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Abstract

Formulas are obtained for the simultaneous determination of two or
three unknown thermal coefficients of a semi-infinite material with
temperature-dependent thermal conductivity through a phase-change
process with an overspecified condition on the fixed face through a
moving boundary problem (inverse Stefan problem) or a free boundary
problem (Stefan problem), respectively. We complete and improve the
analysis done in Tarzia [24] and we also study the sensitivity of the
solution depending on different thermal parameters, applied to aluminum.
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Nomenclature

Specific heat, J/(kg°C)
Latent heat of fusion by unit of mass, J/kg

Thermal conductivity, W/(m°C)

Coefficient that characterizes the heat flux at x = 0, kg / ss/ 2

Position of the free or moving front, m

The Stefan number defined by (9), dimensionless
Time, s

Temperature, °C

Spatial coordinate, m

Greek symbols
Diffusivity coefficient, m? /s

Coefficient that characterizes the thermal conductivity in equation (2),
dimensionless

Coefficient that characterizes the differential equation (4i),
dimensionless

Similarity variable defined by (3), dimensionless

Coefficient that characterizes the free boundary in equation (3ii),
dimensionless

Density, kg/m’

Coefficient that characterizes the moving boundary in equation (3iibis),
m / Sl/ 2
Subscripts

Fusion

Initial in time or in space
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1. Introduction

Heat transfer problems with a phase-change such as melting and freezing have
been studied in the last century due to their wide scientific and technological
applications. A review of a long bibliography on moving and free boundary
problems for phase-change materials (PCM) for the heat equation is shown in [25].

We consider the following solidification problem for a semi-infinite material
with an overspecified condition on the fixed face x = 0 [1, 6, 8, 11]:

(1) pcTy(x, 1) = (k(T)Ty(x, 1)), 0<x <s(t), >0,
@) T(0,1)=T, <Tj,1>0,
dil)  k(T,)T.(0,2) =f1—f<;-, t>0,q,>0, )

(iv) T(s(1),)=Ty,2>0,

) KITs(0), 0= ki), 150,

where T(x, t) is the temperature of the solid phase, p > 0 is the density of mass,

h > 0 is the latent heat of fusion by unity of mass, ¢ > 0 is the specific heat,

x = s(t) is the phase-change interface, T, is the phase-change temperature, 7, is

the temperature at the fixed face x = 0 and g, is the coefficient that characterizes

the heat flux at x = 0 given by (1(iii)) which must be obtained experimentally
through a phase-change process. We suppose that the thermal conductivity has the
following expression [9]:

k= k() = 1+ BT - T,)/(Ty - T,)], BeE. @

We remark that the phase-change problem (1) with conditions ((i), (i), (iv) and
(v)) is a classical Stefan problem [6, 8]. We consider that the condition (1(ii1)) is an
overspecified condition at the fixed face x =0, of the type given in [21], from
which we can determine some unknown thermal coefficients [2-5, 14, 17]. We
observe that if B = 0, then the problem (1) becomes the classical one-phase Lamé-

Clapeyron-Stefan problem with an overspecified condition at the fixed face x = 0
and for this problem the corresponding simultaneous determination of thermal
coefficients was studied in [22, 23]. The phase-change process with temperature-
dependent thermal coefficient of the type (2) was firstly studied in [9]. Other papers
related to determination of thermal coefficients are [12, 16, 18, 20, 26-29].
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The solution to problem (1) is given by [9, 24]:

. _ (Tf _To) _ X
(1) T(X, t)_TO+ (I)()\,, 6) (D(n’ 6)’ n= 2\/a_0t30<n<7\’7 (3)

() s() = 20yo,t,

where o, = k,/pc is the coefficient of the diffusivity at the temperature 7,

® = ®(x, §) is the modified error function which is for all § > —1, the unique
solution to the following boundary value problem in variable x, i.e.,

o) a—ax[(l #3045, )@, D) + 26045, 8) = 0,5 > 0,6 > D),

(i) @0, 8) =0, ®(+w, §) =1

and the unknown thermal coefficients must satisfy the following system of equations
[24]:

B—8D(N, 8) =0, 3).
® (%, 8) 2h

[1+8D(%, 8)] o0 8) ol T - 0, (6)

@, (0, 3) _ 2q, (7)

(DO"’ 8) (Tf - To )Jkopc -

For the particular case 8 = 0, we have that ®(x, 8) = erf(x) is the error function,
which is defined by:

erf(x) = % J: e du. (8)

We remark that if problem (1) is a free boundary problem (this case can be
considered as a Stefan problem) with an overspecified condition on the fixed face

x = 0, then the coefficient A > 0 is an unknown coefficient. On the other hand, if

problem (1) is a moving boundary problem (this case can be considered as an

inverse Stefan problem) with an overspecified condition on the fixed face x = 0,

then the phase-change interface will be given by

s(t) = 201, (3iibis)
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where ¢ must be obtained experimentally (¢ = Ao, ) through a phase-change
process [23].

When the coefficient 8 = 0, the corresponding determination of formulas for
one or two unknown thermal coefficients were obtained in [22, 23]. When the
coefficient & # 0 is given, the corresponding problem was analyzed in [24]; in this
case, the necessary and sufficient conditions on the data were obtained in order to
ensure the existence of the solution.

In this paper, we will consider that § is an unknown coefficient and that the
unknown thermal coefficients for the simultaneous determination will be chosen

among: density (p), latent heat (%), specific heat (c), through 5 or 10 different

cases for a free or moving boundary problem, respectively. In general, these types of
problems are ill-posed [13], and for ill-posed problems a small perturbation in the
input data may produce a big change in the output data. We will study the behavior
of the solution parameters when a slightly modification is made in the data

parameters.

We define the Stefan number by

Ste = E(&h:&—)-. )

The goal of the present paper is to consider that the coefficient & is one of the
unknown thermal coefficients; therefore the problem (1) consists of finding the

coefficient & simultaneously with two thermal coefficients chosen among: A, B, %,,
p, ¢, h. In Section 3, for a one-phase Stefan problem, we determine the temperature
T(x, t), the free boundary interface s(¢) (i.e., the coefficient & defined in (3(ii)) and
the following parameters in 5 different cases for a free boundary problem (here
A > 0 is an unknown coefficient):

FB: ()8, A B (i) & Ak, Gi) 8Ap (V)& AL (V)5 A c

In Section 4, for a one-phase inverse Stefan problem (i.e. the interface s(¢) is
given by (3iibis)), we determine the temperature T(x,t) and the following

parameters in 10 cases for a moving boundary probler: (here o > 0 is a known

coefficient):
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MB: (1) 6’ B) ko (ll) 87 B7 p (111) 6’ Ba h (IV) 67 B: c (V) 63 k07 p
i) 8, ky, B (vi)) 8k, ¢ (vii) 8, p, h (iX) 8 pc (X)8 ¢, h

We obtain the formulas for the unknown thermal coefficients and we give the
proof of some of the cases. Table 1 and Table 2 summarize the formulas for the
unknown thermal coefficients corresponding to the five or ten cases for the free or
moving boundary problem (1), respectively. Finally, in Section 5, a sensitivity

analysis, corresponding to the aluminum, is performed.
2. Auxiliary Functions

In order to give, case by case, the formulas for the unknown thermal coefficients
and the restriction for data (when the case allows us), let us consider the following
real functions, defined for x > 0:

F(x, 8) =1+ 80(x, 8);  Fyx, 8) = %;

Fs(x, 8) = [1 + 8@(x, 8)] @, (x, 3); Fy(x, 8) = x®(x, 8);

Fs(x, 8) = M; Fg(x, 8) = ;5(‘;—5)

The properties of the function @ = ®(x, §) and the properties of the functions
F to Fg which, complement and improve the graphics given in [9], will be used to

prove all our results.
3. Solution to the Five Cases through a Free Boundary Problem

3.1. Case 1 - Simultaneous determination of {3, A, B}

Proposition 1. The temperature and the free boundary for problem (1) with

unknown thermal coefficients {8, A, B} are given by (3), B is given by the expression:
B =30(2, 5) (10)

and & and k must satisfy the following system of equations (A > 0, & > -1):
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2
Fi()\., 6) = E};Fz()\,, 6),

(Sl) vpck, (T f - To)
2q,

DA, 5) = ®,(0, 8).

Proof. From equation (5), we obtain the equation (10), and from equations (6)
and (7), we obtain that § and A must satisfy the system (S1).

3.2. Case 2 - Simultaneous determination of {5, A, &, }

Proposition 2. The temperature and the free boundary for problem (1) with
unknown thermal coefficients {3, \, k,} are given by (3), k, is given by the

expression:

1 24,000, 8) )
ko B —C_p—((bx(o’ 8)(Tf —To)) (11)

and & and \ must satisfy the following system of equations (. > 0, & > —1):

2
is2) /i 8) = 5 Fal0 ),

B = 50, 8).

Proof. From equation (7), we obtain the expression (11), and from equations (5)
and (6), we obtain that § and A must satisfy the system (S2).

3.3. Case 3 - Simultaneous determination of {5, A, p}

Proposition 3. The temperature and the free boundary for problem (1) with
unknown thermal coefficients {8, L, p} are given by (3), p is given by the expression:

R 24,00, 8) Y
P=r [cpx(o, (T, - To)) (12)

and & and ). must satisfy the system of equations (S2).
Proof. It is similar to the proof of Proposition 2.

3.4. Case 4 - Simultaneous determination of {3, A, &}

Proposition 4. The temperature and the free boundary for problem (1) with
unknown thermal coefficients {8, N, h} are given by (3), h is given by the expression:
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Ty - 1,)(1+B)
AR (13)

h =

and & and A must satisfy the following system of equations (A > 0, § > —1):

B = 8D(A, 5),

(83) 50, 5) = Jpck, Z(Zf ~T,)

@, (0, 8).

Proof. From equation (6), we obtain the expression (13), and from equations (5)
and (7), we obtain the system (S3).

3.5. Case 5 - Simultaneous determination of {5, A, c}

Proposition 5. The temperature and the free boundary for problem (1) with

unknown thermal coefficients {8, A, ¢} are given by (3), c is given by the expression:

_ 29,00, 8) Y
©= o (cpx(o, 8T, - TO)J (14)

and & and A must satisfy the following system of equations (A > 0, & > —1):

p= BCD(?‘" 8)>

(s4) phky(Ty ~T,)
a2l S 24

A, 8) = (@,(0, 3)Y Fy(n, 8).

90
A necessary condition for the existence of solution A >0 and & > —1 for system

(S4) is that the data B, k,, p, h, 4,, Ty and T,, verify the following restriction:

(Tf - 1,) phk, <1

(RD)
2
24,

Proof. From equation (7), we obtain the expression (14). The first equation of
(S4) is obtained from (5), and from equations (6) and (7) we obtain the second
equation in system (S4). The necessary condition (R1) is given by Property 3 (case
4) in [24].

In Table 1, we summarize the formulas for the unknown thermal coefficients

corresponding to the five cases for a free boundary problem:
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" Table 1. Formulas for the unknown thermal coefficients for the five cases with free
boundary formulation

Case N°| Unknown coeff. Solution

B = d®(A, 8),

where {5, A} is the solution to the system:

FB-(i) 5, % B F(\, 8) = E%e— F(, 8),
VPCko (Tf - To)
29,

o2, 8) = @,(0, 8)

1( 24,01, 8) )2
k, ,

" op\([Ty —T,)0,4(0, 3)
8, A, k, where {8, A} is the solution to the system:
2
B = 8D(A, 8)

FB-(ii)

1 2,00, 8) Y
P=k, T, -1,)9,00,5))

where {5, A} is the solution to the system:

{Fl 0 8) = o= Fa(2, ),
B = 5d(A, 5)

_ Ty -T,)(1+B)

. - 2F (A, 8)

where {3, A} is the solution to the system:
FB'(IV) 83 )\'5 h B — 8@(7\., 8)’

_ VPCko(Tf _TO)(Dx
2q,

FB-(iii) 8, &, p

®(A, 8) (0, 8)

] ( 2¢,0(%, 5) Jz
pko \(Tr = T,)@4(0,3) ) °
where {3, A} is the solution to the system:
B =3®(2, 3),

hk (T, —T,
£, 5):p_"_(2L2_°_)

90

FB-(V) 6: )\‘7 c

((Dx(oa 6))2F6(7\” 6)
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4. Solution to the Ten Cases through a Moving Boundary Problem

In this case, the moving boundary s(t) is given by the expression (3iibis) with a
given o > 0 (which can be determined experimentally) and the unknown thermal

coefficients must solve the following system of equations:

B - 8®(c+y/pc/k,, 8) = 0, (15)

[1 + 5®(cy/pc/k,, )] k. (ovpefky, 8) 2 (16)

ch—CQ(GJpc/ko, §) cTr-T,) =0

,(0,8) 24, _
CI)((5\/[370/](0 ’ 8) (Tf -1, )‘/kopc

7)

We present the solution for the different ten cases and the proof of some of them.

4.1. Case 1 - Simultaneous determination of {3, B, k,}

Proposition 6. If the moving boundary is given by (3iibis), then the temperature
of problem (1), with unknown thermal coefficients {8, B, k,}, is given by (3i), B is

given by (10) and k,, is given by the expression:

2

_o'pc
b =3 (18)

where 6 and . must satisfy the following system of equations:

2
171()"’ 8) = Sle F2(x" 8)’
S5
(85) pea(Ts ~T,)

Fy(0, 8) = @,(0, 5).

2q

o

Proof. In order to solve the system (15)-(17), we define the auxiliary unknown

variable:
A = oypc/k,. (19)

From equations (15) and (19), we obtain the expressions for B and %,, depending on

& and A. Therefore, from equations (16) and (17), we obtain the system (S5).
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- 4.2. Case 2 - Simultaneous determination of {, B, p}

Proposition 7. If the moving boundary is given by (3iibis), then the temperature
of problem (1), with unknown thermal coefficients {8, B, p}, is given by (3i), P is

given by (10) and p is given by the expression:

pP=—7%> (20)

g C

where & and A must satisfy the following system of equations:

2
(A, 8) = TS_tEFZ(}”’ 3),
(S6)
T, - T,)k
Fs(2, 8) = .(_f_zq_;liqnx(o, 3).
(2}

Proof. It is similar to the proof of Proposition 6.

4.3. Case 3 - Simultaneous determination of {5, 8, A}

Proposition 8. If the moving boundary is given by (3iibis), then the temperature
of problem (1), with unknown thermal coefficients {8, B, h}, is given by (3i), B is

given by (10) and h is given by the expression:

Ty - T,) K (M, 3)
T 2R, 0) @

and § is the solution to the following equation (& > —1):

DL (Tf —To) kopc
(1, 8) = L2
0

®,(0, ), (22)

where A is the known coefficient given by (19).

Proof. In order to solve the system (15)-(17), we define the auxiliary unknown
variable (19). From equations (15) and (16), we obtain the expressions for  and h,

depending on & and A. Therefore, from equations (17) and (19), we obtain equation
(22).

4.4. Case 4 - Simultaneous determination of {3, B, c}

Proposition 9. If the moving boundary is given by (3iibis), then the temperature
of problem (1), with unknown thermal coefficients {5, B, c}, is given by (31), B is
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given by (10) and c is given by the expression:

2%k,
czp

c , (23)

where & and ) must satisfy the following system of equations:

F3()\" 8) = hcp q)x(()) 6)9
(s7) ;
(Tf - To)ko
FS(}\" 6) . T(DX(O’ 8)

A necessary condition for the existence of a solution . >0 and & > -1 for the

system (S7) is that data o, k,, p, h, 9,, T¢ and T, verify the following restriction:

phc
90

<1 (R2)

Proof. We make the change of variable (19). From equations (15) and (19) we
obtain the expressions for B and ¢, given by (10) and (23), respectively. From
' equations (16) and (17), we obtain the following equations for 6 and A:

2hc72p
F 7\,,5 ='_"-_""_'—'F }\',83
30+8) = 7y, 50 9
Tr-T,)k
A, 5) - LT % ;) 2 ®,(0, 8)
o

which is equivalent to the system of equations (S7). The necessary condition is given
by Property 4 (case 6) in [24].

4.5. Case 5 - Simultaneous determination of {3, k,, p}

Proposition 10. If the moving boundary is given by (3iibis), then the
temperature of problem (1), with unknown thermal coefficients {8, k,, p}, is given

by (31), k, and p are given by the expressions:

_ ZGqO FSO": 5)
=T -1,%,0,0) 24)
— zqo}\' F5(7\’7 8)
~co(Ty —T,) ©,(0,8)

(25)
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where & and ). must satisfy the following system of equations:
8Dd(X, 8) = B,

0.0, 5) = <

2h
Tf - To)(l+ B)

F,(1, 8).

Proof. We make the change of variable (19). From equations (17) and (19), we
obtain the expressions for k, and p, given by (24) and (25), respectively. From

equations (15) and (16), we obtain the system of equations (S8) for 8 and 2.

4.6. Case 6 - Simultaneous determination of {5, k,, 4}

Proposition 11. If the moving boundary is given by (3iibis), then the

temperature of problem (1), with unknown thermal coefficients {8, k,, h}, is given

by (31), k, is given by (18) and h is given by the following expression:

_C(Tf—To) 1+
hs R, ) (26)

where & and N must satisfy the following system of equdtions:

B =804, 5),

(S9) pco(Tr —T,)

i, 8) =L @ (0, §).

Moreover, the solution to the system (S9) is given by

2= pCG(Tf -T1,)

e 5d (0, 8) 7)

and & must be the solution to the following equation:

SCD(pCG(Tf - To)

T 50 (0, 8), 8] =B, &> -1 (28)

Proof. We make the change of variable (19) and we obtain the expression (18).
From equations (16) and (19), we obtain the expression (26). From equations (15)
and (17), we obtain the system of equations (S9) for & and A whose solution is given
by (27) for A and & must be the solution to the equation (28).
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4.7. Case 7 - Simultaneous determination of {3, k,, c}

Proposition 12. If the moving boundary is given by (3iibis), then the
temperature of problem (1), with unknown thermal coefficients {8, k,, c}, is given

by (31), k, is given by (25) and c is given by the expression:

29, __ F4(%, 3)
~ po(l; —T,) ©,(0, 8)’

(29)

where 6 and ). must satisfy the following system of equations:

B = 30(%, 5),

510014 o 5) = ?IGPB)(D

A necessary condition for the existence of solution A > 0 and & > ~1 for the system

(0, 8).

(810), particularly for the second equation, is that the data o, k,, p, h, q,, T s and
T, verify the restriction (R2).

Proof. It is similar to the proof of Proposition 9.

4.8. Case 8 - Simultaneous determination of {5, p, 4}

Proposition 13. If the moving boundary is given by (3iibis), then the
temperature of problem (1), with unknown thermal coefficients {3, p, h}, p and h
are given by (20) and (26), respectively, where & and A must satisfy the following
system of equations:

B = dD(7, ),
(S11) (T, -T,)k
_ M f o/
Fs(2, 8) = 270 @, (0, 8).

o

Moreover, the solution to the system (S11) is given by

20pBq, 1
MR, - T,) 59,0, 5) (30)

and 6 must be the solution to the following equation:

20Bg, 1 _ _
6q)[ko(Tf—To)—56x(0, 6),6J—ﬁ, 3> 1. (€29)
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Proof. It is similar to the proof of Proposition 11.

4.9. Case 9 - Simultaneous determination of {3, p, c}

Proposition 14. If the moving boundary is given by (3iibis), then the
temperature of problem (1), with unknown thermal coefficients {8, p, c}, is given by

(3i), p and c are given by the expressions:

_ ko(1 + B)(Tf - To)
262h[3

ASD (), B), (32)

. 2h
- (+B)Ty - T,)

F (2, 8), (33)

where & and ) must satisfy the system of equations (S11).
Proof. It is similar to the proof of Proposition 11.

4.10. Case 10 - Simultaneous determination of {5, ¢, A}

Proposition 15. If the moving boundary is given by (3iibis), then the
temperature of problem (1), with unknown thermal coefficients {8, c, h}, is given by

(31), c is given by (33) and h is given by the following expression:

h= ko(Tf _To)(l+ ﬁ) 7&2
2p02 F2(7\‘5 8),

(34)

where & and \. must satisfy the system of equations (S11).
Proof. It is similar to the proof of Proposition 11.

Now, in Table 2, we summarize the formulas for the unknown thermal
coefficients corresponding to the ten cases for a moving boundary problem (i.e., an

inverse Stefan problem).
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Table 2. Restrictions and formulas for the unknown thermal coefficients for the
cases of moving boundary
Case N° |Unknown coeff. Solution

o2pc
7\‘2
where {5, A} is the solution to the system:

B =38D(,8), k, =

b

MB-(i) 5, B,
T AR08 == R0 8),

T, -T
Fy(A, 8) = Ec_c(__f_.?_)_(px(o, 8)
29,
Mk
B =8d(1, 8), p =52,
g C

where {8, A} is the solution to the system:

MB-(ii 5, B, p

w Fi(3, 8) = == F(3, 8),

(Tf B To)ko
29,0

T, T, R, 5
B = 500, 5), h= . szz(i, g() ) oz oype/k,,

MB-(iii) 5, B, A where § is the solution to the equation:

FS()‘" 8) = (DX(O, 6)

T, — T )Jk,pc
o0, 8) = TNk o (o 5
» 24,
A%k
B =80(, 8), c = 2,
o’p
where {8, A} is the solution to the system:
MB-(iv 5, B, ¢
. E0, 8) =g (0, 5),
90
(Tf - To)ko
Fs5(%, 8) = —225——‘1%(0, 3)
p - 2% Fs(A,8)  2q,h  Fs(A, )

° ST, -1, ©,(0,8) P T (T, ~1,) ©,(0,3)"
where {8, A} is the solution to the system:
3D(A, 8) = B,

®,(h, 8) = =

MB-(v) | 8, ko, p

2h
(Tf —To)(l + B)

Fy(n, 3)
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MB-(vi)

5, ky, h

K zczpc b= Tr - T,) (1+P)
° 2 2 F (A, 8)’

where {5, A} is the solution to the system:
B =3®(2, 3),

peo(Ty - T,)
2q

F4(}"’ 8) = (Dx(o’ 6)

(4]

MB-(vii)

S, k,, c

20q, Fs(h, 6) 24, Fy (A, 3)

kO"Tf T, ©,(0,0) €

where {8, 1} is the solution to the system:

B = 5O(\, 5),

(Dx(}“’ 6) = o?lcpﬁ) (Dx(o’ 8)

pG(Tf - To) (Dx(o’ 6)’

MB-(viii)

S, p, h

32k, . Ty -T,) (1+p)

P="2 2 F”(,0)

where {8, A} is the solution to the system:
B = 8D(A, 8),

Fs(®, 8) = w

29,0 @, (0, 3)

MB-(ix)

5, p, c

ko(l + B)(Tf - To)

AD (%, 5),
27 (A, 3)

~ 2h
~pa, 1y

where {5, A} is the solution to the system:
B = 8d(2, 8),

F(2, 5)_(_1’%‘& (0, 8)

[¢]

MB-(x)

My |, _koTp -T,)A+B) 22

c=—73 "= 2 (L, 5)’

c°p 2pc
where {8, A} is the solution to the system:
B =30(2, 3),
(Ty - T,)k,
lFs(% 8) = _2710_—®x

o

(0, 8)
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S. Sensitivity Analysis

We use the free software SCILAB for the numerical analysis. For each case,
first we have to determine the solution to the corresponding system of equations.
The command bvodeS was used to solve the differential problem (4), which allowed
us to evaluate the modified error function at the necessary points. To find the
solution to the system, we minimize the sum of the squares of the equations of
the nonlinear system, using the Levenberg-Marquardt algorithm. Secondly, using
the approximately solution to the system, we evaluated the unknown thermal
coefficients.

In each case, we have used the corresponding data, from the following set of
values that satisfy equations (5)-(7). The data corresponding to aluminum near its
melting point is:

B =0,0318778, &=0,1177546, X\ =0,2433491, k, = 293,1882W/m°C,
p =2698,4kg/m’, ¢ =783,61927/kg°C, h = 3880007/kg,
g, = 31792268kg/s"%, T, = 660°C, T, = 600°C.

In order to determine the influence of known parameters over unknown
coefficients, we define the normalized sensitivity by the following expression [19]:

gi | op
S(p. 9 = % &, 35)
(P, 4i) | 3
where p is a particular solution parameter (e.g., the dimensionless parameters & or A,
or the initial thermal conductivity k, in Case 2 of free boundary problems), ¢; is

one of the given parameters (e.g., B, p, ¢, # in Case 2). Thanks to its dimensionless

nature, we can compare the sensitivity of parameters of different magnitudes. The
normalized sensitivity indicates the percentage change on the value of the parameter

ps when the variable g¢; increases or decreases 1% of its value [10, 15]. We will

approximate S(p, g;) by the following way:

At
S(p, g, ~ -2 ,p(6{+) p(q)
9 9, —4;

right normalized sensitivity,

-~ g PG )= plg)

left normalized sensitivity, 36
0 R o0

S(p: q;




SIMULTANEOUS DETERMINATION OF UNKNOWN COEFFICIENTS ...29

where q is the vector (¢, ..., g;, --), p(q) = p(q15 - gj» -..) and
g;=4q;,j#i and g =q; +e g,

& =qp j#i and G =g —elq] 37

and € =0.01 or ¢£=0.001, depending on the different cases. Here the right
normalized sensitivity represents the change on the parameter p when g; increases a

1% of its value, and the left normalized sensitivity represents the change on the

parameter p when g; decreases 1%.

5.1. Determination of coefficients through a free boundary problem

We have analyzed the relationship between the solution and the different
parameters. Table 3 shows the right and the left normalized sensitivities, in each
case, taking € = 0.01. If the sensitivity is negative, then it means that the parameter

p is decreasing with respect to g;, and if it is positive, then it means that the

parameter p is increasing with respect to g;.

Table 3. Left and right normalized sensitivities in the five cases of the free boundary

problems
Case N° | Unknown B k, P c h

1 o - - -642 | -639|-6421-639| -52 | =52 | 587 | -58.9
A - - 05| 05| -05 1| -05 0.4 0.4 -0.9 -0.9
B - - —65.5|-642|-655|-642| 48 | 48 | -60.6 | —-59.4

2 & 0.9 0.9 - - 0 0 -04 | -04 0.4 -0.4
A 0.007 | 0.008 - - 0 0 0.4 -04 | 04 0.4
k, -0.01 | -0.01 - - -1 -1 1-0.071-0.07} -09 —0.9

3 8 0.9 0.9 0 0 - - -04 | -0.4 0.4 0.4
A 0.007 | 0.008 0 0 - - 0.4 -04 | 04 -0.4
p -0.01 { -0.01 -1 -1 - - -0.07 | -0.07 | -0.9 -0.9

4 & 0.9 09 04 | -04 | 04 { -04 | 04 | 04 - -
A 0.01 | 0.01 0.5 0.5 0.5 0.5 0.5 0.5 - -
h -0.011-0.01] -1 -1 -1 -1 {-0.08 |-0.08 - -

5 8 1 1 5.6 6.7 5.6 6.7 - - 5.6 6.7
A 009009 =63 | 6.6 | =63 | —6.6 - - —6.3 —6.6
c 02 | =02 |-13.6 |-133 | -13.6 [ -13.3 - - -125 | -12.4
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5.1.1. Case 1

In this case, we can observe that the solution behaves in the same way when we
modify k, or p. Figure 1 shows the relationship between the parameter solutions
and the given parameters {k,, p c and h}. The parameters & and B are more
sensitive to changes in k, or p, and the parameter A is more sensitive to changes

with respect to changes produced in 4.

Tt

eitia s begery sosbpe < Frames

Figure 1. Parametric change of {5, A, B} versus the relative change of {k,, p, ¢, A}
in Case 1 of the free boundary problem.

5.1.2. Cases 2 and 3

These two cases are analyzed together, because when we modify the parameters
h, B or ¢, the corresponding & and A are the same for both cases. This can be
explained observing that the system of equations to be solved is the same in both
cases (S2 in our case). Another remark is that, in the previous system, the parameters
k, or p do not appear explicitly. Therefore, the parameters & and A remain constant

when we modify the values of k, or p. Figures 2 and 3 show the relationship
between the parameter solutions and the given parameters {B, k,, p, ¢ and A} in

Cases 2 and 3, respectively. The parameter § is more sensitive to changes in 3, the

parameter A is more sensitive to changes in % and the parameters k, and p are more

sensitive to changes in p and k,, respectively.

o’

IREI ST N T ronar s feTiee PRI IIT I

Figure 2. Parametric change of {5, A, k,} versus the relative change of {B, p, c, &}
in Case 2 of the free boundary problem.
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Figure 3. Parametric change of {5, A, p} versus the relative change of {B, k,, ¢, h}

in Case 3 of the free boundary problem.
5.1.3. Case 4

As in Case 1, we can observe that the solution to system (S3) behaves in the

same way when we modify k,, p or c. Figure 4 shows the relationship between the
parameter solutions and the given parameters {B, k,, p and c}. The parameter 3 is

more sensitive to changes in B, the parameter A is more sensitive to changes in

k,, p and ¢, and  was more sensitive to changes in p and k.
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Figure 4. Parametric change of {5, A, h} versus the relative change of {B, k,, p, ¢}

in Case 4 of the free boundary problem.

5.1.4. Case S

We can observe that the solution to system (S4) behaves in the same way when

we modify k,, p or h. The restriction (R1) is verified until we increase a 1% the

parameters. Figure 5 shows the relationship between the parameter solutions and the

given parameters {B, k,, p and &}. The parameter & is more sensitive to changes in
k,, p and k; the parameter A is more sensitive to changes in k, and p; and the

parameter ¢ is more sensitive to changes in p and %,.
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Figure 5. Parametric change of {5, A, ¢} versus the relative change of {B, k,, p, 4}

in Case 1 of the free boundary problem.

5.2. Determination of coefficients through a moving boundary problem

We analyzed the relationship between the solution and the different parameters.

Table 4 shows the right and left normalized sensitivities, in each case, taking
€ =0.01 in Cases 3,5, 6 and 7, and & = 0.001 in Cases 1, 2, 8, 9 and 10.

Table 4. Left and right normalized sensitivities in the ten cases of moving boundary

problems
Case N° | Unknown ] kg P c h
1 8 -3491.7 | 3579.7 - -3491.7| 3579.7 |-196.2] 1958 | —3291 | 3381.1
B —3372.5 | 3759.1 -3372.5[ 3759.1 [-198.5| 199.2 [~3189.4| 3542
k, 52,6 -52.7 - - | 536 | =537 3 -3 | 506 | 507
2 5 —62.9 62.8 62.8 |—6238 1.6 16 -16 | 16
B —63.6 63.6 637 [-635) - - -1 <11 ] 11
P 0.9 09 - -001|-001{ - 005 |—005] 09 | -09
3 ] —61.9 60.5 - 63 |—627| 17 | -17 | 1.7 | -17
B —62.4 62.4 643 1 —63 | 13 | -12 | 13 | -12
h 1 -1 0.02 |-0.02]| 1 -1 ] 006 [-006
4 5 —90.4 92.1 623 |-623| —284 | 294 —284 | 294
B 842 84.7 633 [—632] —209 | 214 - | 209 | 214
c 17.4 -173 - - 03 | 03| 178 | -17.6 16.8 | -16.6
5 5 0 0 09 09 - - 04 | ~04 1 —04 | 04
ko -1 1 0.01 —0.01 - 0.01 | —0.01 { —0.01 | 0.01
P 1 -1 —29%107% | 28+10% - - 005 |—0.05| 09 | —09
6 8 0.4 -04 0.9 0.9 - - 04 | —04 | 04 | —04
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ko -0.9 0.9 0.01 -0.01 - 0.02 | —0.01 | 0.02 | —0.01 -
h 1 -1 321074 | 341074 | - - 1.1 -1 | 005 |-005 -
7 5 -12 93 -0.9 0.9 - -l =721 93 72 | 93
ko -1.3 1.3 0.01 -0.01 - -03 0.3 -0.3 03
c 18.1 -17.7 -0.005 0.005 - - 18.1 | -17.7 169 | -16.8
8 3 25.4 242 -1.3 13 2421 254 - 0 0
p =50 51.4 0.7 -0.7 52.5 [-50.9 - - 1 -1
k 569 | —527 0.8 08 |-528|569 | - -1 1 -
9 3 254 —24.2 -1.3 1.3 -242| 254 - 0 0
p 4 -4 -0.04 0.04 =3 3 - - 1 -1
¢ 539 | 557 038 08 |557|-538] - -1 1
10 ) 25.4 —~24.2 -13 1.3 2421254 i} Q
[4 —50 514 0.7 0.7 525 |-50.9 1 -1 -
h 4 -4 —0.04 0.04 -3 3 -1 1

5.2.1. Case 1

In this case, we can observe that the solution behaves in the same way when we

modify o or p. Figure 6 shows the relationship between the parameter solutions
{8, B and k,} and the given parameters {o, p, c and h}. The parameters 3, B and

k, are more sensitive to changes in ¢ or p.
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Figure 6. Parametric change of {5, B, k,} versus the relative change of {o, p, ¢, h}
in Case 1 of the moving boundary problem.
5.2.2. Case 2

Figure 7 shows the relationship between the parameter solutions {8, p and p}
and the given parameters {o, k,, ¢ and h}. The parameters & and P are more

sensitive to changes in ¢ or k,, the parameter p is more sensitive to changes in .
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Figure 7. Parametric change of {8, B, p} versus the relative change of {c, k,, c, 4}

in Case 2 of the moving boundary problem.

5.2.3. Case 3

We can observe that the parameters 8 and 3 behave in the same way when we
modify ¢ or p. Figure 8 shows the relationship between the parameter solutions

{3, B and 4} and the given parameters {c, k,, p and ¢}. The parameters 5 and B
are more sensitive to changes in o or k,, and the parameter / is more sensitive to

changes in ©.
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Figure 8. Parametric change of {3, B, 4} versus the relative change of {, k,, p, ¢}

in Case 3 of the moving boundary problem.
5.2.4. Case 4

In this case, we can observe that the parameters § and B behave in the same way
when we modify % or p. The restriction (R2) is verify until we increase a 0.75% the

parameters o, p and h. Figure 9 shows the relationship between the parameter
solutions {5, B and ¢} and the given parameters {c, k,, p and 4}. The parameter &
is more sensitive to changes in o; the parameter B is more sensitive to changes in k,

and o; and the parameter ¢ is more sensitive to changes in p.
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Figure 9. Parametric change of {8, B, ¢} versus the relative change of {c, k,, p, h}

in Case 4 of the moving boundary problem.
5.2.5.Case §

In this case, we can observe that the parameters 3, A and k, behave in the

opposite way when we modify ¢ or 4. Another remark is that in the system (S8) there
is no intervention of . Therefore, the parameters 8 and A remain constant when we
modify the values of o. Figure 10 shows the relationship between the parameter
solutions {5, k, and p} and the given parameters {c, B, ¢ and h}. The parameter &

is more sensitive to changes in B; the parameter k, is more sensitive to changes in

o; and the parameter p is more sensitive to changes in ¢ and 4.
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Figure 10. Parametric change of {5, k,, p} versus the relative change of {o, B, ¢, A}

in Case 5 of the moving boundary problem.
5.2.6. Case 6
We can observe that the parameters § and A behave in the same way when we

modify o, ¢ or p. Instead, the parameter k, behaves in the same way when we

modify ¢ or p (but not ). On the other hand, the parameter # behaves in the same

way when we modify ¢ or p (but not ¢). Figure 11 shows the relationship between
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the parameter solutions {3, k, and 4} and the given parameters {o, B, p and c}.

The parameter 6 is more sensitive to changes in 3, the parameter /4 is more sensitive

to changes in p and o, and the parameter &, is more sensitive to changes in G.
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Figure 11. Parametric change of {3, k,, 4} versus the relative change of {c, B, p, c}

in Case 6 of the moving boundary problem.
5.2.7. Case 7

In this case, we can observe that the parameters & and A behave in the same way
when we modify o, & or p. Instead, the parameter ¢ behaves in the same way when
we modify o or p (but not #). On the other hand, the parameter k, behaves in the

same way when we modify % or p (but not ). The restriction (R2) is limited to a

0.75% increase of the parameters o, p and 4, as in Case 4. Figure 12 shows the
relationship between the parameter solutions {5, k, and ¢} and the given parameters
{0, B, p and h}. The parameter 5 is more sensitive to changes in o, 4 and p; the
parameter ¢ is more sensitive to changes in p and o; the parameter k, is more

sensitive to changes in .
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Figure 12. Parametric change of {5, k,, ¢} versus the relative change of {, B, p, h}

in Case 7 of the moving boundary problem.
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5.2.8. Cases 8,9 and 10

In all these three cases, the system of equations that the parameters & and A must
verify is the same ((S11) in our cases). The only two parameters that appear in these
equations are k, and o; neither 4, ¢ or p are involved in (S11). This means that 3

and A maintain constant when we modify ¢ (in Case 8), / (in Case 9) or p (in Case
10). Figures 13, 14 and 15 show the relationship between the parameter solutions
and the other given parameters, in Cases 8, 9 and 10, respectively. The parameter 5
is more sensitive to changes in ¢ and k,; and the most influential parameters are o

and k,, for the rest of the given parameters.
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Figure 13. Parametric change of {5, p, /} versus the relative change of {o, B, k,, c}

in Case 8 of the moving boundary problem.
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Figure 14. Parametric change of {5, p, ¢} versus the relative change of {c, B, k,, h}

in Case 9 of the moving boundary problem.
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Figure 15. Parametric change of {5, c, h} versus the relative change of {o, B, &,, p}

in Case 10 of the moving boundary problem.
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