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Abstract 

An analytical model of freezing (desublimation) of moisture in a porous 

medium with an overspecified condition at the fixed face is considered  

in order to determinate one unknown thermal coefficient of a semi-

infinite phase-change material. It can be considered as a free boundary 

problem in which coupled heat and moisture flows (Luikov type 

equations) with eight heat parameters. We obtain the explicit  

expression of the temperature of the two phases, the mass-transfer 
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potential in the humid region and the phase-change interface, and we 

also give formulae for the unknown coefficients and the necessary and 

sufficient conditions for the existence of a solution. 

1. Nomenclature 

i

i
i c

k
a

ρ
=      thermal diffusivity of the phase-i 

ma      moisture diffusivity 

ic      specific heat capacity of the phase-i 

ik      thermal conductivity of the phase-i 

( )vttc
ru
−

=
02

0
0K  Kossovitch number 

2a
a

u m=L      Luikov number 

( )
0

0
u

tt
n v−δ
=�P  Posnov number 

0q      coefficient that characterizes the heat flux at 0=x  

r      latent heat 

( )ts      position of the evaporation front 

t      time 

iT      temperature of the phase-i 

0t      initial temperature 

st      temperature at the fixed face 0=x  

vt      phase-change temperature ( )0ttt vs <<  

u      mass-transfer potential 

0u      initial mass-transfer potential 



DETERMINATION OF ONE UNKNOWN THERMAL … 253

Greek symbols 
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π
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1

1
12

1

1

0

0
11 ,

ca
k

k
c

ru
q

mρ
=β

ρ
=β  

ρ    mass density 

δ    thermal gradient coefficient 

λ    constant which characterizes the evaporation front 

Subscripts 

1=i    freezing region 

2=i   region in which there are coupled heat and moisture flows 

2. Introduction 

Heat and mass transfer with phase change problems, taking place in 

a porous medium, such as evaporation, condensation, freezing, melting, 

sublimation and desublimation, has wide applications in separation 

processes, food technology, heat and mixture migration in solids and 

grounds, etc. Due to the non-linearity of the problem, solutions usually 

involve mathematical difficulties. Only a few exact solutions have been 

found for idealized cases (see [2-5], [7] and [18] for example). A large 

bibliography on free and moving boundary problems for heat-diffusion 
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equation was given in [20]. Mathematical formulation of the heat and 

mass transfer in capillary porous bodies has been established by Luikov 

[10, 11], and it was recently considered in [6], [8], [14], [15], [23] and [25]. 

Two different models were presented by Mikhailov [12] for solving        

the problem of evaporation of liquid moisture from a porous medium. For 

the problem of freezing (desublimation) of humid porous half-space, 

Mikhailov also presented an exact solution in [13]. In [16] an exact 

solution was presented for temperature and moisture distributions in a 

humid porous half-space with a heat flux condition on the fixed face 

0=x  of the type .0

t

q
 Many experimental investigations have been 

conducted for determining the unknown physical coefficients of the 

materials (for example, [9], [22] and [24]). In this paper we consider the 

model developed in [13-16] with an overspecified condition on the fixed 

face. This allows us to consider some thermal coefficients as unknown   

and to calculate them, under certain specified restrictions upon data, 

following the idea of [19] for one phase and of [17] for two phases. 

Let us consider the flow of heat and moisture through a porous half-
space during freezing. The position of phase change front at time t is 
given by ( ).tsx =  It divides the porous body into two regions. In the 

freezing region, ( ),0 tsx <<  there is no moisture movement and the 

temperature distribution is described by the heat equation: 

( ) ( ) ( ) .,0,0,,,
1

1
12

1
2

1
1

c
k

attsxtx
x

T
atx

t
T

ρ
=><<

∂

∂
=

∂
∂

 (1) 

The region ( ) +∞<< xts  is humid capillary porous body in which there 

are coupled heat and moisture flows. The process is described by the well-
known Luikov’s system [11] for the case 0=ε  (ε is the phase conversion 

factor of liquid into vapor) given by 

( ) ( ) ( ) ,,0,,,,
2

2
22

2
2

2
2

c
k

attsxtx
x

T
atx

t
T

ρ
=>>

∂

∂
=

∂
∂

 (2) 

( ) ( ) ( ) .0,,,,
2

2
>>

∂

∂=
∂
∂ ttsxtx

x

uatx
t
u

m  (3) 
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The initial distributions of temperature and moisture are uniform 

    
( ) ( )

( ) ( )





=∞+=

=+∞=

.,0,

,,0,

0

022

utuxu

ttTxT
 (4) 

It is assumed that on the surface of the half-space, the temperature is 

constant 

( ) ,,01 sttT =     where .vs tt <  (5) 

On the freezing front, there exists the continuity of the temperatures: 

( )( ) ( )( ) ,0,,, 21 >== ttttsTttsT v  (6) 

where .0ttv <  Heat and moisture balance at the freezing front yields 

( )( ) ( )( ) ( )( ) ( ) ,0,,,, 2
2

1
1 >ρ=

∂
∂

−
∂
∂

tt
dt
dsttsrutts

x
T

ktts
x
T

k  (7) 

( )( ) ( )( ) .0,0,, 2 >=
∂
∂

δ+
∂
∂ ttts

x
T

tts
x
u  (8) 

We also consider an overspecified condition on the fixed face [ ],10=x  

considering that the heat flux depends on the time, like in [18] 

( ) ,,0 01
1

t

q
t

x
T

k =
∂
∂

 (9) 

where 00 >q  is a coefficient which characterizes the heat flux at the 

fixed face .0=x  The set of equations and conditions (1)-(9) is called 

problem P. 

The goal of this paper is to find formulae for the determination of     

an unknown thermal coefficient chosen among ρ (mass density), ma  

(moisture diffusivity), 1c  (specific heat of the frozen region), 2c  (specific 

heat of the humid region), 1k  (thermal conductivity of the frozen region), 

2k  (thermal conductivity of the humid region), δ (thermal gradient 

coefficient), r (latent heat) together with the free boundary ( ),ts  the 

temperatures 1T  and ,2T  and the moisture u. 
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3. Unknown Thermal Coefficients Through 

a Free Boundary Problem 

Following [16], for the general case 1
2

2

2
≠

ρ
==

k
ca

a
a

u mmL  we have 

( ) ,
2

erferf,
1121

01
1 
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 λπ
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qa
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( ) ,0, >> ttsx  (12) 

( ) tats 22λ=  (13) 

with 

,
111

−
=β

u

n

L

P  (14) 

where λ (the parameter that characterizes the free boundary) and the 

unknown thermal coefficient must satisfy the following system of 

transcendental equations: 

( ( ) ) ( ) ( ) ,11exp 101
2

42





































λ







 λ

−β−πλ=λ−λβ−β
Q

u
Q

F LK  (15) 

( )
3

4
1 erf
β

=λβ  (16) 
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with 

( ) ( )
,,,

12

21
4

11

0
3

022

0
2 kc

kc

ttkc

q

ttkc

q

svv
=β

−ρ

π
=β

−ρ

π
=β  (17) 

where real functions 1F  and Q are defined by 

( ) ( )
( )( ) ( ) ( ) ( )( )xxxxQ
x

x
xF erf1exp,

erf1
exp 2

2

1 −π=
−

−
=  (18) 

with properties 

( ) ( ) ( ) ,0,0,,10 111 >∀>′+∞=+∞= xxFFF  (19) 

( ) ( ) ( ) .0,0,1,00 >∀>′=+∞= xxQQQ  (20) 

Now, we give necessary and sufficient conditions in order to obtain 

solution to above system (15)-(16) and we also give formulae for the 

parameter λ of the phase-change interface and the unknown thermal 

coefficient in the following eight cases: 

Case 1. Determination of the unknown coefficient δ (c.f. Theorem 2). 

Case 2. Determination of the unknown coefficient r (c.f. Theorem 3). 

Case 3. Determination of the unknown coefficient ma  (c.f. Theorem 4). 

Case 4. Determination of the unknown coefficient ρ (c.f. Theorem 5). 

Case 5. Determination of the unknown coefficient 1k  (c.f. Theorem 6). 

Case 6. Determination of the unknown coefficient 2k  (c.f. Theorem 7). 

Case 7. Determination of the unknown coefficient 1c  (c.f. Theorem 8). 

Case 8. Determination of the unknown coefficient 2c  (c.f. Theorem 9). 

First, we have the following preliminary lemma: 

Lemma 1. We have 

( ) ( )
( )

.1,0,0,0
1

12
≠>∀>∀<

−

−= mmx

xQ
mxQ

mxE  
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Proof. By using the properties (20) of the function Q, if we consider 

,1>m  we have that 012 >−m  and 
( )
( ) ,1>
xQ

mxQ
 then we obtain ( ) .0<xE  

On the other hand, if ,10 << m  it follows that 012 <−m  and 
( )
( ) .1<
xQ

mxQ
 

Then, we also obtain ( ) .0<xE  

Theorem 2 (Determination of the unknown coefficient δ). If 

( )
,11;

 erf
1max

2143
<








βλββ

 (21) 

with 2β  and 3β  are defined in (17), where 01 >λ  is the unique solution 

to equation 

( ) ( ) 0,21 >= xxgxg  (22) 

with 

( ) ( ) ( ) ( )24
22011 , xexgxxFxg β−β=π+= K  (23) 

and 2β  and 4β  are defined in (17), then there exists a unique solution to 

problem P which is given by (10)-(13), where λ and δ are given by: 

,01erf1

3

1

4
>







ββ

=λ −  (24) 

( )

( ( ) ( )) 011

1

12
0

5 2
4 >









λ−β
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−

λ







 λ

−

β
=δ λβ− Fe

Q
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Q K
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0
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 −

−
=β

utt
u

v L
 (26) 

Proof. Considering (21), it follows that 

11

3
<

β
 (27) 
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and it easily follows that there exists a unique 0>λ  solution to (16) 

given by (24). Then, we replace λ in (15) and after some calculations we 

have (25). So we have to show that .0>δ  First, using Lemma 1, we see 

that if we impose that 

( ( ) ( )) ,011 12
0

2
4 <λ−β

πλ
− λβ− Fe
K

 

we have .0>δ  That is to say ( ) ( ) .
2

4
201

λβ−β<πλ+λ eF K  According to 

(23) this can be written as 

( ) ( ).21 λ<λ gg  (28) 

The functions 1g  and 2g  have the following properties: 

( ) ( ) ( ) ,0,0,,10 111 >∀>′+∞=∞+=+ xxggg  

( ) ( ) ( ) .0,0,0,0 2222 >∀<′=∞+β=+ xxggg  

We can conclude that if 

      ,12 >β  (29) 

then there exists a unique 01 >λ  such that ( ) ( ).1211 λ=λ gg  Then (28) 

holds when 

.0 1λ<λ<  (30) 

To finish the proof, we see that the needed hypotheses (27), (29) and (30) 

could be written in the following way: erf is an increasing function, so (30) 

is equivalent to ( ) ( ).erferf 144 λβ<λβ  So (27) and (30) could be resumed 

as 

( ).erf1
14

3
λβ<

β
 (31) 

Then, thanks to (29) and (31), we have 

( ) ,11,
erf

11
2143 β

>
λββ

>  

that is to say, (21) holds. 
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Theorem 3 (Determination of the unknown coefficient r). If 

( )
,1

erf
1

243
<

λββ
 (32) 

where 02 >λ  is the unique solution to equation 

( ) ( ) 0,21 >= xxgxF  (33) 

with 1F  and 2g  given by (18) and (23), respectively, and 3β  and 4β  are 

defined in (17), then there exists a unique solution to problem P which is 

given by (10)-(13), where λ is given by (24) and r is given by: 

( ( ) ) ( )

( )


















λ







 λ

−β−

λ−λβ−β

πλ

β
=

Q
u

Q

F
r

L11

exp

1

1
2

426  (34) 

with 

( )
.

0

02
6 u

ttc v−
=β  (35) 

Proof. It easily follows in the same way as Theorem 1. 

Theorem 4 (Determination of the unknown coefficient .)ma  If 

13 >β  (36) 

and 

( ) ( ) ,110 12
0

2
4

nFe P
K

<−



 λ−β

πλ
< λβ−  (37) 

and 3β  and 4β  are defined in (17), then there exists a solution to problem 

P which is given by (10)-(13), where λ  and ma  are given by: 








ββ

=λ −

3

1

4

1erf1   and  ,1
22

2

ξρ
=

c
k

am  (38) 

where ξ is a solution to equation 

( ) 0,73 >β= xxgnP  (39) 
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with 

( ) ( )
( )

( ) ( ) .11,
1

11 12
0

723
2

4 −



 λ−β

πλ
=β

−








λ
λ−= λβ− Fe

xQ
xQ

xg
K

 (40) 

Proof. In the same way as we did in Theorem 1, we get λ  given by 

(24) by using the hypothesis (36). Then, replacing λ into (15) and denoting 

( ) ( ),,11,01

2

2 ∞+∈
ρ

== ∪
ca

k

u
x

mL
 we have the following equation 

( ) ( ) ( ) ,11
12

0
3

2
4 −



 λ−β

πλ
= λβ− Fexgn
K

P  

that is (39), where 7β  is a constant with respect to x. The function 3g  is a 

differentiable and continuous function into +R  which has the following 

properties: 

( ) ( ) ( ) ( ) ( )
( ) ,

2
11,0,10 3333 λ

λ′λ===∞+= +−+
Q
Q

gggg  

( ) ( ) ( ) ( ) ( )[ ].
4

11 33 λ′−λ′′λ
λ

λ=′=′ +− QQ
Q

gg  

So we can say that if ,0 7 nP<β<  then we have at least one solution of 

equation (39) and then the unknown coefficient ma  is given by (38). 

Theorem 5 (Determination of the unknown coefficient ρ). For any 

data, there exists at least one solution to problem P which is given by   

(10)-(13), the coefficient ρ is given by 

( )λββ=ρ 4
2

8erf  (41) 

with 4β  defined in (17) and 

( )211

2
0

8
sv ttkc

q

−

π
=β  

and the parameter ( )5,0 λ∈λ  is a solution to equation 

( ) ( ) 0,54 >= xxgxg  (42) 
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with 
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π

= 1429
0

5
1
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exp 2

2 x
x
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v

sv

L3
10

22

11

0
9

1,
β

=β
−
−

=β  (46) 

and 05 >λ  is the unique solution to equation ( ) .0,05 >= xxg  

Proof. From (16) we have ρ as a function of λ, given by (41). 

Replacing ρ into (15) we have 
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That is to say, 

      ( ) ( ) .0,54 >λλ=λ gg  (47) 

The function 5g  is a strictly decreasing function with ( ) +∞=+05g  and 

( ) ,5 −∞=+∞g  then 5g  has a unique positive zero .5λ  The function 

( )xgg 44 =  is a continuous differentiable function which starts at zero 

with value 0, and when x tends to ,+∞  it goes to +∞  or to a non negative 

value. So we have that both functions will meet each other in at least one 

( ),,0 5λ∈λ  and then we find a solution for equation (47) or equivalently 

equation (42). 

Theorem 6 (Determination of the unknown coefficient ).1k  If (29) 

holds and 06 >λ  is the solution to equation 

( ) 0,16 >= xxg  (48) 

with 

( ) ( ) ( ) ,111
101

2
6






























































−β−π+
β

=
xQ

u
xQ

xxFxg LK  (49) 

where 1β  is defined in (14) and 2β  is defined in (17), then there exists a 

unique solution to problem P which is given by (10)-(13), the thermal 

coefficient 1k  is given by 

( )

,
1log

6

2

2

21
1









λ

λ=

g
c
kc

k  (50) 

where ( )6,0 λ∈λ  is the unique solution to equation 

( )( ) 6
3

4
78 0, λ<<

β
β

= xxxgg  (51) 

with 

( ) ( ) ,0,1log 6
6

7 λ<<





= x

xg
xg  (52) 

( ) ( ).erf8 xxxg =  (53) 
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Proof. From (15) we have 

              ( ( ) ) ( )λ=λβ− 6
2

4exp g  (54) 

and easily follows (50). Note that 01 >k  if and only if ( ) .10 6 <λ< g  The 

function 6g  has the following properties: 

( ) ( ) ( ) .0,0,,10 66
2

6 >∀>′+∞=∞+
β

=+ xxggg  (55) 

Therefore, if we first consider (29) and then we get 06 >λ  as the solution 

to (48) it naturally follows that 01 >k  if we take ( ).,0 6λ∈λ  Then, we 

replace 1k  in (16) and after some computations we have that λ must 

verify the equation ( ) ( ) ,1logerf1log
3

4

66
λ

β
β

=















λ







λ gg
 that is to say, 

equation (51), which has a unique solution by considering the properties 

of functions 76 , gg  and .8g  

Theorem 7 (Determination of the unknown coefficient .)2k  If (36) 

holds, and 
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then there exists a solution to problem P which is given by (10)-(13), the 

thermal coefficient 2k  is given by 

2
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21
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c
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and the parameter ( )∞+λ∈λ ,5  is a solution to equation 

( ) ( ) 0,109 >= xxgxg  (60) 

with 
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2
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1110 xQ
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K
−

γ
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β=  (61) 

where 10λ  is the unique positive zero of ( ).10 xg  

Proof. Considering (36), from (16) easily follows (59). Replacing it 

into (15) we get 
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( ) .111exp 012
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So we have for λ equation (60). The functions 9g  and 10g  have the 

following properties: 

( ) ( ) ( )( ) ,111,10 01299 >γβ−+=∞+=+ Qngg P  (62) 

( ) ( ) ( ) ( ) .0,0,1exp
,0 10

00

2
0

111010 >∀>′−
γ

γ−
β=∞+−∞=+ xxggg

K
 (63) 

Then, if we consider 
( ) ( )( ),111exp

012
00

2
0

11 γβ−+>−
γ

γ−
β QnP

K
 we know 

that there exists at least one 0>λ  solution of equation (60). It is easy to 

see that ,10λ>λ  where 10λ  is the unique solution of 

( ) .0,010 >= xxg  (64) 

Theorem 8 (Determination of the unknown coefficient .)1c  If 

1
2

1;1max
6432

<








λβββ
 (65) 
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32, ββ  and 4β  are defined in (17) and 6λ  is the solution of equation   

(48), then there exists a unique solution to problem P which is given by 

(10)-(13), the thermal coefficient 1c  is given by 

( )
,

1log

2
6

2

21
1

λ









λ

=
g

k
ck

c  (66) 

where ( )6,0 λ∈λ  is the unique solution to equation 

( )( ) 6
43

711 0,1 λ<<
πββ

= x
x

xgg  (67) 

with 7g  defined in (52), and 11g  is defined by 

( ) ( )
.

erf
11 x

x
xg =  (68) 

Proof. As in Theorem 6, from (15) we have (54) and easily follows 

(66). Note that 01 >c  if and only if ( ) .10 6 <λ< g  Therefore, if we first 

consider (65), condition (29) holds and then we get 06 >λ  as the solution 

to equation (48); it naturally follows that 01 >c  if we take ( ).,0 6λ∈λ  

Replacing (66) into (16) we have 

( )

( )

,1

1log

1logerf

43

6

6

λπββ
=









λ



















λ

g

g
 

that is, λ must verify equation (67). Considering (29) and 6λ  as before, the 

function ,7g  defined over the domain [ ),,0 6λ  has the following properties: 

( ) ( ) ( ) ( ) .0,0,0,log0 76727 >∀<′=λβ= −+ xxggg  (69) 

The function 11g  has the following properties: 

( ) ( ) ( ) .0,0,0,20 111111 >∀<′=∞+
π

=+ xxggg  (70) 
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Furthermore, the function 711 gg D  is an increasing function. Then we 

can assure that if 

( )( )
643

6711
12

λπββ
>

π
=λgg  (71) 

which is included in hypothesis (65), then there exists a unique 

( )6,0 λ∈λ  such that (67) holds. 

Theorem 9 (Determination of the unknown coefficient .)2c  If 

( )
,1

exp
;1max

11

2
00

3
<













β
γγ

β
 (72) 

where 3β  is defined in (17), 11β  is defined in (57) and 0γ  is defined in 

(58), then there exists a solution to problem P which is given by (10)-(13), 

the thermal coefficient 2c  is given by 

2
0

2

1

21
2

γ

λ=
k
kc

c  (73) 

and the parameter ( )12,0 λ∈λ  is a solution to equation 

( ) ( ) 0,129 >= xxgxg  (74) 

with 

( ) ( ) ( ),exp
12

0

0
2
4

0

2
0

1112 xxFxg
πγ

β
−

γ
γ−

β=
K

 (75) 

9g  was defined in (61) and 012 >λ  is the unique solution to equation 

( ) .0,012 >= xxg  (76) 

Proof. Considering (72), from (16) we have 2c  as function of λ given 

by (73). Replacing it into (15), after some computations we have that λ 

must verify equation (74). The function 12g  has the following properties: 

( ) ( ) ( ) ( ) .0,,
exp

0 1212
0

2
0

1112 <′−∞=∞+
γ

γ−
β=+ xggg  (77) 
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Then, taking into account (62), we have that if 
( )

1
exp

0

2
0

11 >
γ

γ−
β  (which is 

verified thanks to (72)), there exists at least one ( )12,0 λ∈λ  that verifies 

equation (74), where 07 >λ  is the unique solution to equation (76). 

4. Conclusions 

We considered an analytical model of freezing (desublimation) of 

moisture in a porous medium with an overspecified condition at the fixed 

face in order to determinate one unknown thermal coefficient of a semi-

infinite phase-change material. This model has Luikov type equations 

with eight heat parameters, and it can be considered as a free boundary 

problem in which coupled heat and moisture flows. We obtained the 

explicit expression of the temperature of the two phases 1T  and ,2T  the 

mass-transfer potential in the humid region u and the phase-change 

interface ( ),ts  and we also gave formulae for the unknown thermal 

coefficients chosen among ρ  (mass density), ma  (moisture diffusivity), 1c  

(specific heat of the frozen region), 2c  (specific heat of the humid region), 

1k  (thermal conductivity of the frozen region), 2k  (thermal conductivity 

of the humid region), δ  (thermal gradient coefficient), r (latent heat), 

together with the necessary and sufficient conditions for the existence of 

such a solution. 
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