
JP Journal of Heat and Mass Transfer
Volume 5, Number 1, 2011, Pages 11-39
This paper is available online at http://pphmj.com/journals/jphmt.htm
© 2011 Pushpa Publishing House

SIMULTANEOUS DETERMINATION OF

UNKNOWN COEFFICIENTS THROUGH A PHASE-CHANGE

PROCESS WITH TEMPERATURE-DEPENDENT

THERMAL CONDUCTIVITY

NATALIA N. SALVAt and DOMINGO A. TARZIAt,*

tDepartamento de Matemática

Universidad Austral

Paraguay 1950

S2000FZF Rosario, Argentina

tCONICET

Argentina

e-mail: dtarzia@austral.edu.ar

Abstract
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process with an overspecified condition on the fixed face through a
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Nomenclature

c Specific heat, J/(kg°C)

h Latent heat of fusion by unit of mass, J/kg

k Thermal conductivity, W/(m°C)

q0 Coefficient that characterizes the heat flux at x = 0, kg/s5/2

s Position of the free or moving front, m

Ste The Stefan number defined by (9), dimensionless

t Time, s

T Temperature, °C

x Spatial coordinate, m

Greek symbols

a Diffusivity coefficient, m2 /s

Coefficient that characterizes the thermal conductivity in equation (2),

dimensionless

8 Coefficient that characterizes the differential equation (4i),

dimensionless

11 Similarity variable defined by (3), dimensionless

Coefficient that characterizes the free boundary in equation (3ii),

dimensionless

p Density, kg/m3

6 Coefficient that characterizes the moving boundary in equation (31ibis),

m/s1/2

Subscripts

f Fusion

o Initial in time or in space
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1. Introduction

Heat transfer problems with a phase-change such as melting and freezing have

been studied in the last century due to their wide scientific and technological

applications. A review of a long bibliography on moving and free boundary

problems for phase-change materials (PCM) for the heat equation is shown in [25].

We consider the following solidification problem for a semi-infinite material

with an overspecified condition on the fixed face x = 0 [1, 6, 8, 11]:

(i) pcTT(x, t) = (k(T)T,(x, t))x, 0 < x < s(t), t > 0,

(ii) T(0, t) = To < Tf, t > 0,

(iii) k(To)T,(0,t)= q,t>0,qo >0,

(iv) T(s(t), t) = T f, t > 0,

(v) k(T f)T,(s(t), t) = phs(t), t > 0,

(1)

where T(x, t) is the temperature of the solid phase , p > 0 is the density of mass,

h > 0 is the latent heat of fusion by unity of mass, c > 0 is the specific heat,

x = s(t) is the phase -change interface , Tf is the phase-change temperature, To is

the temperature at the fixed face x = 0 and q0 is the coefficient that characterizes

the heat flux at x = 0 given by ( 1(iii)) which must be obtained experimentally

through a phase-change process . We suppose that the thermal conductivity has the

following expression [9]:

k=k(T)=k0 [1+[3(T-To)/(Tf-T0)], P R. (2)

We remark that the phase-change problem (1) with conditions ((i), (ii), (iv) and

(v)) is a classical Stefan problem [6, 8]. We consider that the condition (1(iii)) is an

overspecified condition at the fixed face x = 0, of the type given in [21], from

which we can determine some unknown thermal coefficients [2-5, 14, 17]. We

observe that if (3 = 0, then the problem (1) becomes the classical one-phase Lamé-

Clapeyron-Stefan problem with an overspecified condition at the fixed face x = 0

and for this problem the corresponding simultaneous determination of thermal

coefficients was studied in [22, 23]. The phase-change process with temperature-

dependent thermal coefficient of the type (2) was firstly studied in [9]. Other papers

related to determination of thermal coefficients are [12, 16, 18, 20, 26-29].
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The solution to problem ( 1) is given by [9, 24]:

11 x(i) T(x, t) = To + (X, b^ (D ( n, 6),
2 a t 0

< 11
< (3)

(ii) s(t) = 2? at,

where ao = ko/pc is the coefficient of the diffusivity at the temperature To,

(D = O(x, 6 ) is the modified error function which is for all 6 > -1, the unique

solution to the following boundary value problem in variable x, i.e.,

(i) ax [(1 + 80 x(x, 8))(D x (x, 6)] + 2x1x (x, 6) = 0, x > 0, (8 > -1),

(ii) (D(0+, 8) = 0, (D(+co, 8) = 1
(4)

and the unknown thermal coefficients must satisfy the following system of equations

[24]:

R-8(D(X , 8)=0,

[1 + s(D(a, s )] (D X PI, 8) 2h
- c(T f To) = 0,

0x(0' 6) - 2qo - 0.
(D (;^' 6) (Tf - To) k opc -

(6)

(7)

For the particular case 8 = 0, we have that (D (x, 6) = erf(x) is the error function,

which is defined by:

x Z

erf(x) Jo e_u du. (8)

We remark that if problem ( 1) is a free boundary problem (this case can be

considered as a Stefan problem) with an overspecified condition on the fixed face

x = 0, then the coefficient a, > 0 is an unknown coefficient . On the other hand, if

problem ( 1) is a moving boundary problem (this case can be considered as an

inverse Stefan problem ) with an overspecified condition on the fixed face x = 0,

then the phase-change interface will be given by

s(t) = 26-v~t, (3iibis)
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where 6 must be obtained experimentally (a = J) through a phase-change

process [23].

When the coefficient 8 = 0, the corresponding determination of formulas for

one or two unknown thermal coefficients were obtained in [22, 23]. When the

coefficient 8 :# 0 is given, the corresponding problem was analyzed in [24]; in this

case, the necessary and sufficient conditions on the data were obtained in order to

ensure the existence of the solution.

In this paper, we will consider that 8 is an unknown coefficient and that the

unknown thermal coefficients for the simultaneous determination will be chosen

among: density (p), latent heat (h), specific heat (c), through 5 or 10 different

cases for a free or moving boundary problem, respectively. In general, these types of

problems are ill-posed [13], and for ill-posed problems a small perturbation in the

input data may produce a big change in the output data. We will study the behavior

of the solution parameters when a slightly modification is made in the data

parameters.

We define the Stefan number by

Ste =
C(Tf -T0)

(9)
h

The goal of the present paper is to consider that the coefficient 8 is one of the

unknown thermal coefficients; therefore the problem (1) consists of finding the

coefficient 8 simultaneously with two thermal coefficients chosen among: a,, R, k0,

p, c, h. In Section 3, for a one-phase Stefan problem, we determine the temperature

T(x, t), the free boundary interface s(t) (i.e., the coefficient % defined in (3(ü)) and

the following parameters in 5 different cases for a free boundary problem (here

2 > 0 is an unknown coefficient):

FB: (i) 8, ? , í (ii) 8, a,, ko (iii) 8, X,, p (iv) 8, ? , h (v) 8, X, c.

In Section 4, for a one-phase inverse Stefan problem (i.e. the interface s(t) is

given by (3iibis)), we determine the temperature T(x, t) and the following

parameters in 10 cases for a moving boundary problerny (here 6 > 0 is a known

coefficient):
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MB: (i) 8, (3, ko (ii) S, (3, p (iii) 8, (3, h (iv) 6, (3, c (v) 8, k0, p

(vi) S, k0, h (vii) 8, ko, c (viii) 6, p, h (ix) 6, p, c (x) 6, c, h.

We obtain the formulas for the unknown thermal coefficients and we give the

proof of some of the cases. Table 1 and Table 2 summarize the formulas for the

unknown thermal coefficients corresponding to the five or ten cases for the free or

moving boundary problem (1), respectively. Finally,. in Section 5, a sensitivity

analysis, corresponding to the aluminum, is performed.

2. Auxiliary Functions

In order to give, case by case, the formulas for the unknown thermal coefficients

and the restriction for data (when the case allows us), let us consider the following

real functions, defined for x > 0:

F1(x, 8) = 1 + 60(x, 8); F2(x, 8) = x
(D x

^ x((xx, , 8)
6)'

F3(x, 6) = [1 + 6t(x, 6)] t x(x, S); F4(x, 8) = xD(x, 8);

F5 (x, 6) (D( 8) . F6(x1 8)
x (D(x, 6) .

The properties of the function 1 = 'I(x, 6) and the properties of the functions

Fi to F6 which, complement and improve the graphics given in [9], will be used to

prove all our results.

3. Solution to the Five Cases through a Free Boundary Problem

3.1. Case 1 - Simultaneous determination of {8, ? , (3}

Proposition 1. The temperature and the free boundary for problem (1) with

unknown thermal coefficients {8, X, (3} are given by (3), (3 is given by the expression:

= &0 p, 6) (10)

and 6 and ; must satisfy thefollowing system of equations (2,, > 0, 6 > -1) :
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ÍF1 (x, 6) Ste F2(?, b),
(Si)

pcko^T f - To)
^x(0, S)•

qo

Proof. From equation (5), we obtain the equation (10), and from equations (6)

and (7), we obtain that 6 and ^. must satisfy the system (Si).

3.2. Case 2 - Simultaneous determination of {8, ^,, ko }

Proposition 2. The temperature and the free boundary for problem (1) with

unknown thermal coefficients {6, X., ko } are given by (3), ko is given by the

expression:

k 1 2g0c(? , 8) 2 11
cp ((D x (0, 8) (Tf - To)) ( )

and 8 and X must satisfy thefollowing system of equation (a, > 0, S > -1

(S2) F1 (^' 6) Ste F2 (?, 6),

Proof. From equation (7), we obtain the expression (11), and from equations (5)

and (6), we obtain that 8 and must satisfy the system (S2).

3.3. Case 3 - Simultaneous determination of {6, X, P}

Proposition 3. The temperature and the free boundary for problem (1) with

unknown thermal coefficients {6, 2 , p} are given by (3), p is given by the expression:

p=
1 2got(?, 6) 2

W, ((Dx (0, 8) (Tf -T,))
(12)

and 8 and ^, must satisfy the system of equations (S2).

Proof. It is similar to the proof of Proposition 2.

3.4. Case 4 - Simultaneous determination of {6, ?., h}

Proposition 4. The temperature and the free boundary for problem (1) with

unknown thermal coefficients {6, ?,, h} are given by (3), h is given by the expression:
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c(T f - To) (1 + (3)

2F2(?, S)
h=

and 8 and 2 must satisfy thefollowing system of equations (2 > 0, 8 > -1) :

(3 = &I (2 , 6),

(S3) o(7., 8) = pck0 (Tf - To)
0x01 6).2q0

(13)

Proof. From equation (6), we obtain the expression (13), and from equations (5)

and (7), we obtain the system (S3).

3.5. Case 5 - Simultaneous determination of {8, X, c}

Proposition S. The temperatura and the free boundary for problem (1) with

unknown thermal coefficients {8, X, c} are given by (3), c is given by the expression:

c=
1 2go(D(X, 8)

2

pko (D x (0, 8) (Tf - To)

and 8 and X must satisfy thefollowing system of equations (., > 0, 8 > -1) :

(S4)

R = 8(D(2, 8),
F3P, 6) - phko(T 2-To)

(Dx(0, 6))2F6(X, 6).
2qo

(14)

A necessary condition for the existence of solution X > 0 and 8 > -1 for system

(S4) is that the data 0, ko, p, h, q0, Tf and To verify thefollowing restriction:

(T f - To) phko < 1.

2qo

Proof. From equation (7), we obtain the expression (14). The first equation of

(S4) is obtained from (5), and from equations (6) and (7) we obtain the second

equation in system (S4). The necessary condition (R1) is given by Property 3 (case

4) in [24].

In Table 1, we summarize the formulas for the unknown thermal coefficients

corresponding to the five cases for a free boundary problem:
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Table 1. Formulas for the unknown thermal coefficients for the five cases with free

boundarv formulation

Case N° Unknown coeff. Solution

R= 8I(?, 8),

where {8, X } is the solution to the system:

FB-(i) 8, 2, R F1(?, 8) = -te F2 (?, 8),{

pck0 (Tf - T°)
01(O, S)

2q0

2
290.(X, S)

k J° cp 3 )

FB-(ii) 8, k0 where {8, } is the solution to the system:

Fi(k' 8) Ste F2(^, 8),

= 8t(? , 8)

2goc(?, 8)
2

cko (Tf -T0) (Dx(O, 8)

FB-(iii) p where {8, X} is the solution to the system:

F1(^' 8) Ste F2(2, 8),

R=6D(?,8)
c(Tf - To) (l + (3)h -

2F2(X, 8)

where {8, ? } is the solution to the system:
FB-(iv) 8, ?, h R = 8(D(X, 8),

pck0( f - To)
q)(X' 8) - (D, (0, 8)

2q0

1 2g0l)(?, 8) 2
c

- pko (Tf -To)(Dx (0, 8) ) ,C
where {8, } is the solution to the system:

FB-(v) 8, X, c

F3 P-, 8) - phk0(T 2-T°) (DX(o, 8))2F6(?, 8)
2qo
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4. Solution to the Ten Cases through a Moving Boundary Problem

In this case, the moving boundary s(t) is given by the expression (3iibis) with a

given a > 0 (which can be determined experimentally) and the unknown thermal

coefficients must solve the following system of equations:

R - 8-Z(a pc/ko , 6) = 0, (15)

rk (D
k S[1 + 6^( S )] y ° X(a/k pc/ o , ) 2h 0 (16a pc o,

a (D(a
-

pc/ko , 6)
=

C(Tf - To )
, )

0x(0, 6) _ 2qo 0 (17= .
(D(a pc/ko, 8) (Tf - To) kopc

)

We present the solution for the different ten cases and the proof of some of them.

4.1. Case 1 - Simultaneous determination of {8, (3, ko }

Proposition 6. If the moving boundary is given by (3iibis), then the temperature

of problem (1), with unknown thermal coefficients {6, (3, ko}, is given by (3i), (3 is

given by (10) and ko is given by the expression:

a2pc
ko = 22 ,

where 6 and ? must satisfy thefollowing system of equations:

2
F2(^.^ 8),F1(^ 6) = Ste

(S5)

F4(X 8) =
pca(Tf -To)

(Dx(0, 8)•2qo

(18)

Proof. In order to solve the system (15)-(17), we define the auxiliary unknown

variable:

^, = a pc/ko . (19)

From equations (15) and (19), we obtain the expressions for (3 and ko, depending on

6 and ?. Therefore, from equations (16) and (17), we obtain the system (S5).
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4.2. Case 2 - Simultaneous determination of {8, 0, p}

Proposition 7. If the moving boundary is given by (3iibis), then the temperature

of problem ( 1), with unknown thermal coefficients {8, (3, p}, is given by (3i), (3 is

given by ( 10) and p is given by the expression:

? 2ko
p=

62c

where 8 and X must satisfy thefollowing system of equations:

(S6)

06

Proof. It is similar to the proof of Proposition 6.

4.3. Case 3 - Simultaneous determination of {8, (3, h}

Proposition 8. If the moving boundary is given by (3iibis), then the temperature

of problem (1), with unknown thermal coefcients {8, (3, h}, is given by (3i), R is

given by (10) and h is given by the expression:

h _ c(Tf -To)F,(k, 8) (21)
2F2 (k, 8)

and 8 is the solution to thefollowing equation (6 > -1):

(Tf - To) koPc t (0
6) (22),

2qo
,

where k is the known coefficient given by (19).

Proof. In order to solve the system (15)-(17), we define the auxiliary unknown

variable (19). From equations (15) and (16), we obtain the expressions for R and h,

depending on 6 and ?. Therefore, from equations (17) and (19), we obtain equation

(22).

4.4. Case 4 - Simultaneous determination of {8, p, c}

FI (k, 6) Ste F2(2, 6),

lTf To)koF5(;^, 6) =
2 q

(20)

(D, (0, 6).

Proposition 9. If the moving boundary is given by (3iibis), then the temperature

of problem ( 1), with unknown thermal coefficients {8, 0, c}, is given by (3i), R is
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given by (10) and c is given by the expression:

72ko

where 8 and X must satisfy thefollowing system of equations:

F3(', 8 ) = hóp (D, (0, 8)q0(S7)

T0
)ko 0x(01 6).F5(;^, 8) (Tf -2qocy

(23)

A necessary condition for the existence of a solution 2 > 0 and 6 > -1 for the

system (S7) is that data o, ko, p, h, q0, T f and To verify thefollowing restriction:

phó <1.
q0

(R2)

Proof. We make the change of variable (19). From equations (15) and (19) we

obtain the expressions for R and c, given by (10) and (23), respectively. From

equations (16) and (17), we obtain the following equations for 8 and a,:

(X 6 )F
2h62p

F 6)P3 5 ', ,
(Tf - To) ko

8)(1F
) ko

0 8)(Tf (0,5
2goó

x ,

which is equivalent to the system of equations (S7). The necessary condition is given

by Property 4 (case 6) in [24].

4.5. Case 5 - Simultaneous determination of {6, ko, p}

Proposition 10. If the moving boundary is given by (3iibis), then the

temperature of problem (1), with unknown thermal coefficients {8, ko, p}, is given

by (3i), ko and p are given by the expressions:

26go F5 (2, 8)k = (24)o Tf - To o x(0,8)'

2goX F5(?, S)
p (25)

c6(Tf - To ) ID x(0, 6)'
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where 6 and ^, must satisfy thefollowing system of equations:

{6c(X, 6) = R,
2

(S8) ( (;^, 8) = c(T f - oh) (1 + (3) F40', S).

Proof. We make the change of variable (19). From equations (17) and (19), we

obtain the expressions for ko and p, given by (24) and (25), respectively. From

equations (15) and (16), we obtain the system of equations (S8) for 6 and X.

4.6. Case 6 - Simultaneous determination of {6, ko, h}

Proposition 11. If the moving boundary is given by (3iibis), then the

temperature ofproblem (1), with unknown thermal coefficients {8, ko, h}, is given

by (3i), ko is given by (18) and h is given by thefollowing expression:

h-
2 F2 (X, b),

c(Tf -To) 1 +R

where 8 and k must satisfy thefollowing system of equations:

R = 6c(?, S),

(S9) lF4(^, b) = PC6(2qo
To)

^x(0, b).

Moreover, the solution to the system (S9) is given by

= pcó(T f - To) 6^ (0S)

2(3go

and 6 must be the solution to thefollowing equation:

30
(pcó(Tf -To ) 3(Dx(0, S), Sl

2pgo

(26)

(27)

_(3, 6>-1. (28)

Proof. We make the change of variable (19) and we obtain the expression (18).

From equations (16) and ( 19), we obtain the expression (26). From equations (15)

and (17), we obtain the system of equations (S9) for S and a, whose solution is given

by (27) for a, and 6 must be the solution to the equation (28).

r
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4.7. Case 7 - Simultaneous determination of {8, ko, c}

Proposition 12. If the moving boundary is given by (3iibis), then the

temperature ofproblem (1), with unknown thermal coefficients {8, ko, c}, is given

by (3i), ko is given by (25) and c is given by the expression:

2qo F4(X, 6)C _
P6(Tf -To ) IDx(01 6) 1

where 6 and ^, must satisfy thefollowing system of equations:

R =6c(?, 6),
(Slo)

(Dx(a 8) =
qo(l

ha

pp) 01(01 ó).

(29)

A necessary condition for the existence ofsolution 2 > 0 and 8 > -1 for the system

(Sl0), particularly for the second equation , is that the data 6, ko, p, h, q0, T f and

To vera the restriction (R2).

Proof. It is similar to the proof of Proposition 9.

4.8. Case 8 - Simultaneous determination of {6, p, h}

Proposition 13. If the moving boundary is given by (3iibis), then the

temperature of problem (1), with unknown thermal coefficients {6, p, h}, p and h

are given by (20) and (26), respectively, where 8 and a, must satisfy the following

system of equations:

R = 6cD(X, 6),
(Sil) F5(a 8) = (T f2 T) ko 1x(0, 6).

go

6

Moreover, the solution to the system (S 11) is given by

263go 1
a,= ko(Tf _To) 6tx(0,8)

and 8 must be the solution to thefollowing equation:

(30)

26pgo 180 I
ko(Tf-To ) 8^x(0,8) , 6 J = (3, 8 > - 1 . (31)
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Proof. It is similar to the proof of Proposition 11.

4.9. Case 9 - Simultaneous determination of {8, p, c}

Proposition 14. If the moving boundary is given by (3iibis), then the

temperature ofproblem (1), with unknown thermal coefficients {8, p, c}, is given by

(3i), p and c are given by the expressions:

p = ko (1 + P ) (Tf - To)

262h(3

_ 2h
c (1 + R) (Tf - To) F2

(32)

(33)

where 8 and X must satisfy the system of equations (S1 l).

Proof. It is similar to the proof of Proposition 11.

4.10. Case 10 - Simultaneous determination of {8, c, h}

Proposition 15. If the moving boundary is given by (3iibis), then the

temperature ofproblem (1), with unknown thermal coefficients {8, c, h}, is given by

(3i), c is given by (33) and h is given by thefollowing expression:

ko(Tf - To) (1+ R) %.2
=h

2p62 F2(X, 8)'
(34)

where 8 and 2 must satisfy the system of equations (S11).

Proof. It is similar to the proof of Proposition 11.

Now, in Table 2, we summarize the formulas for the unknown thermal

coefficients corresponding to the ten cases for a moving boundary problem (i.e., an

inverse Stefan problem).
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Table 2. Restrictions and formulas for the unknown thermal coefficients for the
cases of moving boundary

Case N° Unknown coeff. Solution

2 c ,60(x,, 6), ko = 6
22

where {6, } is the solution to the system:
MB-(i) 6, ko

F2 (;^, 6),Fl
6)

Ste

To)
(Dx (0, 6)F4 (k, 6) - pC6(T2q0

^ 2k, °R= 6c(^,6),P= 2 ,
6 C

where {6, X } is the solution to the system:
MB-(ii) 6,R,P

F1(^.6S) = 2 F2 (2, 6),Ste

F5(-, 6) (Tf ) k° 0x(0, 6)2goó

(2, 6)
6D(X, 6), h =

c(Tf - To )F1
a pc^k° ,

2F2 (^, 8)

MB-(iii) S, h where 8 is the solution to the equation:

(Tf ) koPc2g6 ) _ D(0 6)
0

2

C = ^2°
6 p

where {6, } is the solution to the system:
MB-(iv) 6, R, c h6p

F3(2, 6) _ 0x(0,6),
q0

{

FS^^, 6) (Tf -TO )ko 0x(0, 6)

= 26go F5 (2, 6) 2goX F5 (X, 6)
k p° Tf - To (D x(0,8)' c6(Tf-To)(Dx(0,6)'

MB-(v) 6, k° , p
where {6, X } is the solution to the system:

6(D(a., 6) = R,

x (^' 6) = c(T f - Toh) (1 + R) F4 (2, 6)
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c(Tf - To)
(1 + R)

ó2pc hk -
- ^2 , 2 F2(;^ 8),

where {8, 2 } is the solution to the system:
MB-(vi) S, ko, h

R = 6)(^, 6),

F4(^,8)
PC vf To)

(Dx(0,8)

k 2ógo F5(^, b) 2qo F4(2 , b)c=
'Tf - To 0x(0,8)' p6(Tf-T0) <Dx(O,6)

MB-(vii) 8, ko, c
where {8, ^.} is the solution to the system:

R = sc(X, 8),

(Dx(;^' 8)
qo(1 +p (3)

(D (0, 8)

?2ko c(Tf -T2) (1+l3)
h

2 F2p 62c '

M B-(viii) 8, p, h
where {8, } is the solution to the system:

¡3 = 3(D(?, , 8),

lF
5(, 6) = (T -T0) ko

^x(0, 8)f
2go6

ko(1 +P)(Tf -To)
MOx(? 8),

262h(3

_ 2h
c (1 + R)(Tf - 7o) F2(^ 8),

MB-(ix) 8, p, c
where {8, X} is the solution to the system:

R =

LF5(, 8) _ (T -T0) ko ^x(0, 8)
f
2go6

a.2k ko (Tf - To) (1+ a) a2o

a 2 p , h = 2pa2 F2(2 , 3)'

MB -(x) 8, c, h
where {8, ^.} is the solution to the system:

(T f - To) ko
q)x(01 8)lF5, 8) = 2go6
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5. Sensitivity Analysis

We use the free software SCILAB for the numerical analysis. For each case,

first we have to determine the solution to the corresponding system of equations.

The command bvodeS was used to solve the differential problem (4), which allowed

us to evaluate the modified error function at the necessary points. To find the

solution to the system, we minimize the sum of the squares of the equations of

the nonlinear system, using the Levenberg-Marquardt algorithm. Secondly, using

the approximately solution to the system, we evaluated the unknown thermal

coefficients.

In each case, we have used the corresponding data, from the following set of

values that satisfy equations (5)-(7). The data corresponding to aluminum near its

melting point is:

(3 = 0,0318778, 8 = 0,1177546, 2 = 0,2433491, ko = 293,1882 W/m°C,

p = 2698,4 kg/m3, c = 783,6192 J/kg°C, h = 388000 J/kg,

q0 = 3179226,8 kg/s5/2, Tf = 660°C, To = 600°C.

In order to determine the influence of known parameters over unknown

coefficients, we define the normalized sensitivity by the following expression [19]:

1S(p, qi) = qi aP (35)
P 1 ,9qj ^

where p is a particular solution parameter (e.g., the dimensionless parameters 8 or

or the initial thermal conductivity ko in Case 2 of free boundary problems), qi is

one of the given parameters (e.g., 0, p, c, h in Case 2). Thanks to its dimensionless

nature, we can compare the sensitivity of parameters of different magnitudes. The

normalized sensitivity indicates the percentage change on the value of the parameter

p, when the variable qi increases or decreases 1% of its value [10, 15]. We will

approximate S(p, qj) by the following way:

S(p, q¡)+ ' q` p(q+) p(q) right normalized sensitivity,
p(q) +

qi - qi

S(p, qi) qt P(q ) p(q) left normalized sensitivity, (36)
P(q) qi qi
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where q is the vector (q1, q1, •••), p(q) = p(q1, q1, •••) and

qJ = q1 jai and q1 =q1+sI q; I,

qj = qj, j:# i and qi = qt - ci qt (37)

and c = 0.01 or c = 0.001, depending on the different cases. Here the right

normalized sensitivity represents the change on the parameterp when q1 increases a

1% of its value, and the left normalized sensitivity represents the change on the

parameter p when q1 decreases 1%.

5.1. Determination of coefficients through a free boundary problem

We have analyzed the relationship between the solution and the different

parameters. Table 3 shows the right and the left normalized sensitivities, in each

case, taking c = 0.01. If the sensitivity is negative, then it means that the parameter

p is decreasing with respect to q1, and if it is positive, then it means that the

parameter pis increasing with respect to q1.

Table 3. Left and right normalized sensitivities in the five cases of the free boundary

problems

Case N° Unknown ko p c h

1 6 - - -64.2 -63.9 -64.2 -63.9 -5.2 -5.2 -58.7 -58.9

-0.5 -0.5 -0.5 -0.5 0.4 0.4 -0.9 -0.9

-65.5 -64.2 -65.5 -64.2 -4.8 -4.8 -60.6 -59.4

2 6 0.9 0.9 - - 0 0 -0.4 -0.4 0.4 -0.4

k 0.007 0.008 - - 0 0 0.4 -0.4 -0.4 -0.4

ko -0.01 -0.01 - - -1 -1 -0.07 -0.07 -0.9 -0.9

3 6 0.9 0.9 0 0 - - -0.4 -0.4 0.4 -0.4

0.007 0.008 0 0 - - 0.4 -0.4 -0.4 -0.4

p -0.01 -0.01 -1 -1 - - -0.07 -0.07 -0.9 -0.9

4 6 0.9 0.9 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 - -

0.01 0.01 0.5 0.5 0.5 0.5 0.5 0.5 - -

h -0.01 -0.01 -1 -1 -1 -1 -0.08 -0.08 - -

5 6 1 1 5.6 6.7 5.6 6.7 - - 5.6 6.7

-0.09 -0.09 -6.3 -6.6 -6.3 -6.6 - - -6.3 -6.6

c -0.2 -0.2 -13.6 -13.3 -13.6 -13.3 - - -12.5 -12.4
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5.1.1. Case 1

In this case, we can observe that the solution behaves in the same way when we

modify ko or p. Figure 1 shows the relationship between the parameter solutions

and the given parameters {k0, p c and h}. The parameters 8 and 0 are more

sensitive to changes in ko or p, and the parameter 2. is more sensitive to changes

with respect to changes produced in h.

Figure 1. Parametric change of {8, ^, (3} versus the relative change of {k0, p, c, h}

in Case 1 of the free boundary problem.

5.1.2. Cases 2 and 3

These two cases are analyzed together, because when we modify the parameters

h, 0 or c, the corresponding 8 and X are the same for both cases. This can be

explained observing that the system of equations to be solved is the same in both

cases (S2 in our case). Another remark is that, in the previous system, the parameters

ko or p do not appear explicitly. Therefore, the parameters 8 and remain constant

when we modify the values of ko or p. Figures 2 and 3 show the relationship

between the parameter solutions and the given parameters {(3, k0, p, c and h} in

Cases 2 and 3, respectively. The parameter 8 is more sensitive to changes in (3, the

parameter a, is more sensitive to changes in h and the parameters ko and p are more

sensitive to changes in p and ko, respectively.

Figure 2. Parametric change of {8, X, ko } versus the relative change of {(3, p, c, h}

in Case 2 of the free boundary problem.
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Figure 3. Parametric change of {8, 2^, p} versus the relative change of {(3, ko, c, h}

in Case 3 of the free boundary problem.

5.1.3. Case 4

As in Case 1, we can observe that the solution to system (S3) behaves in the

same way when we modify ko, p or c. Figure 4 shows the relationship between the

parameter solutions and the given parameters {(3, ko, p and c}. The parameter 8 is

more sensitive to changes in (3, the parameter 2, is more sensitive to changes in

k0, p and c, and h was more sensitive to changes in p and k0.

2022,..)

2:.
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nuin rlxnrgr rano , 6 lE.., rano rlunrer

Figure 4. Parametric change of {8, ^,, h} versus the relative change of {(3, k0, p, c}

in Case 4 of the free boundary problem.

5.1.4. Case 5

We can observe that the solution to system (S4) behaves in the same way when

we modify ko, p or h. The restriction (Rl) is verified until we increase a 1% the

parameters. Figure 5 shows the relationship between the parameter solutions and the

given parameters {(3, k,, p and h}. The parameter 8 is more sensitive to changes in

ko, p and h; the parameter k is more sensitive to changes in ko and p; and the

parameter c is more sensitive to changes in p and k0.
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Figure S. Parametric change of {S, ;,, c} versus the relative change of {(3, k0, p, h}

in Case 1 of the free boundary problem.

5.2. Determination of coefficients through a moving boundary problem

We analyzed the relationship between the solution and the different parameters.

Table 4 shows the right and left normalized sensitivities, in each case, taking

E = 0.01 in Cases 3, 5, 6 and 7, and E = 0.001 in Cases 1, 2, 8, 9 and 10.

Table 4. Left and right normalized sensitivities in the ten cases of moving boundary

problems

Case N° Unknown a 3 ko p c h

1 8 -3491.7 3579.7 - - - - -3491.7 3579.7 -196.2 195.8 -3291 3381.1

a -3372.5 3759.1 - - - - -3372.5 3759.1 -198.5 199.2 -3189.4 3542

ko 52.6 -52.7 - - - - 53.6 -53.7 3 -3 50.6 -50.7

2 6 -62.9 62.8 - - 62.8 -62.8 - - 1.6 - 1.6 -1.6 1.6

0 -63.6 63.6 - - 63.7 -63.5 - - 1.1 -1.1 -1.1 1.1

p 0.9 -0.9 - - -0.01 -0.01 - - 0.05 -0.05 0.9 -0.9

3 6 -61.9 60.5 - - 63 -62.7 1.7 -1.7 1.7 -1.7 - -

a -62.4 62.4 - - 64.3 -63 1.3 -1.2 1.3 -1.2 - -

h 1 -1 - - 0.02 -0.02 1 -1 0.06 -0.06 - -

4 S -90.4 92.1 - - 62.3 -62.3 -28.4 29.4 - - -28.4 29.4

-84.2 84.7 - - 63.3 -63.2 -20.9 21.4 - - -20.9 21.4

e 17.4 -17.3 - - 0.3 -0.3 17.8 -17.6 - - 16.8 -16.6

5 6 0 0 -0.9 0.9 - - - - 0.4 -0.4 -0.4 0.4

ko -1 1 0.01 -0.01 - - - - 0.01 -0.01 -0.01 0.01

p 1 -1 -2.9 * 10-4 2.8 * 10-4 - - - - 0.05 -0.05 0.9 -0.9

6 6 0.4 -0.4 -0.9 0.9 - - 0.4 -0.4 0.4 -0.4 - -
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k0 -0.9 0.9 0.01 -0.01 - - 0.02 -0.01 0.02 -0.01 - -

h 1 -1 -3 * 10-4 3 * 10-4 - - 1.1 -1 0.05 -0.05 - -

7 0 -7.2 9.3 -0.9 0.9 - - -7.2 9.3 - - -7.2 9.3

k0 -1.3 1.3 0.01 -0.01 - - -0.3 0.3 - - -0.3 0.3

c 18.1 -17.7 -0.005 0.005 - - 18.1 -17.7 - - 16.9 -16.8

8 S 25.4 -24.2 -1.3 1.3 -24.2 25.4 - - 0 0 - -

p -50 51.4 0.7 -0.7 52.5 -50.9 - - 1 -1 - -

h 56.9 -52.7 -0.8 0.8 -52.8 56.9 - - -1 1 - -

9 0 25.4 -24.2 -1.3 1.3 -24.2 25.4 - - - - 0 0

p 4 -4 -0.04 0.04 -3 3 - - - - 1 -1

c -53.9 55.7 0.8 -0.8 55.7 -53.8 - - - - -1 1

10 0 25.4 -24.2 -1.3 1.3 -24.2 25.4 0 0 - - - -

c -50 51.4 0.7 -0.7 52.5 -50.9 1 -1 - - - -

h 4 -4 -0.04 0.04 -3 3 -1 1 - - - -

5.2.1. Case 1

In this case, we can observe that the solution behaves in the same way when we

modify a or p. Figure 6 shows the relationship between the parameter solutions

{8, 3 and k0} and the given parameters {a, p, c and h}. The parameters 8, (3 and

k0 are more sensitive to changes in 6 or p.
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Figure 6. Parametric change of {S, (3, ko } versus the relative change of {a, p, c, h}

in Case 1 of the moving boundary problem.

5.2.2. Case 2

Figure 7 shows the relationship between the parameter solutions {6, P and p}

and the given parameters {a, k0, c and h}. The parameters 8 and R are more

sensitive to changes in a or k0, the parameter p is more sensitive to changes in 6.
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Figure 7. Parametric change of {8, (3, p} versus the relative change of {6, k0, c, h}

in Case 2 of the moving boundary problem.

5.2.3. Case 3

We can observe that the parameters 8 and (3 behave in the same way when we

modify c or p. Figure 8 shows the relationship between the parameter solutions

{8, 0 and h} and the given parameters {o, k0, p and c}. The parameters 8 and (3

are more sensitive to changes in a or ko, and the parameter h is more sensitive to

changes in 6.
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Figure S. Parametric change of {8, 0, h} versus the relative change of {6, ko, p, c}

in Case 3 of the moving boundary problem.

5.2.4. Case 4

In this case, we can observe that the parameters 8 and (3 behave in the same way

when we modify h or p. The restriction (R2) is verify until we increase a 0.75% the

parameters 6, p and h. Figure 9 shows the relationship between the parameter

solutions {8, (3 and c} and the given parameters {6, k0, p and h}. The parameter 8

is more sensitive to changes in 6; the parameter 0 is more sensitive to changes in ko

and 6; and the parameter c is more sensitive to changes in p.

NATALIA N. SALVA and DOMINGO A. TARZIA
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Figure 9. Parametric change of {S, (3, c} versus the relative change of {a, k0, p, h}

in Case 4 of the moving boundary problem.

5.2.5. Case 5

In this case, we can observe that the parameters S, ? and ko behave in the

opposite way when we modify c or h. Another remark is that in the system (S8) there

is no intervention of a. Therefore, the parameters 8 and 2. remain constant when we

modify the values of a. Figure 10 shows the relationship between the parameter

solutions {6, ko and p} and the given parameters {a, 0, c and h}. The parameter 5

is more sensitive to changes in (3; the parameter ko is more sensitive to changes in

a; and the parameter p is more sensitive to changes in a and h.

rl nrn . lxlo:•r

Figure 10. Parametric change of {S, k0, p} versus the relative change of {a, (3, c, h}

in Case 5 of the moving boundary problem.

5.2.6. Case 6

We can observe that the parameters 8 and 2 behave in the same way when we

modify a, c or p. Instead, the parameter ko behaves in the same way when we

modify c or p (but not a). On the other hand, the parameter h behaves in the same

way when we modify a or p (but not c). Figure 11 shows the relationship between
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the parameter solutions {6, ko and h } and the given parameters {a, 0, p and c}.

The parameter S is more sensitive to changes in (3, the parameter h is more sensitive

to changes in p and a , and the parameter ko is more sensitive to changes in a.

i, fz

Figure 11. Parametric change of {6, k0, h} versus the relative change of {a, 0, p, c}

in Case 6 of the moving boundary problem.

5.2.7. Case 7

In this case , we can observe that the parameters 6 and ;, behave in the same way

when we modify a, h or p . Instead , the parameter c behaves in the same way when

we modify a or p (but not h). On the other hand , the parameter ko behaves in the

same way when we modify h or p (but not a ). The restriction (R2) is limited to a

0.75% increase of the parameters a, p and h, as in Case 4. Figure 12 shows the

relationship between the parameter solutions {6, ko and c} and the given parameters

{a, (3, p and h }. The parameter 6 is more sensitive to changes in a, h and p; the

parameter c is more sensitive to changes in p and a; the parameter ko is more

sensitive to changes in a.

Figure 12 . Parametric change of {S, k0, c} versus the relative change of {a, (3, p, h}

in Case 7 of the moving boundary problem.
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5.2.8. Cases 8, 9 and 10

In all these three cases, the system of equations that the parameters 8 and a. must

verify is the same ((S11) in our cases). The only two parameters that appear in these

equations are ko and a; neither h, c or p are involved in (S11). This means that 8

and ^k maintain constant when we modify c (in Case 8), h (in Case 9) or p (in Case

10). Figures 13, 14 and 15 show the relationship between the parameter solutions

and the other given parameters, in Cases 8, 9 and 10, respectively. The parameter 8

is more sensitive to changes in a and k0; and the most influential parameters are a

and k0, for the rest of the given parameters.

Figure 13. Parametric change of {8, p, h} versus the relative change of {a, R, k0, c}

in Case 8 of the moving boundary problem.

,44/444, lvnw. 44,44 . l&n,p:

Figure 14. Parametric change of {8, p, c} versus the relative change of {a, (3, k0, h}

in Case 9 of the moving boundary problem.

44,444 4 ln n^•••

Figure 15. Parametric change of {S, c, h} versus the relative change of {a, P, k0, p}

in Case 10 of the moving boundary problem.
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