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In Tarzia, Int. Comm. in Heat and Mass Transfer, 25 (1998), 139–147, explicit formulas for the simultaneous
determination of unknown thermal coefficients of a semi-infinite material through a phase-change process
with temperature-dependent thermal conductivity were obtained. Moreover, ten different cases were
studied: four cases of free boundary problems (i.e. Stefan-like problems) and six cases of moving boundary
problems (i.e. inverse Stefan-like problems).
The goal of this paper is to obtain a numerical sensitivity analysis of the mentioned ten cases for the
simultaneous determination of unknown thermal coefficients and to determine the coefficients which are
more sensitive with respect to the given parameters. We show numerical result for the aluminum.
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1. Introduction

Heat transfer problems with a phase-change such as melting and
freezing have been studied in the last century due to their wide
scientific and technological applications. A review of a long bibliog-
raphy on moving and free boundary problems for phase-change
materials (PCM) for the heat equation is shown in [16].

We consider the following solidification problem for a semi-
infinite material with an over specified condition on the fixed face
x=0 [1,3,4,7]:

iÞ ρcTt x; tð Þ = k Tð ÞTx x; tð Þð Þx ; 0 b x b s tð Þ; t N 0

iiÞ T 0; tð Þ = TobTf ; t N 0

iiiÞ k Toð ÞTx 0; tð Þ = qoffiffi
t

p ; t N 0 ; qo N 0

ivÞ T s tð Þ; tð Þ = Tf ; t N 0

vÞ k Tf
� �

Tx s tð Þ; tð Þ = ρhṡ tð Þ; t N 0

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

where T(x,t) is the temperature of the solid phase, ρN0 is the density
of mass, hN0 is the latent heat of fusion by unity of mass, cN0 is the
specific heat, x=s(t) is the phase-change interface, Tf is the phase-
change temperature, To is the temperature at the fixed face x=0 and
qo is the coefficient that characterizes the heat flux at x=0 given by
Eq. (1iii), which must be obtained experimentally through a phase-
change process [2]. We suppose that the thermal conductivity has the
following expression [5]:

k = k Tð Þ = ko 1 + β T−Toð Þ= Tf−To
� �h i

; β∈R: ð2Þ

Let αo=ko /ρc be the coefficient of the diffusivity at the
temperature To. We observe that if β=0, the problem (1) becomes
the classical one-phase Lamé-Clapeyron-Stefan problem with an
overspecified condition at the fixed face x=0, and for this problem
the corresponding simultaneous determination of thermal coeffi-
cients was studied in [13,14]. The phase-change process with
temperature-dependent thermal coefficient of the type (2) was firstly
studied in [5]. Other papers related to determination of thermal
coefficients are [8,10,11,17–20].

The solution to problem (1) is given by [5,15]:

iÞ T x; tð Þ = To +
Tf−To

� �
Φ λð Þ Φ ηð Þ; η =

x
2

ffiffiffiffiffiffiffiffi
αot

p ; 0 b η b λ

iiÞ s tð Þ = 2λ
ffiffiffiffiffiffiffiffi
αot

p

8>><
>>:

ð3Þ

where Φ=Φ(x)=Φδ(x) is the modified error function, for a given
δN-1, the unique solution to the following boundary value problem in
variable x, i.e:

iÞ 1 + δ Φ′ xð Þð ÞΦ′ xð Þ½ �′ + 2xΦ′ xð Þ = 0 ; x N 0;
iiÞ Φ 0þ� �

= 0 ; Φ + ∞ð Þ = 1

�
ð4Þ
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Nomenclature

c Specific heat, J/ (kg°C)
h Latent heat of fusion by unit of mass, J/kg
k Thermal conductivity, W/(m°C)
qo Coefficient that characterizes the heat flux at x=0, kg/

s5/2

s Position of the free or moving front, m
Ste The Stefan number defined by Eq. (9), dimensionless
t Time, s
T Temperature, °C
x Spatial coordinate, m

Greek symbols
α Diffusivity coefficient, m2/s
β Coefficient that characterizes the thermal conductivity

in Eq. (2), dimensionless
δ Coefficient that characterizes the differential Eq. (4i),

dimensionless
η Similarity variable defined by Eq. (3), dimensionless
λ Coefficient that characterizes the free boundary in Eq.

(3ii), dimensionless
ρ Density, kg/m3

σ Coefficient that characterizes the moving boundary in
Eq. (3iibis), m/s1/2

Subscripts
f Fusion
o Initial in time or in space
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and the unknown thermal coefficients must satisfy the following
system of equations [15]:

β−δ Φ λð Þ = 0 ð5Þ

1 + δ Φ λð Þ½ � Φ′ λð Þ
λ Φ λð Þ−

2h

c Tf−To
� � = 0 ð6Þ

Φ′ 0ð Þ
Φ λð Þ −

2qo
Tf−To

� � ffiffiffiffiffiffiffiffiffiffi
koρc

p = 0: ð7Þ

For the particular case δ=0 we have thatΦ(x)=erf(x) is the error
function, which is defined by:

erf xð Þ = 2ffiffiffi
π

p ∫x

0
e−u2 du: ð8Þ
Table 1
Left and right normalized sensitivities in the four cases of free boundary problems.

Case number Unknown Coefficients δ ko

1 λ 0.008 0.008 – –

β 1.01 1.01 – –

ko −0.015 −0.015 – –

2 λ 0.008 0.008 0 0
β 1.01 1.01 0 0
ρ −0.015 −0.015 −1.01 −0

3 λ 0.016 0.016 0.52 0
β 1.02 1.02 0.5 0
h −0.016 −0.016 −1.1 −1

4 λ −0.084 −0.084 −5.85 −6
β 0.92 0.92 −5.52 −5
c −0.19 −0.19 −12.4 −12
We remark that if problem (1) is a free boundary problem (this case
can be considered as a Stefan problem) with an overspecified condition
on the fixed face x=0, then the coefficient λN0 is an unknown
coefficient. On the other hand, if problem (1) is a moving boundary
problem (this case canbe considered as an inverse Stefan problem)with
anoverspecified conditionon thefixed facex=0, then thephase-change
interface will be given by

s tð Þ = 2σ
ffiffi
t

p
ð3iibisÞ

where σ must be obtained experimentally (σ = λ
ffiffiffiffiffiffi
αo

p
) through a

phase-change process [2,14].
When the coefficient δ=0, the corresponding determination of

formulas for one or two unknown thermal coefficients were obtained in
[13,14] and the numerical-experimental determinationwas given in [2].
When the coefficient δ≠0 is given, the corresponding problem was
analyzed in [15]; in this case, the necessary and sufficient conditions on
the data were obtained in order to ensure the existence of the solution.

The goal of thepresentpaper is tomake the sensitivity analysis of the
free and moving boundary problems, analyzed in [15]. For a one-phase
Stefan problem, the temperature T(x,t), the free boundary interface s(t)
(i.e. the coefficient λ, defined in Eq. (3ii), is also anunknown coefficient)
and the following parameters in four different cases:
.9
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−12.1
ii) λ, β, ρ
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0.48 0
0.46 0
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0.48 0
0.46 0
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– –

−5.85 −6
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−11.3 −11
iii) λ, β, h
h

.48 −0.48

.46 −0.46

.081 −0.92

.48 −0.48

.45 −0.46

.081 −0.92
0.52
0.5

−0.089
.08 –

.78 –

.2 –
iv) λ, β, c,
were determined in [15]. For a one-phase inverse Stefan problem (i.e.
the interface s(t) is given by Eq. (3iibis) for a given σN0), the
temperature T(x,t) and the following parameters in six cases:
MB:
 i) β, ko , ρ
 ii) β, ko , c
 iii) β, ko , h
 iv) β, ρ, c v) β, ρ, h vi) β, c, h,
were also determined in [15].
The explicit formulas corresponding to the ten cases for the

unknown thermal coefficients were summarized in [15] (see Table 1).
For cases FB (iii and iv) and MB (ii, iv, v and vi) the data must satisfy
certain restrictions in order to obtain the solution of the
corresponding thermal problem. These restrictions, called R1, R2,
R3 and R4 in [15], are the following:

Tf−To
� �

Φ′ 0ð Þ
2qo

ffiffiffiffiffiffiffiffiffiffi
koρc

q
b 1 ðR1Þ

Tf−To
� �

koρh

2q2o
b1 ðR2Þ

ρσh
qo

b1 ðR3Þ
−0.48
−0.46
−0.9
−0.48
−0.45
−0.9

0.52
0.49

−0.088
–

–

–



Fig. 1. Parametric change of {λ, β, ko} versus the relative change of {δ, ρ, c, h} in Case 1 of the free boundary problem.
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Tf−To
� �

ko
2σqo

b1: ðR4Þ

2. Sensitivity analysis

Weuse the free software SCILAB for the numerical analysis. For each
case, first we have to determine the solution to the corresponding
system of equations. We use the command bvodeS to solve the
differential problem (4), which allows us to evaluate the modified
error function at the necessary points for a given δN−1. To find the
solution to the different equations we minimize the absolute value,
using the Levenberg-Marquardt algorithm. Secondly, using the approx-
imately solution, we evaluate the unknown thermal coefficients.

In each case, we use the corresponding data, from the following set
of values that satisfy Eq. (5)–(7). The data corresponding to aluminum
near its melting point are:
β=0.0318778
 δ=0.1177546
Fig. 2. Paramet
λ=0.2433491
ric change of {β, λ, ρ} v
ko=293,1882
W/m °C
c=783.6192
J/kg °C
ρ=2698.4
kg/m3
h=388000
J/kg
qo=3179226.8
kg/s5/2
Tf=660 °C
 To=600 °C
 σ=0.0028655
m/s1/2
In order to determine the influence of known parameters over
unknown coefficients, we define the normalized sensitivity by the
following expression [12]:

S p; qið Þ = qi
p

∂p
∂qi

� 	
ð9Þ
ersus the relative chan
where p is a particular solution parameter (e.g., the dimensionless
parameters β or λ, or the initial thermal conductivity ko in Case 1 of
the free boundary problems), qi is one of the given parameters (e.g, δ ,
ρ, c, h in Case 1). Thanks to its dimensionless nature, we can compare
the sensitivity of parameters of different magnitude. The normalized
sensitivity indicates the percentage change on the value of the
parameter p, when the variable qi increases or decreases 1% of its
value [6,9]. We will approximate S(p,qi) by the following way:

S p; qið Þþ≈ qi
p qð Þ :

p q̂ þ� �
−p qð Þ

q̂
þ
i −qi

right normalized sensitivity

S p; qið Þ−≈ qi
p qð Þ :

p q̂
−� �

−p qð Þ
q̂

−
i −qi

left normalized sensitivity

ð10Þ

where q is the vector (q1,........qi,........), p(q)=p(q1,.....qi,.....)and

q̂
þ
j = qj; j≠ i and q̂

þ
i = qi + εjqij

q̂
−
j = qj; j≠ i and q̂

−
i = qi − εjqij

ð11Þ

and ε=0.01. Here the right normalized sensitivity represents the
change on the parameter pwhen qi increases a 1% of its value, and the
left normalized sensitivity represents the change on the parameter p
when qi decreases 1%.

2.1. Determination of coefficients through a free boundary problem

We have analyzed the relationship between the solution of each
case and the different parameters. Table 1 shows the right and the left
normalized sensitivities, in each case, taking ε=0.01. If the sensitivity
ge of {δ, ko , c, h} in Case 2 of the free boundary problem.

image of Fig.�2


Fig. 3. Parametric change of {λ, β, h} versus the relative change of {δ, ko, ρ, c} in Case 3 of the free boundary problem.
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is negative, it means that the parameter p is decreasingwith respect to
qi, and if it is positive, it means that the parameter p is increasing with
respect to qi.

2.1.1. Case 1 and 2
These two cases are analyzed together, becausewhenwemodify the

parameters δ, c or h, the corresponding λ and β are the same for both
cases. This can be explained observing that the equations to be solved for
λ and β are the same in both cases. Another remark is that the
parameters ko or ρ do not appear explicitly in the equation for λ or β,
therefore, these parameters remain constantwhenwemodify the values
of ko or ρ. Figs. 1 and 2 show the relationship between the parameter
solutions and the given parameters {δ, ko, ρ, c and h} in Cases 1 and 2,
respectively. The parameter λ is more sensitive to changes in h, the
parameter β is more sensitive to changes in δ, and the parameters ko and
ρ are more sensitive to changes in ρ and ko , respectively.

2.1.2. Case 3
We can observe that the parameters λ and β behave in the same

way when we modify ko, ρ or c. Fig. 3 shows the relationship between
the parameter solutions {λ, β, h} and the given parameters {δ, ko , ρ
and c}. The parameter λ is more sensitive to changes in ko , ρ and c, the
parameter β is more sensitive to changes in δ, and h is more sensitive
to changes in ρ and ko .

2.1.3. Case 4
Wecan observe that the parameters λ andβ behave in the sameway

when we modify ko, ρ or h. Fig. 4 shows the relationship between the
parameter solutions {λ, β, c} and the given parameters {δ, ko, ρ and h}.
The parameters λ and β aremore sensitive to changes in ko, ρ and h; and
the parameter c is more sensitive to changes in ρ and ko. The restriction
R2 was satisfied up to a 9.75% increase in the parameters ko , ρ or h.
Fig. 4. Parametric change of {λ, β, c} versus the relative chang
2.2. Determination of coefficients through a moving boundary problem

We have analyzed the relationship between the solution of each
case and the different parameters. Table 2 shows the right and left
normalized sensitivities, in each case, taking ε=0.01.

2.2.1. Case 1
In this case,we can observe that the parameters λ,β and kobehave in

the opposite way when we modify c or h. Another remark is that in the
equations for λ and β there is no intervention of σ, therefore these
parameters remain constant when we modify the values of σ. Fig. 5
shows the relationship between the parameter solutions {β, ko and ρ}
and the given parameters {δ, σ, c and h}. The parameter β is more
sensitive to changes in δ; the parameter ko is more sensitive to changes
in σ; and the parameter ρ is more sensitive to changes in σ and h.

2.2.2. Case 2
In this case, we can observe that the parameters λ andβ behave in the

samewaywhenwemodify σ, ρ or h. Instead, the parameter c behaves in
the samewaywhenwemodify σ or ρ (but not h). On the other hand, the
parameter kobehaves in the samewaywhenwemodifyhorρ (butnotσ).
Fig. 6 shows the relationship between the parameter solutions {β, ko, c}
and the given parameters {δ,σ, ρ, h}. The parameter β ismore sensitive to
changes in σ, ρ and h; the parameter ko is more sensitive to changes in σ;
and theparameter c ismore sensitive to changes inσandρ. The restriction
R3 was satisfied up to a 5.97% increase in the parameters σ, ρ or h.

2.2.3. Case 3
We can observe that the parameters λ and β behave in the same

way when we modify σ, c or ρ. Instead, the parameter ko behaves in
the same way when we modify c or ρ (but not σ). On the other hand,
the parameter h behaves in the samewaywhenwemodify σ or ρ (but
e of {δ, ko, ρ, h} in Case 4 of the free boundary problem.

image of Fig.�3
image of Fig.�4


Table 2
Left and right normalized sensitivities in the six cases of moving boundary problems.

Case N° Unknown Coeff. δ σ ko ρ c H

1 β 1.01 1.01 0 0 – – – – 0.46 0.45 −0.46 −0.45
ko −0.015 −0.015 1 1 – – – – −0.026 −0.025 0.025 0.025
ρ 2.9⁎10−4 2.9⁎10−4 −1.01 −0.99 – – – – −0.056 −0.055 −0.95 −0.93

2 β 1.01 1.01 −7.92 −8.63 – – −7.92 −8.63 – – −7.92 −8.63
ko −0.016 −0.016 1.45 1.47 − − 0.45 0.46 − − 0.45 0.46
c 0.0052 0.0052 −18.1 −17.7 – – −18.1 −17.7 – – −17 −16.9

3 β 1.01 1.01 0.48 0.48 – – 0.48 0.48 0.48 0.48 – –

ko −0.015 −0.015 0.97 0.97 – – −0.027 −0.027 −0.027 −0.027 – –

h 3.1⁎10−4 3.1⁎10−4 −1.07 −1.04 – – −1.07 −1.04 −0.059 −0.059 – –

4 β 0.73 0.72 19.5 16.6 −16.8 −19.3 – – – – 0 0
ρ 0.034 0.034 −3.15 −3.16 2.22 2.1 – – – – −1 −0.99
c −0.61 −0.6 37.2 40.5 −41 −36.9 – – – – 0.99 1

5 β 0.73 0.72 19.5 16.6 −16.8 −19.3 – – 0 0 – –

ρ −0.58 −0.57 35.2 36.1 −37.8 −35.5 – – −1 −0.99 – –

h 0.61 0.61 −59.4 −28.8 29.1 58.5 – – 1 1 – –

6 β 0.73 0.72 19.5 16.6 −16.8 −19.3 0 0 – – – –

c −0.58 −0.57 35.2 36.1 −37.8 −35.5 −1 −0.99 – – – –

h 0.034 0.034 −3.15 −3.16 2.22 2.1 −1 −0.99 – – – –
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not c). Fig. 7 shows the relationship between the parameter solutions
{β, ko and h} and the given parameters {δ, σ, ρ and c}. The parameter β
is more sensitive to changes in δ; the parameter ko is more sensitive to
changes in σ; and the parameter h is more sensitive to changes in ρ
and σ. The restriction R4 was satisfied up to a 3.57% increase in the
initial thermal conductivity ko, and up to a 3.45% decrease in the
parameter σ.

2.2.4. Case 4, 5 and 6
In all these three cases, the equations for the parameters λ and β

are the same. The only three parameters that appear at these
equations are δ, σ and ko; neither h, c or ρ are involved in the
Fig. 5. Parametric change of {β, ko, ρ} versus the relative chang

Fig. 6. Parametric change of {β, ko, c} versus the relative chang
equation for λ or β. This means that λ and β maintain constant when
wemodify c (in Case 4), h (in Case 5) or ρ (in Case 6). Figs. 8–10 show
the relationship between the parameter solutions and the other given
parameters, in Cases 4, 5 and 6, respectively. The parameter β is more
sensitive to changes in σ and ko; and the most influential parameters
are σ and ko, for the rest of the given parameters.
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e of {δ, σ, c, h} in Case 1 of the moving boundary problem.

e of {δ, σ, ρ, h} in Case 2 of the moving boundary problem.
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Fig. 7. Parametric change of {β, ko, h} versus the relative change of {δ, σ, ρ, c} in Case 3 of the moving boundary problem.

Fig. 8. Parametric change of {β, ρ, c} versus the relative change of {δ, σ, ko, h} in Case 4 of the moving boundary problem.

Fig. 9. Parametric change of {β, ρ, h} versus the relative change of {δ, σ, ko, c} in Case 5 of the moving boundary problem.

Fig. 10. Parametric change of {β, c, h} versus the relative change of {δ, σ, ko, ρ} in Case 6 of the moving boundary problem.
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