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ABSTRACT

We consider an n-phase Stefan Problem for a semi-infinite material x > 0 with constant initial
condition and a heat flux of the type q(t) = —-qo/ﬁ, imposeed on the fixed face x = 0. We determine
necessary and/or sufficient conditions on the parameter q,, in order to obtain the existence of the
solution. We also show the equivalence between this problem and that in which a temperature on the
fixed face is imposed.
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I. INTRODUCTION

We consider a scmi-(nfiniie materi:l represented by (0,+00), with a constant initial temperature
u;. We apply a heat flux of the type q(t)=—qo/¥t with qo > 0 on the fixed face x = 0. If the
temperature’s values are between u; and u;,, (u; < u,4,), we will consider that the material is

in the phase i. Each of these phases is separated by a free boundary.

In this work, based on [4,7], we determine which conditions must verify the parameter q, , for
the n-phases to appear. We show that the necessary and sufficient condition is:

ﬂj‘l ﬂn-z ﬂ:
qo > erfG""'(.:"") > erf Gn-sf.x’n-;) Zeee 2 el'fd > ﬂl

where B, G; and x; are defined by (13), (25) and (26) respectively.

II. THE PROBLEM

We wish to find conditions on q, for the n-phases to appear, in other words, conditions such that
there exist the free boundaries S,_,(t) < S,_3(t)< ... < S,(t) and the temperature © = O(x,t),
given by:

(1)  O(x,t) = O;(x,t) if S;(t) <x <Spy(t), t>0, i=1,...,n,

’

and such that the following conditions be satisfied:

80, 06,

? F=o0iza x € (Si(t) ,Sia(t)), t >0, i=1,...,n,

(3) 6,(x0) =u,, x>0,

(9)  6y(So(t), t) = uy, >0,

(8)  ©i(ST(t) t) = O (ST (t), t) = vy, t>0 , i=1,...,n1,

® kpeoy=-F, t>o0,

(7 s«{0)=0 ) i=1...,n1],

26



(8) k; %—T(s;‘(t), t) — kit ‘z%ﬂ(s;(t), ) = &5,(t), >0, i=1,...,n01,

where k; and a;_— pk-é'-' are respectively the thermal .conduct.ivit.y and the diffusivity for the phase i, c;
is the especific heat of the phase i, p is the common mass density, §; > 0 represents the latent heat
used for passing from phase i to phase i + 1, the temperatures u; verify u,,, > u;fori=1,...,
n-1 and we consider Syg(t) = +o0 and S,(t) = 0, V t>0. For more physical considerations see
[6,7).

Remark 1: The problem (2)—(8) can be stated in a similar way for dependent variable
concentration or enthalpy.

II. SOLUTION OF THE PROBLEM (2)—(8)

Following the Neumann's solution idea, for the two-phase Stefan problem [1,2,5] ( for the multi-
phase Stefan problem see [6,7] ) we propose:

9‘(x,t)=A;+B‘cl(2—:?u), i=1...,n,

Si(t) = 2w, t, w; >0, i=1]...,n-1,

(9)

where for convenience we consider a;= [a; and

erf(x) = f; rexp(-t’) dt and erfe(x)'=1 — erf(x)
0

are the error and the complementary error functions ré;pectively.
From conditions (3); (6) we obtain:

(10) A, = () — wert(y) . B, = — ol i=1,... -1,
ot (3) — ert(al) | o (1'=') M
(1) An = up + exf(i) 2027 %‘"ﬁ B, = — J3¥T

here we have inserted a dummy parameter w, = -oo.
Conditions (8) (i = 1, ---, n-1) are verified if and only if w; satisfy the following system:
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n(w;, a,4,) -8 n(w;, 3;)

2 bies - ﬂH'l $(wis Wit 3i41) C (i Wiy 8) ] i
(12) ( )
Wh-1y 8-
B)  BniWney = Gy Nway an) = B, gl
where:
(13) ﬂiz—;%(u,-—u'.+l)>0, i=1,...,n1,
(14) n(w, ) = exp(— 43),
(15) #a, B,7) = et (§) — exi(§) .
In order to show the existence of a solution of the system (12) we will define the sequences of
functions {b,(0)}, {HN vy {GiN.
We define: ‘
(16) - Gi(x) =x, x>0,
17) hy(x) = 6;x + B, —(ﬁ—(%% , x>0.

Taking into account that F,(x) = e_%__—:)’) (x > 0) is an increasing function, it
results that h, verifies:
h,(0) = B, > 0, hy(+00) = +c0, hi(x) >0, Vx>0,
then the equation (12a) for i = 1 is equivalent to:

(18) by(r) = Ay gt

W), Wq, 89

and hence ¢(w;, wj, 85) > 0 and w; > w,.

Now we define:

(19) B0 = el & - 052, x> 0.

From properties of the function h, it results that H, satisfies:

H,(0) = — %3 <0, H(+w)=1,  H@x) >0, Vx>0.

This implies the existence of x, > 0 such that H,(x,) = 0 and then we can define the function
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(20) Ga(x) = a, erl '[H,(x)] , x € (x;, +00),

which is an increasing function and verifies G5(x,) = 0 and Gy(+00) = +oo.

We can write equation (18) as:
(21) w3 = Gy(wy)

or equivalently by

. B _ hy(wy)
(2““’) d“’n“’av‘zj - 'lz‘l"v;:).

Hence G3(x) < Gy(x), ¥V x € (x4, +00). Following [7] and proceeding inductively we can define
now the functions:

(22) hi(x) = & Gi(x) + B, ¢(Gng:f(,x(2§.-(‘;;, o X € (X1 4+00) =2, . . 02,

23) s (=6 Gaa(8) + baale) T2l 1 € (s, +00)

(24) Hy(x) = ef %&’-“) - Bin "(—G-‘-(;-‘%;;ﬂi), X € (x;.4, +00), i=2...,02

(25) G‘(X) =8 "r‘mc-n(!)] ’ X € (xo’-n +w) [} i = 3’ LRI ,ll-l ’
where
(26) X, >%, /] H(x)=0,i=2,...,n

Having in mind that:
R——-(—j-é—(ﬁp = _Dia(x) i=3,...,01
Gia(x), Gi(x), &) — 9(Giry(x), a)) * ’ o

it results that G, ,(x) > G;(x) ,VY x € (x;.,, +00) and then the functions defined below are increasing
functions and satisfy these conditions:

b(xiy) > 0, hy(+00) = +oo,
H,(x;,) <0, Hy(x)) =0, H,(+o00) =1,

G;(x;,) =0, G;(400) = 400 .
We can also define the function: -
(27) Q(x) = qo ﬂ(Gn-l(x)v a'l)v x> Xpn-29
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which is a decreasing function and satisfies:

Q(xq-2) = q, ) Q(+00) = 0.

From (23), (25) and (27), the system ((12)a-b) can be written as:

w; =Gy(wy), 1i=2,...,0-1,
(28)
b y(w)) = Q(wy)

and consecuently there will be a solution if and only if there exists an x* such that h,_,(x*) = Q(x*).
Note that because of the properties of functions h,, and Q this will happen if and only if
h, )(X,-3) < Q(x,-3) or equivalently (on account of the properties of each G;):

B B B
(29 > n-l > n-3 >.00.> —%—-> 8,.
) qo erf( Gn-zf.xln-z)) erf( Gn—s'(.:n-s ) erl'( d) >

Remark 2 : For the particular case n = 2 we find the result obtained in [3,4] for the existence of

two phases.

IV. RELATIONSHIP WITH THE PROBLEM WITH CONSTANT TEMPERATURE ON THE
FIXED FACE |
The temperature (9) on the fixed face x = 0 is given by:
qo”:ﬁ_
As u* > u, we can consider the multi-phase Stefan problem which consists in finding the
functions S, ,(t) < S,,-,it)< ... < §,(t) and the temperature © = O(x,t), defined by:
O(x,t) = 6;(x,t) if Si(t) < x < Si4(t), t>0, i=1,...,n,

(30) ue= n(0, t) = An(Wr) = un + erf(1

solutions of (2)-(5), (Gl;is), (7) and (8) where

(6bis) Oa(0t) =u, 4, withu ., > un.

The solution of this problem , following the above method, is given by:
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8,(x,t) = M; + N, erf(ﬁ) . i=1 . ,n,

(31)
S,-(t.)=2¢r.-Jt.__, o, >0, i=1,...,n1,
with
(32) Mi = u‘ erf(a‘-l) — % erf(;f) ] N.‘ - .+l L) i=lv" o,
rf( ) - erf(;—) erf( ) - erf(;:f)

where we have inserted two dummy parameters o9 = +o0y 0, = 0.

The parameters g, are the solutions of the system of equations

_ n(o; a,4,) n(o;, a;)
(33) bio; = B4, #oi o0 ‘:-‘+1) T i (o o8]

i=1,...,n-},

or equivalently:
o, =Gio), i=2,...,01,
(34)
ba-1(e1) = K(ay) ,

where the functions G; and h; (i = 1, . . ., n-1) are given by (16), (20), (22), (23) and (25)
respectively and the function K is defined by:

1(G-1(X), 2n) - — _ _kn
(35) K(x) =8, erf( ‘”‘l(x ) with B = a_,._r(“" —u,4,) >0
It satisfies K(x,.3) = +oo, K(+00) = 0 and K'(x) < 0, Vx € (x,_3, +00).
Because of
. qoan‘r-
(36) U4 = Un + erf(—['Lnl)

it results that K(x) = Q(x) and from the uniqueness of the solution of (34) we deduce the equivalence
of both problems, and then M; = A;, N; = B;, 0;= w;, Vi=l,.. .n.

Furthermore, if we consider u* = u +1 it results

q =___Nnkn= ﬂn
0 an V¥ erfga";"

hence the inequality (29), obtained for the first problem, is transformed in
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»3; > ‘Bn-l _~__‘ﬂ_!l‘_2___>) ﬂzx > BI .
erf ;—l f(’n-2(xn-2) f(’n-a(xn—a) t:'l'f—l
.. erl —g——~ T

(37

for the second problem. Notice that this last inequality was obtained only with condition of

temperature on the fixed face.

Remark 3 : The solution of problem (2)-(5), (6bis), (7) and (8) has been found before in [7] using
a method similar to this.
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