖2

V

for all x ∈ X, u , u ∈ V.

(2.7)
1 2



4 M. Sofonea et al. / J. Math. Anal. Appl. 493 (2021) 124567
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j : X × V × V → R is such that:

(a) For all x ∈ X and u ∈ V, j(x, u, ·) is convex
and lower semicontinuous (l.s.c.) on V.

(b) There exists α > 0 and β > 0 such that
j(x1, u1, v2) − j(x1, u1, v1) + j(x2, u2, v1) − j(x2, u2, v2)
≤ α‖x1 − x2‖X‖v1 − v2‖V + β‖u1 − u2‖V ‖v1 − v2‖V ,
for all x1, x2 ∈ X, u1, u2 ∈ V, v1, v2 ∈ V.

(2.8)

m > β. (2.9)
f ∈ C(I;Z). (2.10){

π : V → Z is a linear continuous operator, i.e.,

there exists c0 > 0 such that ‖πv‖Z ≤ c0 ‖v‖V ∀ v ∈ V.
(2.11)

Note that assumption (2.11) allows us to apply the Riesz representation theorem in order to define a 
function f : I → V ∗ such that

〈f, v〉 = (f(t), πv)Z ∀ v ∈ V, t ∈ I. (2.12)

Furthermore, assumption (2.10) implies that f ∈ C(I; V ∗). Hence, the following results are obtained as a 
direct consequence of Theorem 3.1 and Lemma 3.6 in [26], respectively.

Theorem 2.1. Assume that X is a Banach space, V is a reflexive Banach space, Z is a Hilbert space and
(2.4)–(2.11) hold. Then Problem P has a unique solution (x, u) ∈ C1(I; X) × C(I; V ).

Lemma 2.1. Assume that X is a Banach space, V is a reflexive Banach space and (2.6)–(2.11) hold. Then, 
for each x̃(t) ∈ C1(I; X), there exists a unique function u ∈ C(I; V ) such that

u(t) ∈ K, 〈A(x̃(t), u(t)), v − u(t)〉 + j(x̃(t), u(t), v) − j(x̃(t), u(t), u(t))

≥ (f(t), πv − πu(t))Z , ∀ v ∈ K, t ∈ I. (2.13)

We now complete the previous results with the following comments.

Remark 2.1. Under the assumptions of Lemma 2.1 it is easy to see that the quasivariational inequality 
(2.13) is equivalent with the problem of finding a function u : I → V such that

u(t) ∈ K, G(t, u, v) ≥ 0 ∀ v ∈ K, t ∈ I (2.14)

where G : I ×K ×K → R is the function defined by

G(t, u, v) = 〈A(x̃(t), u), v − u〉 + j(x̃(t), u, v) − j(x̃(t), u, u) − (f(t), πv − πu)Z

for all t ∈ I, u, v ∈ K. Let t ∈ I be fixed. Then, it is easy to see that G(t, u, u) = 0 and G(t, u, ·) : K → R

is a convex lower semicontinuous function, for any u ∈ X. Moreover,

G(t, u, v) + G(t, v, u) ≤ −(m− β)‖u− v‖2
V ≤ 0 ∀u, v ∈ K.

All these properties allow us to use Theorem 1 in [6] in order to prove the solvability of the equilibrium 
problem (2.14). For more details, existence results and applications of equilibrium problems, we refer to 
[8,9] as well as to the edited volume [12].
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We end this section with the following version of the Weierstrass theorem.

Theorem 2.2. Let W be a reflexive Banach space endowed with the norm ‖ · ‖W , U a weakly closed subset 
of W and J : U → R a weakly lower semicontinuous function. Then J is bounded from below and attains 
its infimum on U whenever one of the following two conditions hold:

(i) U is bounded;
(ii) J is coercive, i.e., J(p) → ∞ as ‖p‖W → ∞.

We shall use Theorem 2.2 in Section 4 in order to establish the existence of at least one solution of 
optimal control problem. Its proof can be found in many books and surveys, including [36].

3. A convergence result

The solution (x, u) to problem P obtained in Theorem 2.1 depends on the data F , x0, A, K, j and 
f . In this section we prove a convergence result that shows the continuous dependence of (x, u) with the 
above-mentioned data. This result will represent a crucial ingredient in the study of the optimal control 
problem that we shall study in Section 4. To describe it, for each n ∈ N we consider a function Fn, an 
initial data x0n, a convex set Kn, an operator An and two functions jn and fn that satisfy the assumptions 
(2.4)–(2.10), respectively, with constants LJn, L′

n, L′′
n, mn, αn and βn. To avoid any confusion, when used 

with n, we shall refer to these assumptions as (2.4)n–(2.10)n. The sequences {LJn}, {L′
n}, {L′′

n}, {mn}, 
{αn} are assumed to be bounded and, therefore, without the loss of generality we assume that

LJn ≤ LJ , L′
n ≤ L′, L′′

n < L′′ mn ≥ m, αn ≤ α, βn ≤ β ∀n ∈ N (3.1)

where LJ , L′, L′′, m, α, β are the constants associated with the assumptions (2.4)–(2.10), respectively. Then, 
for each n ∈ N we consider the following problem.

Problem Pn. Find xn ∈ C1(I; X) and un ∈ C(I; V ) such that

ẋn(t) = Fn(t, xn(t), un(t)) ∀ t ∈ I, (3.2)

xn(0) = x0n, (3.3)

un(t) ∈ Kn, 〈An(xn(t), un(t)), vn − un(t)〉
+ jn(xn(t), un(t), vn) − jn(xn(t), un(t), un(t))

≥ (fn(t), πvn − πun(t))Z ∀ vn ∈ Kn, t ∈ I. (3.4)

Note that, if (2.4)n-(2.10)n and (2.11) hold, Theorem 2.1 guarantees the existence of a unique solution 
of problem Pn, denoted in what follows by (xn, un). We now consider the following additional assumptions.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For all n ∈ N there exists Γn ≥ 0, and γn ≥ 0 such that:

(a) ‖Fn(t, x, u) − F (t, x, u)‖X ≤ Γn (‖x‖X + ‖u‖V + γn)
∀ t ∈ I, x ∈ X, u ∈ V.

(b) lim
n→∞

Γn = 0.

(c) The sequence {γn} ⊂ R is bounded.

(3.5)

x0n → x0 in X. (3.6)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Kn} converges to K in the sense of Mosco [31], i.e.:

(a) For each v ∈ K there exists a sequence {vn} such that

vn ∈ Kn ∀n ∈ N and vn → v in V.

(b) For each {vn} such that

vn ∈ Kn ∀n ∈ N and vn ⇀ v in V, we have v ∈ K.

(3.7)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

For all n ∈ N there exists Λn ≥ 0, and λn ≥ 0 such that:

(a) ‖An(x, u) −A(x, u)‖V ∗ ≤ Λn (‖x‖X + ‖u‖V + λn) ∀x ∈ X, u ∈ V.

(b) lim
n→∞

Λn = 0.

(c) The sequence {λn} ⊂ R is bounded.

(3.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) For all n ∈ N there exists τn ≥ 0 and δn ≥ 0 such that:

jn(x, u, v1) − jn(x, u, v2) ≤ [τn + δn(‖x‖X + ‖u‖V )] ‖v1 − v2‖V
∀x ∈ X, u ∈ V, v1, v2 ∈ V.

(b) There exists τ0 > 0 and δ0 > 0 such that τn ≤ τ0 and δn ≤ δ0 < m.

(c) For any sequences {un} ⊂ V, {vn} ⊂ V such that

un ⇀ u in V, vn ⇀ v in V we have

lim sup
n→∞

[jn(x, un, vn) − jn(x, un, un)] ≤ j(x, u, v) − j(x, u, u) ∀x ∈ X.

(3.9)

⎧⎪⎪⎨⎪⎪⎩
(a) fn(t) ⇀ f(t) in Z as n → ∞ ∀ t ∈ I;

(b) For any compact set J ⊂ I there exists wJ > 0 such that

‖fn(t)‖Z ≤ wJ ∀n ∈ N, t ∈ J.

(3.10)

{
For any sequence {vn} ⊂ V such that

vn ⇀ v in V we have πvn → πv in Z.
(3.11)

Our main result of this section is the following.

Theorem 3.1. Assume (2.4)–(2.11) and (2.4)n–(2.10)n, for each n ∈ N. Moreover, assume (3.1) and
(3.5)–(3.11). Then, the solution (xn, un) of Problem Pn converges to the solution (x, u) of Problem P as 
n → ∞, i.e., for each t ∈ I we have

un(t) → u(t) in V and xn(t) → x(t) in X as n → ∞. (3.12)

The proof of Theorem 3.1 will be carried out in several steps. To present it, everywhere in what follows we 
assume that the hypotheses of Theorem 3.1 are satisfied, even if we do not mention it explicitly. Moreover, 
for each n ∈ N we consider the following auxiliary problem in which, recall, x ∈ C1(I; X) is the first 
component of the solution (x, u) of Problem P.

Problem P̃n. Find ũn ∈ C(I; V ) such that

ũn(t) ∈ Kn, 〈An(x(t), ũn(t)), vn − ũn(t)〉 + jn(x(t), ũn(t), vn) − jn(x(t), ũn(t), ũn(t))

≥ (fn(t), πvn − πũn(t))Z ∀ vn ∈ Kn, t ∈ I. (3.13)
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The first step of the proof is the following.

Lemma 3.1. For each n ∈ N, Problem P̃n has a unique solution ũn ∈ C(I; V ). Moreover, for each compact 
subset J ⊂ I, there exists C̃J > 0 such that

‖ũn(t)‖V ≤ C̃J , ∀ t ∈ J, n ∈ N. (3.14)

Proof. The existence and uniqueness of solution to problem P̃n is derived straightforward from Lemma 2.1.
Assume now that J ⊂ I is a given compact and let t ∈ J , u0 ∈ K. Using (3.7) there exists a sequence 

{u0n} such that

u0n ∈ Kn ∀n ∈ N and u0n → u0 in V.

Let n ∈ N be fixed and take vn = u0n ∈ Kn in (3.13) to obtain

〈An(x(t), ũn(t)), ũn(t) − u0n〉 ≤ jn(x(t), ũn(t), u0n)

− jn(x(t), ũn(t), ũn(t)) + (fn(t), πũn(t) − πu0n)Z

and, therefore,

〈An(x(t), ũn(t)) −An(x(t), u0n), ũn(t) − u0n〉 ≤ 〈An(x(t), u0n), u0n − ũn(t)〉
+ jn(x(t), ũn(t), u0n) − jn(x(t), ũn(t), ũn(t)) + (fn(t), πũn(t) − πu0n)Z .

Then, using (2.7)n(c) and conditions (3.9)(a) and (2.11) we find that

mn‖ũn(t) − u0n‖V ≤ ‖An(x(t), u0n)‖V ∗

+ τn + δn (‖x(t)‖X + ‖ũn(t)‖V ) + c0‖fn(t)‖Z . (3.15)

Now, since

‖An(x(t), u0n)‖V ∗ ≤ ‖An(x(t), u0n) −A(x(t), u0n)‖V ∗

+ ‖A(x(t), u0n) −A(x(t), u0)‖V ∗ + ‖A(x(t), u0)‖V ∗

from assumptions (3.8) and (2.7)(b) we obtain that

‖An(x(t), u0n)‖V ∗ ≤ Λn (‖x(t)‖X + ‖u0n‖V + λn)

+ L′′‖u0n − u0‖V + ‖A(x(t), u0)‖V ∗ . (3.16)

Recall now that conditions (3.1) and (3.9)(b) guarantee that mn ≥ m, τn ≤ τ0 and δn ≤ δ0 < m. As 
‖ũn(t)‖V ≤ ‖ũn(t) − u0n‖V + ‖u0n‖V , combining inequalities (3.15) and (3.16) it follows that

‖ũn(t) − u0n‖V ≤ 1
m− δ0

{
Λn (‖x(t)‖X + ‖u0n‖V + λn) + L′′‖u0n − u0‖V

+ ‖A(x(t), u0)‖V ∗ + τ0 + δ0 (‖x(t)‖X + ‖u0n‖V ) + c0‖fn(t)‖Z
}
. (3.17)

Next, since u0n → u, there exists M > 0 which does not depend on n such that ‖u0n − u0‖V ≤ M . 
Consequently,
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‖u0n‖V ≤ M + ‖u0‖V . (3.18)

On the other hand, from assumptions (3.8)(b), (c), we know that Λn → 0 and {λn} ⊂ R in bounded. 
Therefore, there exists Λ0 > 0 and λ0 > 0 such that

Λn ≤ Λ0 and λn ≤ λ0. (3.19)

In addition, since x ∈ C1(I; X), there exists MJ > 0 which does not depend on t such that

‖x(t)‖X ≤ MJ . (3.20)

Moreover, taking into account (2.7)(a) we get

‖A(x(t), u0)‖V ∗ ≤ ‖A(x(t), u0) −A(x0, u0)‖V ∗ + ‖A(x0, u0)‖V ∗

≤ L′‖x(t) − x0‖X + ‖A(x0, u0)‖V ∗ ≤ L′(MJ + ‖x0‖X) + ‖A(x0, u0)‖V ∗ (3.21)

Finally, from condition (3.10)(b), there exists a constant wJ > 0 which does not depend on n and t such 
that

‖fn(t)‖Z ≤ wJ . (3.22)

Therefore, from (3.17)–(3.22) we deduce that

‖ũn(t) − u0n‖V ≤ 1
m− δ0

{
Λ0 (MJ + M + ‖u0‖V + λ0) + L′′M + L′(MJ + ‖x0‖X)

+ ‖A(x0, u0)‖V ∗ + τ0 + δ0 (MJ + M + ‖u0‖V ) + c0wJ

}
.

Defining now CJ as the right hand side of the previous inequality we get that

‖ũn(t)‖V ≤ CJ + ‖u0n‖V .

As a result we deduce (3.14) with C̃J = CJ + M + ‖u0‖V , which concludes the proof. �
The second step of the proof is the following.

Lemma 3.2. For each t ∈ I the following weak convergence holds:

ũn(t) ⇀ u(t) in V as n → ∞. (3.23)

Proof. Let t ∈ I and consider a compact set J ⊂ I such that t ∈ J . Using Lemma 3.1 we obtain that there 
exists an element ũ(t) ∈ V and a subsequence of {ũn(t)}, still denoted by {ũn(t)}, such that ũn(t) ⇀ ũ(t)
in V as n → ∞. Recalling assumption (3.7), since ũn(t) ∈ Kn ∀ n ∈ N, we deduce that ũ(t) ∈ K.

We now prove that ũ(t) = u(t) and, by the uniqueness of the solution to (2.3), it is enough to show that 
ũ(t) is a solution to inequality (2.3). To this end we consider an element v ∈ K and use (3.7) to find that 
there exists a sequence {vn} ⊂ V such that

vn ∈ Kn ∀n ∈ N and vn → v in V.

We now use (3.13) to obtain
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〈An(x(t), ũn(t)), ũn(t) − vn〉 ≤ jn(x(t), ũn(t), vn) − jn(x(t), ũn(t), ũn(t))

+ (fn(t), πũn(t) − πvn)Z .

Next, writing

A(x(t), ũn(t)) = A(x(t), ũn(t)) −An(x(t), ũn(t)) + An(x(t), ũn(t))

we find that

〈A(x(t), ũn(t)), ũn(t) − vn〉 ≤ 〈An(x(t), ũn(t)) −A(x(t), ũn(t)), vn − ũn(t)〉
+ jn(x(t), ũn(t), vn) − jn(x(t), ũn(t), ũn(t))

+ (fn(t), πũn(t) − πvn)Z .

Adding and subtracting v in the duality paring leads to

〈A(x(t), ũn(t)), ũn(t) − v〉 ≤ 〈A(x(t), ũn(t)), vn − v〉
+ 〈An(x(t), ũn(t)) −A(x(t), ũn(t)), vn − ũn(t)〉
+ jn(x(t), ũn(t), vn) − jn(x(t), ũn(t), ũn(t))

+ (fn(t), πũn(t) − πvn)Z . (3.24)

So,

〈A(x(t), ũn(t)), ũn(t) − v〉 ≤
4∑

i=1
Si
n(vn), (3.25)

with

S1
n(vn) = 〈A(x(t), ũn(t)), vn − v〉,

S2
n(vn) = 〈An(x(t), ũn(t)) −A(x(t), ũn(t)), vn − ũn(t)〉,

S3
n(vn) = jn(x(t), ũn(t), vn) − jn(x(t), ũn(t), ũn(t)),

S4
n(vn) = (fn(t), πũn(t) − πvn)Z .

(3.26)

In order to pass to the upper limit in inequality (3.25) we now estimate each of the terms Si
n above.

First, using (2.7)(b) we deduce that

S1
n(vn) ≤ ‖A(x(t), ũn(t))‖V ∗‖vn − v‖V

≤
(
‖A(x(t), ũn(t)) −A(x(t), ũ(t))‖V ∗ + ‖A(x(t), ũ(t))‖V ∗

)
‖vn − v‖V

≤
(
L′′‖ũn(t) − ũ(t)‖V + ‖A(x(t), ũ(t))‖V ∗

)
‖vn − v‖V .

Therefore, since L′′‖ũn(t) − ũ(t)‖V + ‖A(x(t), ̃u(t))‖V ∗ is bounded and ‖vn − v‖V → 0 it follows that

lim sup
n→∞

S1
n(vn) = lim sup

n→∞
〈A(x(t), ũn(t)), vn − v〉 ≤ 0. (3.27)

Next, exploiting condition (3.8)(a) we find that

S2
n(vn) ≤ ‖An(x(t), ũn(t)) −A(x(t), ũn(t))‖V ∗‖vn − ũn(t)‖V

≤ Λn (‖x(t)‖X + ‖ũn(t)‖V + λn) ‖vn − ũn(t)‖V .
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Taking now into account the boundedness of the sequences ‖vn‖V , ‖ũn(t)‖V and {λn}, using assumption 
(3.8)(b) we obtain that

lim sup
n→∞

S2
n(vn) = lim sup

n→∞
〈An(x(t), ũn(t)) −A(x(t), ũn(t)), vn − ũn(t)〉 ≤ 0. (3.28)

We proceed with the term S3
n(vn). From hypothesis (3.9)(c), since vn → v and ũn(t) ⇀ ũ(t) in V we 

have

lim sup
n→∞

S3
n(vn) = lim sup

n→∞

[
jn(x(t), ũn(t), vn) − jn(x(t), ũn(t), ũn(t))

]
≤ j(x(t), ũ(t), v) − j(x(t), ũ(t), ũ(t)). (3.29)

Finally,

S4
n(vn) = (fn(t), πũn(t) − πũ(t))Z + (fn(t), πũ(t) − πv)Z + (fn(t), πv − πvn)Z

≤ ‖fn(t)‖Z‖πũn(t) − πũ(t)‖Z + (fn(t), πũ(t) − πv) + ‖fn(t)‖Z‖πv − πvn‖Z .

Thus, by assumptions (3.10)(a) and (3.11), the weak convergences of ũn(t) to ũ(t) and the strong convergence 
of vn to v, both in V , we deduce that

lim sup
n→∞

S4
n(vn) = lim sup

n→∞
(fn(t), πũn(t) − πvn)Z ≤ (f(t), πũ(t) − πv)Z . (3.30)

We now pass to the upper limit in inequality (3.25) and use (3.27)–(3.30) to find that

lim sup
n→∞

〈A(x(t), ũn(t)), ũn(t) − v〉 ≤ j(x(t), ũ(t), v) − j(x(t), ũ(t), ũ(t))

+ (f(t), πũ(t) − πv)Z ∀ v ∈ K. (3.31)

On the other hand, using the monotonicity of the operator A(x(t), ·) we have

〈A(x(t), v), ũn(t) − v〉 ≤ A(x(t), ũn(t)), ũn(t) − v〉 ∀ v ∈ V

and, using the convergence ũn(t) ⇀ ũ(t) in V , we find that

〈A(x(t), v), ũ(t) − v〉 ≤ lim sup
n→∞

〈A(x(t), ũn(t)), ũn(t) − v〉 ∀ v ∈ V. (3.32)

We now combine the inequalities (3.31) and (3.32) to deduce that

〈A(x(t), v), ũ(t) − v〉 ≤ j(x(t), ũ(t), v) − j(x(t), ũ(t), ũ(t))

+ (f(t), πũ(t) − πv)Z ∀ v ∈ K. (3.33)

Consider now an arbitrary element w ∈ K and let θ ∈ (0, 1]. We take v = ũ(t) + θ(w − ũ(t)) in (3.33), use 
the convexity of the function j with respect to the third argument and divide the resulting inequality with 
θ > 0 to find that

〈A(x(t), ũ(t) + θ(w − ũ(t))), ũ(t) − w〉 ≤ j(x(t), ũ(t), w) − j(x(t), ũ(t), ũ(t))

+ (f(t), πũ(t) − πw)Z .
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We now pass to the limit as θ → 0 and use assumption (2.7)(b) to conclude that ũ(t) ∈ K satisfies the 
inequality

〈A(x(t), ũ(t)), ũ(t) − w〉 ≤ j(x(t), ũ(t), w) − j(x(t), ũ(t), ũ(t))

+ (f(t), πũ(t) − πw)Z , ∀w ∈ K, t ∈ I. (3.34)

On the other hand, Lemma 2.1 guarantees that (3.34) has a unique solution. Therefore, (2.3) and (3.34), 
yield ũ(t) = u(t). This assertion reveals that each subsequence of {ũn(t)} which converges weakly in V has 
the same limit u(t). Therefore, by a standard argument we get that the whole sequence {ũn(t)} converges 
weakly to u(t) in V , which concludes the proof. �

We now proceed with the following result.

Lemma 3.3. For each t ∈ I the following strong convergence holds:

ũn(t) → u(t) in V as n → ∞. (3.35)

Proof. Let t ∈ I and let J ⊂ I be a compact set such that t ∈ J . As u(t) ∈ K, assumption (3.7) and 
arguments similar to those used in the proof of inequality (3.25) lead to

〈A(x(t), ũn(t)), ũn(t) − u(t)〉 ≤
4∑

i=1
Si
n(vn). (3.36)

Here, for each n ∈ N and i ∈ {1, 2, 3, 4}, Si
n is given by (3.26) and {vn} ⊂ V is a sequence such that

vn ∈ Kn ∀n ∈ N and vn → u(t) in V. (3.37)

Inequality (3.36) implies that

〈A(x(t), ũn(t)) −A(x(t), u(t)), ũn(t) − u(t)〉

≤ 〈A(x(t), u(t)), u(t) − ũn(t)〉 +
4∑

i=1
Si
n(vn)

and, using the strong monotonicity of A, (2.7)(c), yields

m‖ũn(t) − u(t)‖2
V ≤ 〈A(x(t), u(t)), u(t) − ũn(t)〉 +

4∑
i=1

Si
n(vn). (3.38)

On the other hand, the convergence (3.23) in Lemma 3.2 implies that

〈A(x(t), u(t)), u(t) − ũn(t)〉 → 0, as n → ∞. (3.39)

Moreover, using (3.27)–(3.30), taking into account that ũn(t) ⇀ ũ(t) = u(t), replacing v = u(t) and 
considering the sequence {vn} such that (3.37) holds, we see that

lim sup
n→∞

4∑
Si
n(vn) ≤ 0. (3.40)
i=1
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Therefore, passing to the upper limit in (3.38) and using (3.39), (3.40) we deduce that

lim sup
n→∞

‖ũn(t) − u(t)‖2
V ≤ 0,

which implies (3.35). �
We are now in a position to provide the proof of Theorem 3.1.

Proof. Let t ∈ I and n ∈ N. Moreover, consider a compact interval J ⊂ I such that [0, t] ⊂ J and denote 
by LJ the constant which arises in condition (2.4)(b). We test with vn = ũn(t) ∈ Kn in (3.4) to see that

〈An(xn(t), un(t)), un(t) − ũn(t)〉 ≤ jn(xn(t), un(t), ũn(t)) − jn(xn(t), un(t), un(t))

+ (fn(t), πun(t) − πũn(t))Z . (3.41)

Then, taking vn = un(t) ∈ Kn in (3.13) we find that

〈An(x(t), ũn(t)), ũn(t) − un(t)〉 ≤ jn(x(t), ũn(t), un(t)) − jn(x(t), ũn(t), ũn(t))

+ (fn(t), πũn(t) − πun(t))Z . (3.42)

We now add inequalities (3.41) and (3.42) to deduce that

〈An(xn(t), un(t)) −An(x(t), ũn(t)), un(t) − ũn(t)〉 ≤ jn(xn(t), un(t), ũn(t))

− jn(xn(t), un(t), un(t)) + jn(x(t), ũn(t), un(t)) − jn(x(t), ũn(t), ũn(t)).

Next, writing

An(xn(t), un(t)) −An(x(t), ũn(t)) = An(xn(t), un(t)) −An(xn(t), ũn(t))

+ An(xn(t), ũn(t)) −An(x(t), ũn(t)),

we get

〈An(xn(t), un(t)) −An(xn(t), ũn(t)), un(t) − ũn(t)〉
≤ 〈An(x(t), ũn(t)) −An(xn(t), ũn(t)), un(t) − ũn(t)〉
+ jn(xn(t), un(t), ũn(t)) − jn(xn(t), un(t), un(t))

+ jn(x(t), ũn(t), un(t)) − jn(x(t), ũn(t), ũn(t)).

Therefore, using assumptions (2.7)n(c) and (2.8)n(a) we obtain that

mn‖un(t) − ũn(t)‖2
V ≤ ‖An(x(t), ũn(t)) −An(xn(t), ũn(t))‖V ∗‖un(t) − ũn(t)‖V

+ αn‖xn(t) − x(t)‖X‖ũn(t) − un(t)‖V + βn‖un(t) − ũn(t)‖2
V . (3.43)

Next, assumptions (2.7)n(a), (3.1) and inequality (3.43) imply that

‖un(t) − ũn(t)‖V ≤ L′+α
m−β ‖x(t) − xn(t)‖X . (3.44)

Therefore, from (3.44) we deduce that
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‖un(t) − u(t)‖V ≤ ‖un(t) − ũn(t)‖V + ‖ũn(t) − u(t)‖V
≤ L′+α

m−β ‖x(t) − xn(t)‖X + ‖ũn(t) − u(t)‖V . (3.45)

On the other hand, since x(t) and xn(t) satisfy (2.1)–(2.2) and (3.2)–(3.3), respectively, we find that

x(t) = x0 +
t∫

0

F (s, x(s), u(s)) ds,

xn(t) = x0n +
t∫

0

Fn(s, xn(s), un(s)) ds

and, therefore,

‖x(t) − xn(t)‖X ≤ ‖x0 − x0n‖X

+
t∫

0

‖F (s, x(s), u(s)) − Fn(s, xn(s), un(s))‖X ds. (3.46)

Now, using (2.4)n(b) and (3.5) we obtain that

‖F (s, x(s), u(s)) − Fn(s, xn(s), un(s))‖X ≤ ‖F (s, x(s), u(s)) − Fn(s, x(s), u(s))‖X
+ ‖Fn(s, x(s), u(s)) − Fn(s, xn(s), un(s))‖X
≤ Γn (‖x(s)‖X + ‖u(s)‖V + γn)

+ LJ (‖x(s) − xn(s)‖X + ‖u(s) − un(s)‖V ) . (3.47)

We combine (3.45) and (3.47) to find that

‖F (s, x(s), u(s)) − Fn(s, xn(s), un(s))‖X ≤ Γn (‖x(s)‖X + ‖u(s)‖V + γn)

+ LJ

(
1 + L′+α

m−β

)
‖xn(s) − x(s)‖X + LJ‖ũn(s) − u(s)‖V . (3.48)

Then, exploiting (3.46) and taking into account (3.48) we deduce that

‖x(t) − xn(t)‖X ≤ gn(t) + c

t∫
0

‖x(s) − xn(s)‖X ds, (3.49)

with c = LJ

(
1 + L′+α

m−β

)
and

gn(t) = ‖x0 − x0n‖X +
t∫

0

Γn (‖x(s)‖X + ‖u(s)‖V + γn) ds

+
t∫

0

LJ‖ũn(s) − u(s)‖V ds. (3.50)

We now use the Gronwall argument to see that
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‖x(t) − xn(t)‖X ≤ gn(t) ect. (3.51)

Moreover, note that assumptions (3.6), (3.5), the bound (3.14) and the convergence (3.35) allow us to use 
the Lebesgue dominated convergence theorem to obtain that

gn(t) → 0 as n → ∞. (3.52)

We now use (3.51) and (3.52) to see that xn(t) → x(t) in X. Then, (3.45) implies un(t) → u(t) in V , which 
concludes the proof. �

We end this section with the following remarks.

Remark 3.1. Assume that

θ ∈ C(I;R), f̃n ∈ Z and fn(t) = θ(t)f̃n ∀n ∈ N, t ∈ I. (3.53)

In addition, assume that

f̃ ∈ Z, f(t) = θ(t)f̃ ∀ t ∈ I and f̃n ⇀ f̃ in Z. (3.54)

Then it is easy to check that (2.10), (2.10)n and (3.10) hold and, therefore, the statement of Theorem 3.1
still remains valid if we replace these assumptions by hypotheses (3.53) and (3.54).

Remark 3.2. Note that Theorem 3.1 provides a pointwise convergence result for the solution (xn, un) of 
Problem Pn to the solution (x, u) of Problem P as n → ∞, see (3.12). Extending this result to a convergence 
result in the space C1(I; X) × C(I; V ) remains on open problem which deserves to be investigated in the 
future.

4. An optimal control problem

Throughout this section we assume that (W, ‖ · ‖W ) is a reflexive Banach space and U is a nonempty 
subset of W . For each q ∈ U we consider a function Fq, an initial data x0q, a convex set Kq, an operator 
Aq and two functions jq and fq that satisfy the assumptions (2.4)–(2.10), respectively with constants LJq, 
L′
q, L′′

q , mq, αq and βq. To avoid any confusion, when used with q we will refer to these assumptions as 
(2.4)q–(2.10)q. We now consider the following problem.

Problem Pq. Find xq ∈ C1(I; X) and uq ∈ C(I; V ) such that

ẋq(t) = Fq(t, xq(t), uq(t)) ∀ t ∈ I, (4.1)

xq(0) = x0q, (4.2)

uq(t) ∈ Kq, 〈Aq(xq(t), uq(t)), vq − uq(t)〉
+ jq(xq(t), uq(t), vq) − jq(xq(t), uq(t), uq(t))

≥ (fq(t), πvq − πuq(t))Z ∀ vq ∈ Kq, t ∈ I. (4.3)

Under assumptions (2.4)–(2.10), (2.11), Theorem 2.1 guarantees that for each q ∈ U there exists a unique 
solution (xq, uq) ∈ C1(I; X) × C(I; V ) to Problem Pq.

Consider now a cost function L : X × V × U → R. Then, the optimal control problem we study in this 
section is the following.
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Problem Q. Given t ∈ I, find q∗ ∈ U such that

L(xq∗(t), uq∗(t), q∗) = min
q∈U

L(xq(t), uq(t), q). (4.4)

In the study of this problem we consider the following assumptions.

U is a nonempty weakly closed subset of W. (4.5)⎧⎪⎪⎪⎨⎪⎪⎪⎩
For all sequences {xn} ⊂ X, {un} ⊂ V, {qn} ⊂ U such that

xn → x in X, un → u in V, qn ⇀ q in W, we have

lim inf
n→∞

L(xn, un, qn) ≥ L(x, u, q).

(4.6)

⎧⎪⎪⎨⎪⎪⎩
There exists z : U → R such that

(a) L(x, u, q) ≥ z(q) ∀x ∈ X, u ∈ V, q ∈ U.

(b) ‖qn‖W → ∞ implies that z(qn) → ∞.

(4.7)

U is a bounded subset of W. (4.8)

Our main result of this section is the following.

Theorem 4.1. Assume (2.4)q–(2.10)q, for each q ∈ U . In addition, assume (2.11), (3.11), (4.5), (4.6) and 
either (4.7) or (4.8). For each sequence {qn} ⊂ U such that qn ⇀ q in W define

F = Fq, x0 = x0q, K = Kq, A = Aq, j = jq, f = fq

and

Fn = Fqn , x0n = x0qn , Kn = Kqn , An = Aqn , jn = jqn , fn = fqn

and assume that (3.1), (3.5)–(3.10) hold. Then, for each t ∈ I, the optimal control problem Q has at least 
one solution q∗.

Proof. Let t ∈ I be fixed and consider the function Jt : U → R defined by

Jt(q) = L(xq(t), uq(t), q) ∀ q ∈ U. (4.9)

Then, we consider the problem of finding q∗ such that

Jt(q∗) = min
q∈U

Jt(q). (4.10)

We apply Theorem 3.1 to see that xqn(t) → xq(t) in X and uqn(t) → uq(t) in V . Then, taking into account 
the convergence qn ⇀ q in U , the definition (4.9) of Jt and condition (4.6) on L we find that

lim inf
n→∞

Jt(qn) = lim inf
n→∞

L(xqn(t), uqn(t), qn) ≥ L(xq(t), uq(t), q) = Jt(q). (4.11)

This means that Jt is a weakly lower semicontinuous function.
Assume now that condition (4.7) is satisfied. Then

Jt(qn) = L(xqn , uqn , qn) ≥ z(qn)
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and ‖qn‖W → ∞ implies z(qn) → ∞. It follows from here that Jt(qn) → ∞, i.e., Jt is coercive. Recalling that 
W is a reflexive Banach space and U is a weakly closed subset of W , the existence of at least one solution 
to problem (4.10) is a direct consequence of Theorem 2.2. This means that there exists a minimizer q∗ ∈ U

for Jt which, in turn, guarantees that Problem Q has at least one solution. The same conclusions follow if
we assume that condition (4.8) is satisfied since, in this case, the Weierstrass-type argument provided by 
Theorem 2.2 still holds. �

We end this section with the following remark.

Remark 4.1. Assume that

θ ∈ C(I;R), f̃q ∈ Z and fq(t) = θ(t)f̃q ∀Q ∈ U, t ∈ I. (4.12)

In addition, assume that

f̃qn ⇀ f̃q in Z for any sequence {qn} ⊂ U such that qn ⇀ q in W. (4.13)

Then it is easy to check that (2.10)q and (3.10) hold and, therefore, the statement of Theorem 4.1 still 
remains valid if we replace these assumptions by hypotheses (4.12), (4.13).

5. A frictionless contact problem

As mentioned in the Introduction, the results in Section 3–4 can be used in the analysis and control of 
mathematical models which describe the contact of a deformable body with a foundation. A large number 
of examples can be considered, in which the contact is frictional or frictionless and the material behaviour 
is described by an elastic, viscoelastic or viscoplastic constitutive law. In this section we provide such an 
example in which we assume that the contact is frictionless, the material is viscoelastic and the hardening 
of the foundation is taken into account. For more details on the modelling and analysis of contact problems 
we refer the reader to the books [36], [37].

Everywhere below d ∈ {2, 3}, Sd denotes the space of second order symmetric tensors on Rd and “·”, ‖ · ‖
will represent the inner product and the Euclidean norm on Rd and Sd, respectively. We use the notation 
0 for the zero element of the spaces Rd and Sd and the indices i, j, k, l run from 1 to d. Let Ω ⊂ Rd be a 
bounded domain with Lipschitz continuous boundary Γ and let Ω = Ω ∪ Γ. We denote by ν the outward 
unit normal at Γ and y ∈ Ω ∪ Γ will represent the spatial variable which, sometimes, for simplicity, is 
skipped. Assume that Γ = Γ1 ∪ Γ2 ∪ Γ3 where Γ1, Γ2, Γ3 are mutually disjoint measurable parts of Γ such 
that meas (Γ1) > 0. For the displacement and the stress field we use the Hilbert spaces (V, (·, ·)V ) and 
(Q, (·, ·)Q), respectively, defined by

V = {v = (vi) ∈ H1(Ω)d : v|Γ1 = 0 }, (u,v)V =
∫
Ω

ε(u) · ε(v) dy,

Q = { τ = (τij) ∈ L2(Ω)d×d : τij = τji }, (σ, τ )Q =
∫
Ω

σ · τ dy.

Here and below ε represents the deformation operator, i.e., ε(v) denotes the symmetric part of the gradient 
of v, for any v ∈ V . The associate norms on the spaces V will be denoted by ‖ · ‖V and ‖ · ‖Q, respectively.

For an element v ∈ V , we use the notation vν and vτ for the normal and tangential traces of v on Γ, i.e., 
vν = v · ν and vτ = v − vνν. Moreover, for a regular stress field σ ∈ Q we use the notation σν = (σν) · ν
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and στ = σ − σνν. Finally, as usual, we denote by V ∗ the strong topological dual of V , by 〈·, ·〉 the duality 
paring mapping and by I an interval of time of the form I = [0, T ] with T > 0 or I = [0, +∞).

Then, the classical formulation of the viscoelastic contact problem we consider in this section is the 
following.

Problem Pve. Find a stress field σ : Ω × I → Sd, a displacement field u : Ω × I → Rd and an interface 
function ην : Γ3 × I → R such that

σ̇(t) = Eε(u̇(t)) + β(σ(t) −F(ε(u(t))) in Ω, (5.1)

Div σ(t) + f0(t) = 0 in Ω, (5.2)

u(t) = 0 on Γ1, (5.3)

σ(t) · ν = f2(t) on Γ2, (5.4)

uν(t) ≤ g, σν(t) + ku+
ν (t) + ην(t) ≤ 0,

(uν(t) − g)(σν(t) + ku+
ν (t)) + ην(t)) = 0,

0 ≤ ην(t) ≤ h
( t∫

0

u+
ν (s) ds, u+

ν (t)
)
,

ην(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if uν(t) < 0,

h
( t∫

0

u+
ν (s) ds, u+

ν (t)
)

if uν(t) > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on Γ3, (5.5)

στ (t) = 0 on Γ3, (5.6)

σ(0) = σ0, u(0) = u0 in Ω. (5.7)

Note that Problem Pve describes the equilibrium of a viscoelastic body which occupies the domain Ω, is 
held fixed on the part Γ1 on his boundary, is acted upon by a time-dependent surface traction of density 
f2 on Γ2 and is in contact with a foundation on Γ3. Equation (5.1) represents the constitutive law which 
models the viscoelastic behaviour of the material. Here E is a fourth order elasticity tensor, β is a viscosity 
coefficient and F is a constitutive function. Equation (5.2) represents the equilibrium equation in which f0
denotes the density of body forces, (5.3) is the displacement boundary condition and (5.4) is the traction 
boundary condition.

Condition (5.5) is the contact condition which models the contact with a foundation made of a rigid 
body covered by a layer of rigid-elastic material. Here g represents the thickness of this layer, h is a given 
function which describes its rigidity, k is a stiffness coefficient and r+ denotes the positive part of r, i.e., 
r+ = max {r, 0}. Details can be found in [37]. Here we restrict ourselves to recall that the quantity

ξ(y, t) =
t∫

0

u+
ν (y, s) ds (5.8)

represents the accumulated penetration in the point y of the contact surface at the time moment t. Assuming 
that the yield function h depends on the process variables ξ and u+

ν describes the hardening property of 
the foundation.

Condition (5.6) shows that the tangential component of the stress vanishes on the contact surface and, 
therefore, the contact is frictionless. Finally, (5.7) are the initial conditions, in which u0 and σ0 are given.
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In the study of Problem Pve we use the space of symmetric fourth order tensors Q∞ defined by Q∞ =
{ C = (cijkl) | cijkl = cjikl = cklij ∈ L∞(Ω)} and we consider the following assumption on the data.

⎧⎪⎨⎪⎩
(a) E ∈ Q∞.

(b) There exists mE > 0 such that
E(y)τ · τ ≥ mE‖τ‖2 for all τ ∈ Sd, a.e. y ∈ Ω.

(5.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : Ω × Sd → Sd.

(b) There exists LF > 0 such that
‖F(y, τ 1) −F(y, τ 2)‖ ≤ LF (‖τ 1 − τ 2‖)

for all τ 1, τ 2 ∈ Sd, a.e. y ∈ Ω.

(c) y → F(y, τ ) is measurable on Ω, for any τ ∈ Sd.

(d) y → F(y,0) ∈ Q.

(5.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) h : Γ3 ×R×R → R+.

(b) There exists Lh > 0 such that
|h(y, r1, s1) − h(y, r2, s2)| ≤ Lh

(
|r1 − r2| + |s1 − s2|)

for all r1, r2, s1, s2 ∈ R, a.e. y ∈ Γ3.

(c) y → h(y, r, s) is measurable on Γ3, for any r, s ∈ R.

(d) y → h(y, 0, 0) ∈ L2(Γ3).

(5.11)

f0 ∈ C(I;L2(Ω)d), f2 ∈ C(I;L2(Γ2)d), (5.12)

β ∈ L∞(Ω). (5.13)

k ∈ L∞(Γ3), k(y) ≥ 0 a.e. y ∈ Γ3. (5.14)

u0 ∈ V, σ0 ∈ Q. (5.15){
There exist G ∈ H2(Ω) and M0, M1 ∈ R such that
g = γ0(G) on Γ3 and 0 < M0 ≤ G(y) ≤ M1 for all y ∈ Ω.

(5.16)

Note that in (5.16) and below γ0 : H1(Ω) → L2(Γ) denotes the trace operator. Moreover, note that the 
condition (5.16) makes sense since d ∈ {2, 3} and, therefore, H2(Ω) ⊂ C(Ω).

We turn in what follows to the variational analysis of Problem Pve and, to this end, besides the function 
ξ : Γ3 × I → R defined by (5.8), we consider the irreversible stress field σir : Ω × I → Sd and the set of 
admissible displacements fields K ⊂ V defined by

σir = σ − Eε(u), (5.17)

K = {v ∈ V : vν ≤ g a.e. on Γ3 }. (5.18)

Then, using standard arguments we deduce the following variational formulation of the problem.

Problem Pve
V . Find an irreversible stress field σir : I → Q, an accumulated penetration function ξ : I →

L2(Γ3) and a displacement field u : I → V such that

σ̇ir(t) = β(Eε(u(t)) + σir(t) −Fε(u(t))), ξ̇(t) = u+
ν (t) ∀ t ∈ I, (5.19)

σir(0) = σ0 − Eε(u0), ξ(0) = 0, (5.20)
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u(t) ∈ K,

∫
Ω

(Eε(u(t)) + σir(t)) · (ε(v) − ε(u(t)) dy

+
∫
Γ3

ku+
ν (t)(vν − uν(t)) da +

∫
Γ3

h(ξ(t), u+
ν (t))(v+

ν − u+
ν (t)) da

≥
∫
Ω

f0(t) · v − u(t) dy +
∫
Γ2

f2(t) · (v − u(t) da ∀v ∈ K, t ∈ I. (5.21)

The unique solvability of Problem Pve
V is provided by the following existence and uniqueness result.

Theorem 5.1. Assume (5.9)–(5.16). Then Problem Pve
V has a unique solution which satisfies σir ∈ C1(I; Q), 

ξ ∈ C1(I; L2(Γ3)), u ∈ C(I; V ).

Proof. We consider the product spaces X = Q × L2(Γ3) and Z = L2(Ω)d × L2(Γ2)d endowed with the 
canonical inner products (·, ·)X and (·, ·)Z , respectively, as well as the operators F : I × X × V → X, 
A : X × V → V ∗, π : V → Z and the functions j : X × V × V → R, f : I → V ∗ given by

F (t,x,u) =
(
β
(
Eε(u)) + σ −Fε(u)

)
, u+

ν

)
, (5.22)

〈A(x,u),v〉 = (Eε(u) + σ, ε(v))Q +
∫
Γ3

ku+
ν vν da, (5.23)

πv = (v,v|Γ2), (5.24)

j(x,u,v) =
∫
Γ3

h(ξ, u+
ν )v+

ν da, (5.25)

(f(t), z)Z =
∫
Ω

f0(t) · z1 dx +
∫
Γ2

f2(t) · z2 da (5.26)

for all t ∈ I, x = (σ, ξ) ∈ X, u, v ∈ V , z = (z1, z2) ∈ Z. Note that in (5.24) notation v|Γ2 represents the 
trace of v in Γ2. Moreover, consider the element of X given by

x0 = (σ0 − Eε(u0), 0). (5.27)

Then, it is easy to see that Problem Pve
V is equivalent to the problem of finding two functions x = (σir, ξ) :

I → X and u : I → V such that

ẋ(t) = F (t,x(t),u(t)) ∀ t ∈ I, (5.28)

x(0) = x0, (5.29)

u(t) ∈ K, 〈A(x(t),u(t)),v − u(t)〉 + j(x(t),u(t),v) − j(x(t),u(t),u(t))

≥ 〈f(t), πv − πu(t)〉Z ∀v ∈ K, t ∈ I. (5.30)

Remark that, with the previous notation, all the conditions in Theorem 2.1 are satisfied for the differential 
variational inequality (5.28)–(5.30) For instance, it is easy to see that assumptions (5.9), (5.10), (5.13)
and (5.14) imply that the operators (5.22) and (5.23) satisfy conditions (2.4) and (2.7), respectively, the 
later with m = mE . Moreover, the regularity (5.15) and (5.12) imply that (2.5) and (2.10) hold, too. In 
addition, assumption (5.16) combined with standard arguments implies that the set (5.18) satisfies condition 
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(2.6) and, using the assumption (5.11) and the Sobolev trace inequality it is easy to see that condition 
(2.8) holds with β = 0. To conclude, we deduce from Theorem 2.1 the existence of a unique solution 
x = (σir, ξ) ∈ C1(I; X), u ∈ C(I; V ) which satisfies (5.28)–(5.30). Then, using the equivalence between 
Problem Pve

V and the differential quasivariational inequality (5.28)–(5.30), we deduce that (σir, ξ, u) is the 
unique solution to Problem Pve

V with regularity σir ∈ C1(I; Q), ξ ∈ C1(I; L2(Γ3)), u ∈ C(I; V ), which 
concludes the proof. �

We now study the continuous dependence of the solution to Problem Pve
V with respect to the data. 

Various cases can be considered and various convergence results can be obtained, based on Theorem 3.1. 
Here, for simplicity, we restrict ourselves to provide only one example, which concerns the dependence of 
the solution with respect to the density of surface tractions and the thickness g. Therefore, we assume in 
what follows that (5.9)–(5.16) hold and, moreover, we assume that there exists two functions θ and f̃2 such 
that

θ ∈ C(I;R), f̃2 ∈ L2(Γ2)d, (5.31)

f2(t) = θ(t)f̃2 ∀ t ∈ I. (5.32)

In addition, for each n ∈ N we consider a perturbation f2n and gn = γ0(Gn) of f2 and g = γ0(G), 
respectively, such that

f2n(t) = θ(t)f̃2n ∀ t ∈ I with f̃2 ∈ L2(Γ2)d. (5.33)

Gn ∈ H2(Ω) and 0 < M0 ≤ Gn(y) ≤ M1 for all y ∈ Ω. (5.34)

f̃2n(t) ⇀ f2(t) in L2(Γ2)d ∀ t ∈ I. (5.35)

Gn ⇀ G in H2(Ω). (5.36)

For each n ∈ N we consider Problem Pve
V n obtained by replacing in Problem Pve

V the data f2 and g with 
f2n and gn, respectively. Then, Theorem 5.1 guarantees that Pve

V n has a unique solution (σir
n , ξn, un), with 

regularity σir
n ∈ C(I; Q), ξn ∈ C(I; L2(Γ3), un ∈ C(I; V ). Moreover we have the following convergence 

result.

Theorem 5.2. Assume (5.9)–(5.16) and (5.31)–(5.36). Then, the solution (σir
n , ξn, un) of Problem Pve

V n con-
verges to the solution (σir, ξ, u) of Problem Pve

V as n → ∞, i.e., for each t ∈ I we have

σir
n (t) → σir(t) in Q, ξn(t) → ξ(t) in L2(Γ3), un(t) → u(t) in V as n → ∞.

Proof. First, we remark that the set of constraints associated to Problem Pve
V n is given by

Kn = {v ∈ V : vν ≤ gn a.e. on Γ3}. (5.37)

Let v ∈ K. Then, assumptions (5.16) and (5.34) allow us to consider the sequence {vn} ⊂ V defined by 
vn = Gn

G v, for each n ∈ N We now use definitions (5.18), (5.37) and equalities gn = γ0(Gn), g = γ0(G)
to see that vn ∈ Kn for each n ∈ N. Moreover, using (5.34), (5.36) and the compactness of the inclusion 
H2(Ω) ⊂ H1(Ω) (see, for instance [1]) it is easy to see that vn → v in V . We conclude from here that 
condition (3.7)(a) is satisfied.

Assume now that {vn} is a sequence of elements of V such that vn ∈ Kn for all n ∈ N and vn ⇀ v in V . 
Then,

vnν ≤ gn a.e. on Γ3, for all n ∈ N. (5.38)
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Moreover, compactness arguments guarantee that the convergences vn ⇀ v in V and Gn ⇀ G in H2(Ω)
imply that vnν → vν and gn → g, both in L2(Γ3). Therefore, passing to some subsequences, again denoted 
by {vn} and {gn}, we can assume that

vnν → vν , gn → g a.e. on Γ3. (5.39)

It follows now from (5.38) and (5.39) that vν ≤ g a.e. on Γ3 which shows that v ∈ K and, hence, (3.7)(b) 
holds. The proof of Theorem 5.2 is now a direct consequence of Theorem 3.1 and Remark 3.1. �

We now turn to the optimal control of Problem Pve
V and, to this end, we shall use Theorem 4.1. For 

simplicity, we restrict ourselves to provide the following example.
Assume that (5.9)–(5.16) hold and denote by W the product space W = L2(Γ2)d ×H2(Ω) endowed with 

the canonical Hilbertian structure. Moreover, consider the set U ⊂ W defined by

U = { q = (f̃2, G) ∈ W : ‖f̃2‖L2(Γ2)d ≤ M2 , ‖G‖H2(Ω) ≤ M3, (5.40)

M0 ≤ G(y) ≤ M1 for all y ∈ Ω }

where M0, M1, M2 and M3 are given positive constants such that M0 ≤ M1 and M3 ≥ M0(mes(Ω) 1
2 . Note 

that the set U is nonempty since, for instance, (0L2(Γ2)d , M0) ∈ U . For any q = (f̃2, G) ∈ U we consider 
Problem Pve

V q obtained by replacing in Problem Pve
V the data f2 and g with f2q and gq, respectively, where

f2q(t) = θ(t)f̃2 ∀ t ∈ I, gq = γ0(G)

and θ ∈ C(I; R). Then, Theorem 5.1 guarantees that Pve
V q has a unique solution (σir

q , ξq, uq), we regularity 
σir

q ∈ C1(I; Q), ξq ∈ C1(I; L2(Γ3), uq ∈ C(I; V ). Consider now the following optimal control problem in 
which, for any q ∈ U , uqν represents the normal component of the function uq.

Problem Qve. Given t ∈ I and φ ∈ L2(Γ3), find q∗ = (f∗
2, G

∗) ∈ U such that∫
Γ3

|uq∗ν(t) − φ|2 da ≤
∫
Γ3

|uqν(t) − φ|2 da ∀ q ∈ U. (5.41)

We have the following existence result.

Theorem 5.3. Under the previous assumptions, the optimal control problem Qve has at least one solution 
q∗ = (f∗

2, G
∗) ∈ U .

Proof. It is easy to see that the set (5.40) satisfies condition (4.5) and (4.8) on the space W = L2(Γ2)d ×
H2(Ω). Moreover, the function L : X × V × U → R defined by

L(x,u, q) =
∫
Γ3

|uqν(t) − φ|2 da ∀x ∈ X, u ∈ V, q ∈ U

satisfies condition (4.6) with X = Q × L2(Γ3). We now use Theorem 4.1 and Remark 4.1 to conclude the 
proof. �

We end this section with some comments and mechanical interpretation of our results. First, the vari-
ational formulation Pve

V of Problem Pve, in terms of the irreversible stress, accumulated penetration and 
displacement field, is new and nonstandard. Nevertheless, we refer to solution (σir, ξ, u) of Pve

V as the weak 
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solution of the frictionless contact problem Pve. Therefore, Theorem 5.1 provides the unique solvability of 
this viscoelastic contact problem. Next, Theorem 5.2 shows that the weak solution depends continuously on 
the density of surface tractions and the thickness of the rigid-elastic layer. Finally, the mechanical interpre-
tation of the optimal control problem Qve is the following: given a contact process of the form (5.1)–(5.7),
(5.31), (5.32) and a time moment t ∈ I, we are looking for a pair q = (f̃

∗
2, G

∗) ∈ U such that the corre-
sponding penetration of the viscoelastic body at t is as close as possible to the “desired penetration” φ. 
Theorem 5.3 guarantees the existence of at least one solution to this problem.
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