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Abstract

Explicit solutions for temperature and moisture distribution in a porous half-space with a heat ¯ux
condition at x � 0 of the type q0=

��
t
p

are obtained. An inequality for the coe�cient q0 is necessary and
su�cient in order to obtain that exact solution. An equivalence between this problem and the analogous
corresponding to a phase change problem with a temperature condition is also obtained. Ó 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Heat and mass transfer with phase change problems, taking place in a porous medium, such as
evaporation, condensation, freezing, melting, sublimation and desublimation, have wide appli-
cation in separation processes, food technology, heat and mixture migration in soils and grounds,
etc. Due to the non-linearity of the problem, solutions usually involve mathematical di�culties.
Only a few exact solutions have been found for idealized cases (see [1,5,10,11], for example). A
large bibliography on free and moving boundary problems for the heat-di�usion equation was
given in [13].

Mathematical formulation of the heat and mass transfer in capillary porous bodies has been
established by Luikov [6±9]. Two di�erent models was presented by Mikhailov [10] for solving the
problem of evaporation of liquid moisture from a porous medium. For the problem of freezing
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(desublimation) of humid porous half-space, Mikhailov also presented an exact solution [11].
Other problems in this direction are in Refs. [2±4].

In the following, freezing (desublimation) of moisture in a porous medium with heat ¯ux
condition at x � 0 of the type q0=

��
t
p
; with q0 > 0; will be studied. An analytical model of the

process is de®ned and exact solutions for temperature and moisture distributions are obtained. An
inequality for the coe�cient q0 is necessary and su�cient in order to obtain the corresponding
explicit solution. Finally, an equivalence between a phase change problem with a temperature
condition and a phase change problem with a heat ¯ux condition of the type q0=

��
t
p

on the surface
is also obtained.

Nomenclature
Ai;Bi; i � 1; 2; 3 constants of integration
ai; i � 1; 2 thermal di�usivity of the i region phase
a12 ratio of thermal di�usivities from region 1 to 2
am moisture di�usivity
F0 Fourier number
ki; i � 1; 2 thermal conductivity of the i region phase
k12 ratio of thermal conductivity from region 1 to 2
K0 � ru0=c2Dt Kossovitch number
l0 the characteristic length
Lu � am=a2 Luikov number
Pn � dDt=u0 Posnov number
q0 coe�cient that characterizes the heat ¯ux at x � 0
r latent heat
s�s� position of the evaporation front
ti�x; s�; i � 1; 2 temperature in the region i
t0 initial temperature
ts temperature at surface x � 0
tv temperature at vaporization state
Ti; i � 1; 2 non-dimensional temperature
u mass-transfer potential
x length coordinate
X non-dimensional length
Z potential de®ned by Eq. (21)

Greek symbols
e phase change criterion
d thermal gradient coe�cient
q2 density of the porous body in the region 2
k non-dimensional constant
s time
H non-dimensional mass transfer potential
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Let us consider the ¯ow of heat and moisture through a porous half-space during freezing. The
position of phase change front at time s is given by x � s�s�. It divides the porous body into two
regions. In the freezing region, 0 < x < s�s�, there is no moisture movement and the temperature
distribution is described by the heat equation

ot1

os
x; s� � � a1

o2t1

ox2
x; s� �; 0 < x < s s� �; s > 0: �1�

The region s�s� < x < �1 is humid capillary porous body in which there are coupled heat and
moisture ¯ows. The process is described by the well-known Luikov's system [10] for the case e � 0
(e is the phase conversion factor of liquid into vapor):

ot2

os
x; s� � � a2

o2t2

ox2
x; s� �; x > s s� �; s > 0; �2�

ou
os

x; s� � � am

o2u
ox2

x; s� � � amd
o2t2

ox2
x; s� �; x > s s� �; s > 0: �3�

The initial distributions of temperature and moisture are uniform

t2 x; 0� � � t2��1; s� � t0; u x; 0� � � u��1; s� � u0: �4�

It is assumed that on the surface of the half-space the heat ¯ux depends on the time in the
following way, like in [12]:

k1

ot1

ox
0; s� � � q0=

���
s
p
; �5�

where q0 > 0 is a coe�cient which characterizes the heat ¯ux at the ®xed face x � 0. On the
freezing front, there exists an equality between the temperatures:

t1 s s� �; s� � � t2 s s� �; s� � � tv; s > 0; �6�

where tv < t0.
Heat and moisture balance at the freezing front yields

k1

ot1

ox
s s� �; s� � ÿ k2

ot2

ox
s s� �; s� � � u s s� �; s� �q2r

ds
ds
�s�; s > 0; �7�

ou
ox

s s� �; s� � � d
ot2

ox
s s� �; s� � � 0; s > 0: �8�

The set of equations and conditions (1)±(8) is called problem P.
In Section 2 we obtain an exact solution for the problem P when an inequality on q0 holds.

Next, in Section 3 we introduce the problem eP ; which is the problem P changing condition (5) by

E.A.S. Marcus, D.A. Tarzia / International Journal of Engineering Science 38 (2000) 1651±1665 1653



a temperature condition in x � 0, and we study the behavior of the solution of this problem
considering when the parameter latent heat r tends to in®nity. In Section 4 we establish a rela-
tionship between problem P (heat ¯ux condition at x � 0) and eP (temperature condition at x � 0),
and we obtain an inequality that the coe�cient which characterizes the free boundary veri®es.
Finally in Section 5 we give some illustrative results in order to study the e�ects of the parameter
q0 on our phase change process. In particular, we give the behavior of k (which characterizes the
free boundary (22)) as a function of q0 and the behavior of the temperature distributions as a
function of the position x for a given time F0 � 1 for di�erent values of q0:

2. Solution of the problem

If we consider the next transformations

X � x=l0; F0 � a2s=l2
0; S F0� � � s s� �=l0;

Ti X ; F0� � � ti x; s� �� ÿ tv�= t0� ÿ tv�; i � 1; 2;

H X ; F0� � � u0� ÿ u x; s� ��=u0;

then the set of equations and conditions (1)±(8) can be put in a dimensionless form as follows:

oT1

oF0

X ; F0� � � a12

o2T1

oX 2
X ; F0� �; 0 < X < S F0� �; F0 > 0; �9�

oT2

oF0

X ; F0� � � o2T2

oX 2
X ; F0� �; X > S F0� �; F0 > 0; �10�

oH
oF0

X ; F0� � �Lu
o2H
oX 2

x; s� � �LuPn
o2T2

oX 2
x; s� �; X > S F0� �; F0 > 0; �11�

T2 X ; 0� � � T2��1; F0� � 1; H X ; 0� � � H��1; F0� � 0; �12�

oT1

oX
0; F0� � � q0

�����
a2

p
k1 t0�
h.

ÿ tv�
�����
F0

p i
; �13�

T1 S F0� �; F0� � � T2 S F0� �; F0� � � 0; F0 > 0; �14�

oH
oX

S F0� �; F0� � �Pn
oT2

oX
S F0� �; F0� � � 0; F0 > 0; �15�
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k12

oT1

oX
S F0� �; F0� � ÿ oT2

oX
S F0� �; F0� � � K0 1� ÿH S F0� �; F0� �� oS

oF0

F0� �; F0 > 0: �16�

For convenience in the derivation of the solution, we introduce now a new unknown function,
which couples T2 and H, i.e.

Z X ; F0� � � T2 X ; F0� � � 1�� ÿLu�= LuPn� ��H X ; F0� �; X > S F0� �; F0 > 0: �17�

After some elementary computations we obtain

oZ
oF0

X ; F0� � �Lu
o2Z
oX 2

X ; F0� �; X > S F0� �; F0 > 0: �18�

Then Eqs. (9), (10) and (18) have the following solutions:

T1 X ; F0� � � A1 � B1 erf X=2
����������
a12F0

p� �
; 0 < X < S F0� �; F0 > 0; �19�

T2 X ; F0� � � A2 � B2 erf X=2
�����
F0

p� �
; X > S F0� �; F0 > 0; �20�

Z X ; F0� � � A3 � B3 erf X=2
�����������
LuF0

p� �
; X > S F0� �; F0 > 0; �21�

S F0� � � 2k
�����
F0

p
; F0 > 0; �22�

where the constants k; Ai and Bi, i � 1; 2; 3; must to be chosen so that they satisfy the seven
conditions corresponding to the initial and boundary conditions (12)±(16).

From the initial condition (12) we obtain a system of two algebraic equations and its solution
yields

A2 � 1ÿ B2; A3 � 1ÿ B3: �23�

Eq. (13) leads to

B1 � �������
pa1

p
q0= k1 t0�� ÿ tv��: �24�

From condition (14), we obtain

A1 � ÿ �������
pa1

p
q0= k1 t0��� ÿ tv��� erf k=

������
a12

p� �; �25�

B2 � 1� ÿ erf k�ÿ1: �26�
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It follows from Eq. (15) that

B3 � exp k2=Lu

ÿ � �������
Lu

p
exp k2

ÿ �h i
1�

.
ÿ erf k�: �27�

After determining the constants A1; A2; A3; B1; B2 and B3 from Eqs. (23)±(27) the solutions (19),
(20) and (22) can be written as

T1 X ; F0� � � �������
pa1

p
q0= k1 t0��� ÿ tv��� erf X=2

����������
a12F0

p� ��
ÿ erf k=

������
a12

p� �
�
; �28�

T2 X ; F0� � � 1� ÿ erf k�ÿ1
erf X=2

�����
F0

p� ��
ÿ erf k

�
; �29�

H X ; F0� � � 1ÿ exp k2=Lu

ÿ � �������
Lu

p
exp k2

ÿ �h in
1�

.n
ÿ erf k�

oo
1
�
ÿ erf X=2

�����������
LuF0

p� ��
:

�30�

All three functions T1; T2 and H are explicited as a function of the parameter k which must be
determined by condition (16) which gives us the following trascendental equation:�������

pa2

p
q0= k2 t0��f ÿ tv��g exp

ÿÿ k2=a12

�ÿ F1 k� �
� ���

p
p

K0k 1� ÿ 1�� ÿLu�= LuPn� �� 1� ÿ H k� ���; k > 0; �31�

where

F1 x� � � exp
ÿÿ x2

� � 1� ÿ erf x�ÿ1
;

Q x� � � ���
p
p

x exp
ÿÿ x2

�
1� ÿ erf x�; �32�

H x� � � Q x=
�������
Lu

p� �
=Q x� �

are real functions de®ned for x > 0.
For convenience in the notation, we de®ne the following real functions:

l x� � � �������
pa2

p
q0= k2 t0��f ÿ tv��g exp

ÿÿ x2=a12

�ÿ F1 x� �; x > 0; �33�

b x� � � ���
p
p

K0x 1� ÿ 1�� ÿLu�= LuPn� �� 1� ÿ H x� ���; x > 0: �34�

Then Eq. (31) can be written saying that k must be the solution of the equation

l x� � � b x� �; x > 0: �35�
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then we can enunciate and demonstrate the following property:

Theorem 1. If

q0 > k2 t0� ÿ tv�= �������
pa2

p
; �36�

then there exists one and only one solution k > 0 of Eq. (35).
If q06 k2 t0 ÿ tv� �= �������

pa2

p
, then there is no solution of problem (1)±(8) as a phase change problem; it

is only a heat conduction problem for the initial phase.

Proof. In order to solve Eq. (35) we shall study the behavior of the functions l and b. In [12] were
studied the properties of F1�x� and its derivative. We know that

F1�0� � 1; F1��1� � �1 and F 01�x� > 0 8x > 0:

By the way, the function Q has the following properties:

Q�0� � 0; Q��1� � 1 and Q0�x� > 0 8x > 0:

Then, we see the properties of the function H�x�:

H�0� � lim
x!0

Q x=
�������
Lu

p� �
=Q x� � �Lÿ1=2

u ; H��1� � 1;

H 0�x� � 2 pLu� �ÿ1=2 Q�x� ÿ 1

F1 x=
�������
Lu
pÿ � 

ÿ Q�x= �������
Lu
p � ÿ 1�������
Lu
p

F1 x� �

!
F1 x� �� �2:

Then we get

H 0 x� � > 0 if Lu < 1;

H 0 x� � < 0 if Lu > 1;

H 0 x� � � 0 if Lu � 1:

Therefore, H is a strictly increasing function if Lu < 1, and is a strictly decreasing function if
Lu > 1.

Now, we can obtain the properties of the function b x� �, that is

b 0� � � 0; b��1� � �1;

b0�x� � ���
p
p

K0 1� ÿ 1�� ÿLu�= LuPn� �� 1� ÿ H�x��� � ���
p
p

K0x LuPn= 1��ÿ ÿLu��H 0�x�
�
: �37�

Note that if Lu < 1, we have �LuPn= 1ÿLu� �� > 0 and H 0�x� > 0, and then

���
p
p

K0x LuPn= 1��ÿ ÿLu��H 0�x�
�
> 0; �38�
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Similarly, if Lu > 1; �LuPn=�1ÿLu�� < 0 and H 0�x� < 0, and again (38) is valid. Therefore, in
any case we have b0�x� > 0 8x > 0.

Finally, we deduce the properties of the function l�x�:

l 0� � � �������
pa2

p
q0= k2 t0��f ÿ tv��g ÿ 1; l��1� � ÿ1;

l0 x� � � ÿ �������
pa2

p
q0= k2 t0��f�� ÿ tv��g 2x=a12� �� exp

ÿÿ x2=a12

�� F 01 x� �	 < 0 8x > 0: �39�

Therefore, l�x� is strictly decreasing for x > 0. Then, we obtain one and only one solution of
Eq. (35) in the case f �������

pa2

p
q0=�k2�t0 ÿ tv��g ÿ 1 > 0, that is, q0 satis®es inequality (36). In the case

q06 k2 t0 ÿ tv� �= �������
pa2

p
, there is no solution of Eq. (35) and then there is no solution of problem (1)±

(8) as a phase change problem. So, if q06 k2�t0 ÿ tv�= �������
pa2

p
there exists only a heat conduction

problem for the initial phase. �

As we said above, if q06 k2�t0 ÿ tv�= �������
pa2

p
there exists only a heat conduction problem for the

initial phase. Let us consider this problem. In this case we have the following.
There is no phase change front, so the porous body consists of only one region. The region

0 < x < �1 is humid capillary porous body in which there are coupled heat and moisture ¯ows.
The process is described by the well-known Luikov's system [10] for the case e � 0 (e is the phase
conversion factor of liquid into vapor):

ot2

os
x; s� � � a2

o2t2

ox2
x; s� �; x > 0; s > 0; �40�

ou
os

x; s� � � am

o2u
ox2

x; s� � � amd
o2t2

ox2
x; s� �; x > 0; s > 0: �41�

The initial distributions of temperature and moisture are uniform:

t2 x; 0� � � t2��1; s� � t0; u x; 0� � � u��1; s� � u0: �42�

It is assumed that on the surface of the half-space the heat ¯ux depends on the time in the
following way, like in [12]:

k2

ot2

ox
0; s� � � q0=

���
s
p
; �43�

where q0 > 0 is a coe�cient which characterizes the heat ¯ux at the ®xed face x � 0. The set of
equations and conditions (40)±(43) is called problem Phc. Its solution is given by

t2 x; s� � � t0 ÿ q0

�������
pa2

p
=k2� � 1

ÿ ÿ erf x=2
������
a2t
pÿ ��

: �44�

We remark that

t2 0; s� � � t0 ÿ q0

�������
pa2

p
=k2� � �45�
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which is a constant in time. Then we can say that there exists a phase change on this problem if
and only if t2�0; t� < tv, that is to say, if q0 > �t0 ÿ tv�k2=

�������
pa2

p
. This fact certi®es the result obtained

in Theorem 1, but obviously it does not give us the corresponding explicit solution which must be
obtained by the previous method.

The resolution for the problem for the moisture distribution is slightly di�erent. It is assumed
that on the surface of the half-space the moisture distribution is related to the temperature dis-
tribution in the following way:

ou
ox

0; s� � � d
ot2

ox
0; s� � � 0: �46�

Then considering (44) the problem for the moisture distribution is

ou
os

x; s� � � am

o2u
ox2

x; s� � ÿ amdq0x
2a2k2t

��
t
p exp

�ÿ x2=4a2t
ÿ ��

; x > 0; s > 0;

u x; 0� � � u��1; t� � u0; �47�
ou
ox

0; s� � � ÿ dq0

k2

��
t
p :

We consider a change of variable of the similarity type, that is to say, let g � x=2
��
t
p

and
u�x; t� � H�g� be. Then the problem appears in the following way:

o2H
og2
�g� ÿ 2

am

g
oH
og
�g� � 4dq0

a2k2

exp
�ÿ g2=a2

ÿ ��
; g > 0;

H��1� � u0; �48�
oH
og
�0� � ÿ 2dq0

k2

:

The solution of this problem is obtained using the knowledge of the non-homogeneous ordi-
nary di�erential equations, and it is given by

H g� � � u0 �
�������
pa2

p
dq0Lu

k2 1ÿLu� � erf
g�����
a2

p
� �

�
��������
pam

p
dq0

k2 1� �������
Lu
pÿ � 1

�
ÿ 1

1ÿ �������
Lu
p erf

g������
am

p
� ��

: �49�

or returning to the primal variables by

u x; t� � � u0 �
�������
pa2

p
dq0Lu

k2 1ÿLu� � erf
x

2
������
a2t
p

� �
�

��������
pam

p
dq0

k2 1� �������
Lu
pÿ � 1

�
ÿ 1

1ÿ �������
Lu
p erf

x
2
�������
amt
p

� ��
:

�50�

E.A.S. Marcus, D.A. Tarzia / International Journal of Engineering Science 38 (2000) 1651±1665 1659



Then we have the following result:

Lemma 2. If q06 k2�t0 ÿ tv�= �������
pa2

p
the solution of the heat problem for the initial phase is given by

(44) and (50).

Remark 1. The limit case q0 � k2�t0 ÿ tv�= �������
pa2

p
can be interpretated as the limit of the solution for

the case q0 > k2�t0 ÿ tv�= �������
pa2

p
when r! �1 (see Proposition 3).

Remark 2. In Section 5 we give some illustrative results corresponding to the previous results in
order to see graphically k versus q0; and T1&T2 versus x for different values of q0 and a given time
F0 � 1:

3. Statement of the problem eP
Now, if we replace the heat ¯ux condition (5) by a constant boundary temperature condition at

the ®xed face x � 0 as

t1�0; s� � ts; �5a�

where ts < tv; let problem eP given by conditions (1)±(4), (5a), (6)±(16); it was studied by Luikov
[9]. Its solution is given by:

eT1 X ; F0� � � fA1 �fB1erf X=2
����������
a12F0

p� �
� eTs 1

0@ ÿ erf X=2
����������
a12F0

pÿ �
erf ek= ������

a12

p� �
1A; 0 < X < eS�F0�; �51�

eT2 X ; F0� � � fA2 �fB2erf X=2
�����
F0

p� �
� 1
�
ÿ erf ek�ÿ1

erf X=2
�����
F0

p� ��
ÿ erf ek�; X > eS�F0�;

�52�

eH X ; F0� � � LuPn= 1�� ÿLu��

� 1

0@ ÿ
exp ek=Lu

� �
erf X=2

�����������
LuF0

pÿ �
�������
Lu
p

exp ek2
� �

1ÿ erf ekh i � erf ek
1ÿ erf ek ÿ erf X=2

�����
F0

pÿ �
1ÿ erf ek

1A; �53�

eS�F0� � 2ek �����
F0

p
; �54�

where eTs � ts ÿ tv� �= t0 ÿ tv� � < 0, and ek satis®es the following equation:

a�x� � b x� �; x > 0; �55�
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where

a�x� � ÿk12
eTs a12� �ÿ1=2

exp
ÿÿ ÿ x2=a12

�
=erf x=

������
a12

p� ��; x > 0

and b�x� is given by (34).
The function a�x� is a continuous decreasing function, with the following properties:

a�0� � �1; a��1� � ÿ1; a0�x� < 0; x > 0

(Note that �LuPn=�1ÿLu��H 0�x� > 0 8Lu 6� 1.) Therefore, there is one and only one solution of
Eq. (55).

If now we consider the latent heat r as a parameter in problem eP , then we have a dependence of
the solutions about this new parameter, say

eT1 � eT1r; eT2 � eT2r; eH � eHr; eS � eSr; ek � ek�r�
and we can easily see the following statement:

Proposition 3. If r! �1, the parameter ek � ek�r� ! 0, and the solutions of the eP problem tends
to:

lim
r!�1

eT2r X ; F0� � � erf X=2
�����
F0

p� �
; X > 0; �56�

lim
r!�1

eHr X ; F0� � � LuPn= 1�� ÿLu�� 1
�
ÿ erf X=2

�����
F0

p� �
ÿ Lu� �ÿ1=2

erf X=2
�����������
LuF0

p� ��
;

X > 0;
�57�

lim
r!�1

eSr t� � � 0: �58�

Remark 3. �i�We remark that (56)±(58) is the solution for the heat transfer problem without a phase
change process for the initial phase with constant temperature condition on the surface x � 0. �ii�We
can interpretate (51)±(54) for the case r! �1; saying that the initial phase cannot reach the another
phase. �iii� The solution of problem P for the limit case q0 � k2�t0 ÿ tv�= �������

pa2

p
is given by (56)±(58).

4. Relationship between heat transfer problems with temperature and heat ¯ux at the ®xed face

Now, we are back to the initial problem P with heat ¯ux condition, considering the case
q0 > k2�t0 ÿ tv�= �������

pa2

p
: Evaluating (28) in x � 0, we obtain

T1 0; s� � � ÿ �������
pa1

p
q0= k1 t0��� ÿ tv��� erf k=

������
a12

p� �: �59�
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Returning to the dimensionless variables, we observe that

t1 0; s� � � ÿ t0� ÿ tv� ������
a12

p
=k12� � erf k=

������
a12

p� � � tv < tv: �60�

Then we can consider the eP problem putting

ts � ÿ �������
pa1

p
q0=k1� � erf k=

������
a12

p� � � tv < tv: �61�

The solution of this problem is given by (51)±(54) where ek is solution of Eq. (55). We know that
for this problem exists one and only one ek > 0 such as a�ek� � b�ek�. Now we want to demonstrate
that ek � k; for that we shall prove that ek is also solution of Eq. (35). We have

b ek� �
� a ek� �

� k12

�������
pa1

p
q0= k1 t0��� ÿ tv� ������a12

p �� erf ek= ������
a12

p� � exp ÿ ek2=a12

� �
erf ek= ������

a12

p� � ÿ F1
ek� �

� �������
pa2

p
q0= k2 t0��� ÿ tv��� exp

�
ÿ ek2=a12

�
ÿ F1

ek� �
� l ek� �

; �62�

that is ek is a solution of Eq. (35) which has a unique solution k, then ek � k.
Besides, the constant eA1 and eB1 belonging to the solution eT1 are

eA1 � ÿ �������
pa1

p
q0= k1 t0��� ÿ tv��� erf k=

������
a12

p� � � A1; �63�

eB1 � ÿeT ÿ1
s erf k=

������
a12

p� � � �������
pa1

p
q0= k1 t0�� ÿ tv�� � B1 �64�

and A2; A3; B2; B3 are the same as in (22), (25) and (26). It is obvious that if k � ek, then S � eS :
Therefore, we obtained that the solutions of problem eP are the same of the initial problem, that

is to say, T1 � eT1; T2 � eT2; h � eh; S � eS . This immediately implies that t1 � et1 ; t2 � et2 ; u � eu
and s � es. Next, we can enunciate the following property:

Theorem 4. A phase change problem for temperature and moisture distributions in a porous half-
space with a heat flux condition on the surface x � 0 verifying condition (36), is equivalent to a phase
change problem with a temperature condition considering

t1�0; s� � ts < tv: �65�

Moreover, the relationship among q0; tv and ts is given by

ts � tv ÿ �������
pa1

p
q0=k1� � erf k=

�����
a1

p� �; �66�

where k is the coefficient which characterizes the free boundary.

As a consequence of Theorem 4, we can translate inequality (36) for q0 for problem P to an
inequality for k for problem eP , that is to say,

1662 E.A.S. Marcus, D.A. Tarzia / International Journal of Engineering Science 38 (2000) 1651±1665



k2 t0� ÿ tv� pa2� �ÿ1=2
< q0 � k1

o
ox

t1 0; s� � ���sp � k1

�����������
F0=a2

p
t0� ÿ tv� o

oX
T1 0; F0� �

� k1 ts� ÿ tv�= �������
pa1

p
erf k=

������
a12

p� �� �: �67�

Therefore, we obtain the inequality

erf k=
������
a12

p� � < k12 tv� ÿ ts�= ������
a12

p
t0� ÿ tv� �68�

which is valid for the eP problem. This quotation has sense when the right side of the equation is
minor than 1, that is to say.

Corollary 5. When data for problem eP verifies the inequality

k12 tv� ÿ ts�= ������
a12

p
t0� ÿ tv� < 1 �69�

then the coefficient k of the free boundary eS�F0� � 2ek �����
F0

p
satisfies the inequality

k <
������
a12

p
erfÿ1 k12 tv�� ÿ ts�= ������

a12

p
t0� ÿ tv��: �70�

5. Some illustrative results

In order to study the e�ects of the parameter q0 (coe�cient which characterizes the heat ¯ux on
the ®xed surface x � 0) over our process we shall give ®rstly the graphics of the function k vs q0,
where k is the dimensionless coe�cient which characterizes the free boundary (22). Let
q�0 � q0

�������
pa2

p
=k2�t0 ÿ tv� be the dimensionless corresponding coe�cient. For a given positive time,

Fig. 1 shows the behavior of k as a function of q�0 considering all the other parameters ®xed. We

Fig. 1. Behavior of k as a function of q�0.

E.A.S. Marcus, D.A. Tarzia / International Journal of Engineering Science 38 (2000) 1651±1665 1663



put a12 � 1, K0 � 1:2, Lu � 0:4, Pn � 1. If q�0 > 1, k increases as q�0 increases. If q�06 1, k � 0, and
there is no phase change.

Fig. 2 shows the behavior of the constant temperature distribution on the ®xed face x � 0 (see
(45)) as a function of the dimensionless time F0 given certain values of 06 q�06 1 and q�0 > 1.
Notice that

T2�0; s� � t2�0; t� ÿ tv

t0 ÿ tv

� 1ÿ q�0;

and when q�0 � 0, we have T2 � 1, and when q�0 � 1, we have T2 � 0. Here we notice when q�0 tends
to �1, T2 tends to ÿ1.

Finally, Fig. 3 shows the behavior of the dimensionless temperature distributions T1 and T2 as a
function of the position, given a ®xed time (see (28) and (29)). Here we consider F0 � 1, and the
values of the other parameters are the same as above. Notice the change of derivative when
temperature distributions reaches from above and below the value 0 (the dimensionless phase
change temperature) when q�0 > 1. Furthermore, when the temperature distribution begins from a
positive value, there is no phase change in the process (that is to say, 0 < q�06 1).

From all these ®gures we have veri®ed numerically the theoretical results obtained before
analytically.

6. Conclusion

Exact solutions for temperature and moisture distribution in a porous half-space with a heat
¯ux condition at x � 0 of the type q0=

��
t
p

are obtained. An inequality for the coe�cient q0 is
necessary and su�cient in order to obtain that explicit solution. Next, we introduce the problem

Fig. 2. Behavior of the constant temperature distribution T2 �0; F0� as a function of the dimensionless time F0 con-

sidering q�0 > 0.
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eP , which is the problem P changing the heat ¯ux condition by a temperature condition on the
®xed face x � 0, and we study the behavior of the solution of this problem considering when the
parameter latent heat r tends to in®nity. Finally we establish an equivalence between the above
two phase change problems ®nding an inequality that the coe�cient which characterizes the free
boundary veri®es.
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