
J. Math. Anal. Appl. 379 (2011) 240–244
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Explicit solution for a Stefan problem with variable latent heat and
constant heat flux boundary conditions

Natalia Nieves Salva a,b, Domingo Alberto Tarzia b,c,∗
a TEMADI, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 San Carlos de Bariloche, Argentina
b CONICET, Argentina
c Departamento de Matemática, FCE, Universidad Austral, Paraguay 1950, S2000FZF Rosario, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 August 2010
Available online 24 December 2010
Submitted by Goong Chen

Keywords:
Stefan problem
Free boundary problem
Explicit solution
Similarity solution
Sediment delta

In Voller, Swenson and Paola [V.R. Voller, J.B. Swenson, C. Paola, An analytical solution
for a Stefan problem with variable latent heat, Int. J. Heat Mass Transfer 47 (2004)
5387–5390], and Lorenzo-Trueba and Voller [J. Lorenzo-Trueba, V.R. Voller, Analytical and
numerical solution of a generalized Stefan problem exhibiting two moving boundaries with
application to ocean delta formation, J. Math. Anal. Appl. 366 (2010) 538–549], a model
associated with the formation of sedimentary ocean deltas is studied through a one-phase
Stefan-like problem with variable latent heat. Motivated by these works, we consider
a two-phase Stefan problem with variable latent of fusion and initial temperature, and
constant heat flux boundary conditions. We obtain the sufficient condition on the data in
order to have an explicit solution of a similarity type of the corresponding free boundary
problem for a semi-infinite material. Moreover, the explicit solution given in the first
quoted paper can be recovered for a particular case by taking a null heat flux condition
at the infinity.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Problems of phase-change are often found in industrial processes [2,8,9,17,23]. In [28] a large bibliography on free bound-
ary problems (particularly regarding the Stefan problem) for the heat and diffusion equations was given.

The movement of sea coasts can be modeled by a generalized one-phase Stefan problem [16,32] where a constant heat
flux boundary condition at the fixed face and a linear latent heat of fusion of a semi-infinite material were considered.
Recently, similarity solutions for one- or two-phase problem are given in [7,12,13,15]. Other related references on the
subject are [19–21,25].

Motivated by the above problems we will consider the following free boundary problem for a semi-infinite material:
Find the temperatures T1(x, t), T2(x, t) and the moving melt interface s(t) such that they satisfy:

T1t(x, t) = α1T1xx(x, t), x > s(t), t > 0, (1)

T2t(x, t) = α2T2xx(x, t), 0 < x < s(t), t > 0, (2)

T1
(
s(t), t

) = 0, t > 0, (3)

T2
(
s(t), t

) = 0, t > 0, (4)
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k2T2x(0, t) = −q2, t > 0, (5)

s(0) = 0, (6)

k1T1x
(
s(t), t

) − k2T2x
(
s(t), t

) = γ s(t)s′(t), t > 0, (7)

k1T1x(+∞, t) = −q1, t > 0, (8)

T1(x,0) = −q1

k1
x, x > 0, (9)

where the solid (liquid) phase is represented by the subscript i = 1 (i = 2), ki is the thermal conductivity, ci is the heat
capacity, ρ is the common mass density, αi = √

ki/ρci is the diffusion coefficient, γ x is the variable latent heat of fusion
per unity of volume, qi is the constant heat flux boundary condition, and the melting temperature is zero. On the other
hand, s′(t) represents the velocity of the phase-change interface.

There exist explicit solutions to Stefan-like problems in some particular cases, e.g. [1,3–6,10,11,14,18,22,24,26,27,29–31,
33].

The goal of this paper is to obtain in Section 2 the sufficient conditions on the data in order to have an explicit solution
of a similarity type of the free boundary problem (1)–(9) for a semi-infinite material with variable latent heat of fusion and
constant heat flux boundary conditions. This explicit solution is given by (17)–(19). Moreover, the explicit solution given
in [32] can be recovered for a particular case of our explicit solution by taking a null heat flux condition at the infinity and
a null initial temperature.

2. Explicit solution for phase-change problems with linear latent heat of fusion

The following lemma is useful in order to find solutions for the differential equations (1) and (2).

Lemma 1.

a) Let

T (x, t) = 2
√

tη(ξ), with ξ = x

2
√

t
. (10)

Then T = T (x, t) is a solution of the heat equation Tt(x, t) = αTxx(x, t) (α > 0) if and only if η = η(ξ) is solution of the ordinary
differential equation

α

2
η′′(ξ) + ξη′(ξ) − η(ξ) = 0. (11)

b) The solution of the ordinary differential equation (11) is given by:

η(ξ) = −c1

[
e− ξ2

α +
√

π

α
ξ erf

(
ξ√
α

)]
+ c2ξ (12)

where c1 and c2 are arbitrary real constants.

Proof. a) We have:

Tx(x, t) = η′(ξ), Txx(x, t) = 1

2
√

t
η′′(ξ), Tt(x, t) = 1√

t

(
η(ξ) − ξη′(ξ)

)
,

and therefore, we get the following equivalence:

Tt(x, t) = αTxx(x, t) ⇔ 1√
t

(
η(ξ) − ξη′(ξ)

) = α

2
√

t
η′′(ξ)

⇔ α

2
η′′(ξ) + ξη′(ξ) − η(ξ) = 0. (13)

b) Taking into account that η(ξ) = ξ is a solution of the ordinary differential equation (11) we define η(ξ) = ξμ(ξ).
Derivating with respect to ξ , we have

η′(ξ) = μ(ξ) + ξμ′(ξ), η′′(ξ) = ξμ′′(ξ) + 2μ′(ξ), (14)

and replacing (14) in the ordinary differential equation (11) we obtain

α
ξμ′′(ξ) + (

α + ξ2)μ′(ξ) = 0. (15)

2
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This ordinary differential equation can be solved by the method of separation of variables, i.e., μ′(ξ) = c1
ξ2 e− ξ2

ν , where

c1 is an arbitrary real constant. By a new integration we obtain that μ(ξ) is given by:

μ(ξ) = −c1

[
e− ξ2

α

ξ
+

√
π

α
erf

(
ξ√
α

)]
+ c2 (16)

where c2 is another arbitrary real constant. Multiplying (16) by ξ we obtain the solution η(ξ) given by (12). �
Now, we can give our main result:

Theorem. If 0 < q1 < q2 then there exists a unique solution of the two-phase Stefan problem (1)–(9) which is given by:

T1(x, t) = −c11

[
2
√

te
− x2

4tα1 +
√

π

α1
x erf

(
x

2
√

α1t

)]
+ c12x, for x > s(t), t > 0, (17)

T2(x, t) = −c21

[
2
√

te
− x2

4tα2 +
√

π

α2
x erf

(
x

2
√

α2t

)]
+ c22x, for 0 < x < s(t), t > 0, (18)

s(t) = 2λ
√

α1t, t > 0, (19)

where the constants ci j (i, j = 1,2) are given by

c11 = −q1

k1

λ
√

α1

(e−λ2 − λ
√

π erfc(λ))
, (20)

c12 = −q1

k1

[
1 + λ

√
π

(e−λ2 − λ
√

π erfc(λ))

]
, (21)

c21 = −q2

k2

λ
√

α1

(e−(α12λ)2 + λα12
√

πerf (λα12))
, (22)

c22 = −q2

k2
(23)

and the dimensionless coefficient λ is the unique positive solution of the equation:

q1
1

1 − √
πλeλ2 erfc(λ)

+ 2α1γ λ2 = q2
1

1 + √
π(α12λ)e(α12λ)2 erf (α12λ)

, λ > 0 (24)

with α12 being a dimensionless parameter defined by:

α12 =
√

α1

α2
> 0. (25)

Proof. Setting ηi(ξ) = Ti(x,t)
2
√

t
for i = 1,2, and using the previous Lemma 1, the heat equations (1) and (2) have the following

solution:

η1(ξ) = −c11

[
e
− ξ2

α1 +
√

π

α1
ξ erf

(
ξ√
α1

)]
+ c12ξ, if ξ ∈ (λ,+∞), (26)

η2(ξ) = −c21

[
e
− ξ2

α2 +
√

π

α2
ξ erf

(
ξ√
α2

)]
+ c22ξ, if ξ ∈ (0, λ), (27)

where c11, c12, c21, c22 are unknown constants to be determined. Conditions (3) and (4) are satisfied if and only if

η1(λ
√

α1 ) = 0, η2(λ
√

α1 ) = 0. (28)

Condition (5) is equivalent to

c22 = −q2

k2
. (29)

As T1x (x, t) = η′
1(ξ), by using expression (26) in the condition (8), we have:

lim
x→+∞ T1x(x, t) = lim

ξ→+∞η′
1(ξ) = lim

ξ→+∞

[
−c11

√
π

α1
erf

(
ξ√
α1

)
+ c12

]

= −c11

√
π + c12 = −q1

. (30)

α1 k1
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From conditions (28)–(30) we can obtain c11, c12, c21, c22 as functions of λ, arriving to expressions (20)–(23).
From condition (7), we deduce that the unknown coefficient λ must satisfy Eq. (24). Taking into account that Tix(s(t), t) =

η′
i(λ

√
α1 ) for i = 1,2, the condition (7) is satisfied if and only if:

k1η
′
1(λ

√
α1 ) − k2η

′
2(λ

√
α1 ) = 2α1γ λ2

⇔ −c11k1

√
π

α1
erf (λ) + c12k1 + c21k2

√
π

α2
erf (α12λ) − c22k2 = 2α1γ λ2. (31)

Replacing the constants c11, c12, c21, c22 for the expressions given by (20)–(23) in Eq. (31), we arrive to Eq. (24) which is
equivalent to the following equation:

R1(λ) = R2(α12λ), λ > 0. (32)

where the functions R1 and R2 are defined by:

R1(x) = 2α1γ x2 + q1
1

1 − √
πx exp(x2) erfc(x)

, x > 0, (33)

R2(x) = q2
1

1 + √
πx exp(x2) erf (x)

, x > 0 (34)

which have the following properties:

R1(0) = q1, R1(+∞) = +∞, R ′
1(x) > 0, ∀x > 0, (35)

R2(0) = q2, R2(+∞) = 0, R ′
2(x) < 0, ∀x > 0. (36)

Therefore, R1 is a strictly increasing function and R2 is a strictly decreasing function and by using the properties (35)
and (36) we obtain that if q1 < q2 then there exists a unique solution of Eq. (32); then the explicit solution to the free
boundary problem (1)–(9) is given by (17)–(19). �
Remark 1. In our problem, the heat flux boundary condition (8) is equivalent to assume that the initial temperature of the
solid phase is a linear function of the spatial variable x.

The solution of the free boundary problem solved in [32] can be recovered as a particular solution given in the previous
theorem as follows:

Lemma 2. The solution of the free boundary problem (1)–(9) for the particular case q1 = 0 (null heat flux condition at x = +∞ and
null initial temperature) and q2 > 0 is given by:

T2(x, t) = q2

k2
s(t)

[
Q 2(λα12)

Q 2(
x

2
√

α2t
)

− x

s(t)

]
, 0 < x < s(t), t > 0, (37)

T1(x, t) = 0, x > s(t), t > 0, (38)

s(t) = 2λ
√

α1t, t > 0 (39)

where the dimensionless coefficient λ > 0 is the unique solution of the equation:

2γ α1 P1(λ) = q2 P2(α12λ), λ > 0 (40)

where

P1(x) = x2, P2(x) = 1

1 + √
πx exp(x2) erf (x)

, Q 2(x) = P2(x)exp
(
x2). (41)

Proof. It is sufficient to compute the solution (17)–(24) for the particular case q1 = 0. �
Remark 2. The particular solution given by Lemma 2 is exactly the solution given in [32] by taking into account that λ,ν
and q̄ in [32] are given by λ

√
α1,α2 and q2 respectively with ρc2 = 1 in our solution (37)–(40).

Acknowledgments

This work was supported by the Projects PIP No. 0460 of CONICET-UA and PICTO Austral No. 73 (Rosario, Argentina), and Grant FA9550-10-1-0023.



244 N.N. Salva, D.A. Tarzia / J. Math. Anal. Appl. 379 (2011) 240–244
References

[1] D.V. Alexandrov, A.P. Malygin, Self-similar solidification of an alloy from a cooled boundary, Int. J. Heat Mass Transfer 49 (2006) 763–769.
[2] V. Alexiades, A.D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere–Taylor & Francis, Washington, 1983.
[3] A.C. Briozzo, M.F. Natale, D.A. Tarzia, Explicit solutions for a two-phase unidimensional Lamé–Clapeyron–Stefan problem with source terms in both

phases, J. Math. Anal. Appl. 329 (2007) 145–162.
[4] A.C. Briozzo, M.F. Natale, D.A. Tarzia, Existence of an exact solution for a one-phase Stefan problem with nonlinear thermal coefficients from Tirskii’s

method, Nonlinear Anal. 67 (2007) 1989–1998.
[5] A.C. Briozzo, M.F. Natale, D.A. Tarzia, The Stefan problem with temperature-dependent thermal conductivity and a convective term with a convective

condition at the fixed face, Commun. Pure Appl. Anal. 9 (2010) 1209–1220.
[6] P. Broadbridge, Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media, J. Math. Phys. 29 (1988) 622–627.
[7] H. Capart, M. Bellal, D.L. Young, Self-similar evolution of semi-infinite alluvial channels with moving boundaries, J. Sedimentary Res. 77 (2007) 13–22.
[8] J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
[9] S.C. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis, Elsevier, Amsterdam, 2003.

[10] S. Howison, Similarity solutions to the Stefan problem and the binary alloy problem, IMA J. Appl. Math. 40 (1988) 147–161.
[11] S. Howison, J.R. King, Explicit solutions to six free-boundary problems in fluid flow and diffusion, IMA J. Appl. Math. 42 (1989) 155–175.
[12] S.Y.J. Lai, H. Capart, Two-diffusion description of hyperpycnal deltas, J. Geophys. Res. 112 (2007) 1–20.
[13] S.Y.J. Lai, H. Capart, Reservoir infill by hyperpycnal deltas over bedrock, Geophys. Res. Lett. 36 (2009) L08402, doi:10.1029/2008GL037139.
[14] G. Lamé, B.P. Clapeyron, Mémoire sur la solidification par refroidissement d’un globe liquide, Ann. Chimie Phys. 47 (1831) 250–256.
[15] J. Lorenzo-Trueba, V.R. Voller, T. Muto, W. Kim, C. Paola, J.B. Swenson, A similarity solution of a duel moving boundary problem associated with a

coastal-plain depositional system, J. Fluid Mech. 628 (2009) 427–443.
[16] J. Lorenzo-Trueba, V.R. Voller, Analytical and numerical solution of a generalized Stefan problem exhibiting two moving boundaries with application to

ocean delta formation, J. Math. Anal. Appl. 366 (2010) 538–549.
[17] V.J. Lunardini, Heat Transfer with Freezing and Thawing, Elsevier, Amsterdam, 1991.
[18] M.F. Natale, E.A. Santillan Marcus, D.A. Tarzia, Explicit solutions for one dimensional two-phase free boundary problems with either shrinkage or

expansion, Nonlinear Anal. Real World Appl. 11 (2010) 1946–1952.
[19] S. Patnaik, V.R. Voller, G. Parker, A. Frascati, Morphology of a melt front under a condition of spatial varying latent heat, Int. Comm. Heat Mass

Transfer 36 (2009) 535–538.
[20] M. Primicerio, Stefan-like problems with space-dependent latent heat, Meccanica 5 (1970) 187–190.
[21] K. Rajeev, N. Rai, S. Das, Numerical solution of a moving-boundary problem with variable latent heat, Int. J. Heat Mass Transfer 52 (2009) 1913–1917.
[22] C. Rogers, P. Broadbridge, On a nonlinear moving boundary problem with heterogeneity: application of reciprocal transformation, J. Appl. Math. Phys.

(Z. Angew. Math. Phys.) 39 (1988) 122–129.
[23] L. Rubinstein, The Stefan Problem, Transl. Math. Monogr., vol. 27, Amer. Math. Soc., Providence, 1971.
[24] A.D. Solomon, D.G. Wilson, V. Alexiades, Explicit solutions phase change problems, Quart. Appl. Math. 41 (1983) 237–243.
[25] J.B. Swenson, V.R. Voller, C. Paola, G. Parker, J.G. Marr, Fluvio-deltaic sedimentation: A generalized Stefan problem, European J. Appl. Math. 11 (2000)

433–452.
[26] D.A. Tarzia, An inequality for the coefficient σ of the free boundary s(t) = 2σ

√
t of the Neumann solution for the two-phase Stefan problem, Quart.

Appl. Math. 39 (1981–1982) 491–497.
[27] D.A. Tarzia, Soluciones exactas del problema de Stefan unidimensional, Cuadern. Inst. Mat. Beppo Levi 12 (1984) 5–36.
[28] D.A. Tarzia, A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems, in: MAT Ser. A, vol. 2,

2000, pp. 1–297 (with 5869 titles on the subject). Available from http://web.austral.edu.ar/descargas/facultad-cienciasEmpresariales/mat/Tarzia-MAT-
SerieA-2(2000).pdf.

[29] D.A. Tarzia, An explicit solution for a two-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, in: MAT Ser. A,
vol. 8, 2004, pp. 21–27.

[30] D.A. Tarzia, Explicit and approximated solutions for heat and mass transfer problems with a moving interface, in: Mohamed El-Amin (Ed.), Mass
Transfer, Intech, ISBN 978-953-7619-X-X, 2011, in press.

[31] V.R. Voller, A similarity solution for solidification of an under-cooled binary alloy, Int. J. Heat Mass Transfer 49 (2006) 1981–1985.
[32] V.R. Voller, J.B. Swenson, C. Paola, An analytical solution for a Stefan problem with variable latent heat, Int. J. Heat Mass Transfer 47 (2004) 5387–5390.
[33] S.M. Zubair, M.A. Chaudhry, Exact solutions of solid–liquid phase-change heat transfer when subjected to convective boundary conditions, Warme-und

Stoffubertragung 30 (1994) 77–81 (now Heat Mass Transfer).

http://dx.doi.org/10.1029/2008GL037139
http://web.austral.edu.ar/descargas/facultad-cienciasEmpresariales/mat/Tarzia-MAT-SerieA-2(2000).pdf
http://web.austral.edu.ar/descargas/facultad-cienciasEmpresariales/mat/Tarzia-MAT-SerieA-2(2000).pdf

	Explicit solution for a Stefan problem with variable latent heat and constant heat ﬂux boundary conditions
	Introduction
	Explicit solution for phase-change problems with linear latent heat of fusion
	Acknowledgments
	References


