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Abstract: A nonlinear problem for the one-dimensional heat equation in a bounded and homogeneous medium with temperature data 
on the boundary x=0 and x=1 is studied. It is considered a non- classical heat conduction problem because a uniform spatial heat 
source depending on the heat flux (or the temperature) on the boundary x=0 is taken into account. Existence and uniqueness for the 
solution are proved under suitable assumptions on the data. Comparisons results and asymptotic behavior for the solution regarding 
some particular cases for the heat source, initial, and boundary data are also obtained.  
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1. INTRODUCTION 

In this paper, we will consider initial and boundary value problems (IBVP), for the one-dimensional non-classical 

heat equation motivated by some phenomena regarding the design of thermal regulation devices that provides a heater or 

cooler effect [1, 5, 7, 6, 8, 9]. We first study a IBVP with Dirichlet boundary conditions and a heat source that depends 

on the heat flux at the fixed face x=0, and afterwards, we study a similar problem but with Neumann boundary 

conditions and a heat source that depends on the temperature on the fixed face x=0. We obtain in both cases existence of 

a solution through a system of second kind Volterra integral equations.  

A heat conduction problem of the first type but for a semi-infinite material was analyzed in [8,9], where results on 

existence, uniqueness and asymptotic behavior for the solution were obtained. In other respects, a class of heat 

conduction problems characterized by a uniform heat source given as a multivalued function from   into itself was 

studied in [7 with results regarding existence, uniqueness and asymptotic behavior for the solution. Other references on 

the subject are [5,6]. Recently, free boundary problems (Stefan problems) for the non-classical heat equation have been 

given in [2-4], where some explicit solutions are also given. 

 

2. PROBLEM (P1) - EXISTENCE AND UNIQUENESS 

We study the following IBVP for the heat equation in the slab [0,1] (Problem (P1)): 

          ut  - uxx = - F(ux(0,t),t),  (x,t)    {(x,t): 0<x<1,  0<t<T}         (2.1) 

          u(0,t)= f(t), 0< t <T            (2.2) 

          u(1,t) = g(t), 0< t <T             (2.3) 

          u(x,0) = h(x), 0   x  1            (2.4) 

(P1) 
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where the unknown function u = u(x,t) denotes the temperature profile for an homogeneous medium occupying the 

spatial region 0<x<1, the boundary data f and g are real functions defined on  , the initial temperature h(x) is a real 

function defined on [0,1], and F is a given function of two real variables, which is related to the evolution of the heat 

flux  ux(0,t) in this case. 

For data h=h(x), g = g(t), f = f(t) and F in problem (1.1)-(1.4) we shall consider the following assumptions: 

(HA) g and f are continuously differentiable functions on  ; 

(HB) h is a function C1[0,1], which verifies compatibility conditions:  (0) (0), (1) (1)h f h g  ; 

(HC)  The function F = F(V,t) verifies: 

(HC1) It is defined and continuous on the region  0,D T ��� ; 

(HC2) For each M >0 and for V≤ M, it is uniformly Hölder continuous in variable t for each compact subset of (0,T]; 

(HC3) For each bounded set B of D, there exists a bounded positive function Lo = Lo(t), defined for 0< t  T, such that  

2 1 2 1 2 1( , ) ( , ) ( ) , ( , ), ( , )OF V t F V t L t V V V t V t B       ; 

(HC4) It is bounded for bounded V for all t ≥ 0; 

(HD)    F(0,t)=0, 0< t  T . 

(HE)    ( , ) 0 , 0, 0V F V t V t     ; 

(HF)  1 1( ) 0 0 , ( ) 0 0 , '( ) 0 [0,1] , (1)
o o

f t t g t u t h x x h u           . 

(HG) ( ) 0 0 , ( ) 0 0 , ( ) 0 [0,1]f t t g t t h x x          

 

Theorem 1.  Under the assumptions (HA) to (HD), the solution u to the problem (P1) has the expression 

 
 

 
  1   t   t

  0    0   0

    1

  0    0

( , ) ( , ) ( , ) ( ) 2 ( , ) ( ) 2 ( 1, ) ( )

( , ) ( , ) ( ( ), )

x x

t

u x t x t x t h d x t f d x t g d

x t x t d F V d

             

         

        

      

  

 
 (2.5) 

where V=V(t), defined by  V(t) = ux (0,t) for all t >0, must satisfy the following second kind Volterra integral equation: 
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and the functions ( , ), ( , )x t K K x t  

 

and ( )K K t are defined in the following way: 
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Theorem 2 Under assumptions (HA), (HB), (HC1) and (HC4), there exists at least one solution V(t)  Co(  ) to the 

integral equation (2.6), therefore we have at least one solution for the IBVP (2.1)-(2.4). 

Theorem 3 Under the assumptions (HA) to (HD), there exists a unique solution to the problem (P1). Moreover, there 

exists a maximal time β > 0, such that the unique solution to (2.1) – (2.4) can be extended to the interval 0 ≤ t ≤ β. 
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3. PROPERTIES OF THE SOLUTION TO PROBLEM (P1) 

Theorem 4 Under assumptions (HA) to (HD), the solution u to problem (P1) is bounded in terms of the initial and 

boundary data h, f and g. 

Lemma 5 Let 0 ( , )u x t  be the solution to (2.1)-(2.4) with null heat source (i.e. 0F  ). Under the assumptions (HD), 

(HE) and (HF), we have that: 

a) 0 ( , ) ( , ), [0,1], 0.ou x t u x t x t        b) lim ( , ) 0, [0,1]
t

u x t x


   .  

 

Now we will consider the continuous dependence of the functions V=V(t) and u=u(x,t) given by (2.5) and (2.6) 

respectively upon the data f, g , h and F. Let us denote by Vi=Vi(t)  (i=1,2) the solution to (2.6) and ui=ui(x,t) given by 

(2.5) respectively for the data fi, gi, hi and F (i=1,2) in problem (P1). 

Theorem 6 Considering problem (P1) under the assumptions (HA) to (HD), we obtain that 
2 1V V

 

is bounded in terms 

of the initial and boundary data h, f and g. Therefore, the difference of the solutions 
2 1u u  is also bounded in terms of 

the initial and boundary data h, f and g.  

Theorem 7 Let ui=ui (x,t), Vi=Vi (t)  (i=1,2) be the functions given by (2.5) and (2.6) for the data f, g, h and Fi (i=1,2) in 

problem (P1). Under the assumptions (HA) to (HD), we obtain the following estimation: 
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    and Mo is a positive constant which verifies the inequality 

 
 1

 
 ( , ) ( , ) , 0 , 0 1oo

x t x t d M t T x                  . (3.2) 

4. PROBLEM (P2) - EXISTENCE AND UNIQUENESS 

Now, we will consider a new non-classical initial-boundary value problem (P2) for the heat equation in the slab 

[0,1], which is related to the previous problem (P1), given by: 

ut  - uxx    = -F(u(0,t),t),  (x,t)    {(x,t): 0<x<1,  0<t T}             (4.1) 

  ux (0,t)= f(t),   0< t  T                (4.2) 

  ux (1,t) = g(t),  0< t T                 (4.3) 

  u(x,0) = h(x),   0   x  1.               (4.4) 

 

Theorem 8 Under the assumptions (HA) to (HD), the solution u to the problem (P2) has the expression 
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(P2) 
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where V=V(t), defined by V(t)=u(0,t), must satisfy the following second kind Volterra integral equation: 
1 1

0 0 0 0 0

( ) 2 ( , ) ( ) 2 (0, ) ( ) 2 ( 1, ) ( ) 2 ( , ) ( ( ), ) .
t t t

V t t h d t f d t g d t d F V d                               (4.6) 

Theorem 9 Under the assumptions (HA) to (HD), there exists a unique solution to the problem (P2). Moreover, there 

exists a maximal time β > T > 0, such that the unique solution to (4.1) – (4.4) can be extended to the interval 0 ≤ t ≤ β. 

 

5. PROPERTIES OF THE SOLUTION TO PROBLEM (P2) 

Theorem 10 Under the assumptions (HA) to (HD), the solution u to problem (P2) is bounded in terms of the initial and 

boundary data h, f and g. 

Theorem 11 Let us define Vi and ui (i=1,2) as in Theorem 6, with respect to the problem (P2). Under the assumptions 

(HA) to (HD), we obtain that 
2 1V V

 

is bounded in terms of the initial and boundary data h, f and g. Therefore, the 

difference of the solutions 
2 1u u  is also bounded in terms of the initial and boundary data h, f and g. 

Theorem 12 Let us define Vi and ui (i=1,2) as in Theorem 7, with respect to the problem (P2).Under the assumptions 

(HA) to (HD), then we obtain the following estimation: 

 2 1 1 2 1 2 3 3 2,
( , ) ( , ) 1 )exp(

t M t t
u x t u x t M F F t L C C L      . (4.7) 

where M1 is a positive constant which verifies the inequality 

 
 1

1 
 ( , ) ( , ) , 0 , 0 1.

o
x t x t d M t T x                   (4.8) 

Theorem 13 Under the hypotheses (HG) and (HE), we have that 0 ( , ) , [0,1], 0.u x t h x t

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