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The phase-change processes are found in a wide variety of dynamic systems, for example in the 
study of snow avalanches. When a thermal property of the material is unknown, we can add a 
boundary condition to formulate an Inverse Stefan Problem, and determine this property. In this 
paper we study a heat conduction phase-change problem with Robin and Neumann boundary 
condition at a fixed face. This overspecified condition allows to simultaneously determine two 
unknown thermal coefficients through a moving boundary problem or a free boundary problem. 
Formulae for different cases where obtained by Ceretani and Tarzia (2015) [6]. The formulation 
with these type of boundary conditions is a more realistic one than the heat conduction phase-

change problems with Dirichlet and Neumann boundary condition at the fixed face, considered 
by Tarzia, (1982-1983). Therefore we propose to study the relationship between the problems 
with Robin-Neumann conditions, and the problems with Dirichlet-Neumann conditions. The 
main result of this work is the convergence analysis of these problems, when the heat transfer 
coefficient ℎ of the Robin condition is very large. We present for each case of the free and moving 
boundary problems, an upper bound for the error of the two unknown parameters, obtaining in 
every case a bound of order 𝑜( 1

ℎ
). Finally we show a numerical example of the convergence, for a 

phase change material commonly used in heating or cooling processes.

1. Introduction

The phase-change processes occur when a material changes of phase, for example, from liquid to solid. They are presented in a 
wide variety of dynamic systems: in the solidification process in the metal industry [11,3,12], in building applications [25] or in the 
study of snow avalanches [1,4,17]. The heat conduction problems with phase change are called Stefan Problems. When the initial and 
boundary conditions, as well as the thermal properties of the material, are known, we have a Direct Stefan Problems, which involves 
solving the temperature and the moving free surface (for free boundary problems), or only the temperature, when the moving surface 
is already known (moving boundary problems). In contrast, when we need to determine some initial temperature and/or boundary 
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conditions, and/or thermal properties from additional information, we have an Inverse Stefan Problem [13]. For example, in the 
process of ironmaking, a one-dimensional inverse Stefan problem is defined, where the phase-change surface is identified, based on 
data from internal measurement of temperature and heat flux [11]. We refer the reader to [7,23] and the references therein for a 
recent survey in applications in Stefan problems.

In this article we study a phase-change process modeling the solidification of an homogeneous material, with Robin and Neumann 
(or flux) condition at the fixed face 𝑥 = 0. We consider the following problem with an overspecified condition:

(1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜌𝑐𝑇𝑡(𝑥, 𝑡) = 𝑘𝑇𝑥𝑥(𝑥, 𝑡), 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0, (1a)

𝑠(0) = 0, (1b)

𝑇 (𝑠(𝑡), 𝑡) = 𝑇𝑓 , 𝑡 > 0, (1c)

𝑘𝑇𝑥(𝑠(𝑡), 𝑡) = 𝜌𝑙�̇�(𝑡), 𝑡 > 0, (1d)

𝑘𝑇𝑥(0, 𝑡) =
ℎ√
𝑡
(𝑇 (0, 𝑡) − 𝑇0), 𝑡 > 0, (1e)

𝑘𝑇𝑥(0, 𝑡) =
𝑞√
𝑡
, 𝑡 > 0, (1f)

where 𝑇 (𝑥, 𝑡) is the temperature of the solid phase, 𝑘 > 0 is the thermal conductivity, 𝜌 > 0 is the density of mass, 𝑙 > 0 is the latent 
heat of fusion by unity of mass, 𝑐 > 0 is the specific heat, 𝑥 = 𝑠(𝑡) is the phase-change interface, 𝑇𝑓 is the phase-change temperature, 
𝑇0 is the external temperature at the fixed face 𝑥 = 0 (𝑇0 < 𝑇𝑓 ), ℎ is the coefficient that characterizes the heat transfer at 𝑥 = 0 for 
the Robin condition (1e), and 𝑞 is the coefficient that characterizes the heat flux at 𝑥 = 0 given by (1f) which must be obtained 
experimentally through a phase-change process. The thermal parameters mentioned before are all positive constant.

This Stefan problem, with an overspecified condition at the fixed face 𝑥 = 0, allows us to determine some thermal coefficients. For 
the free boundary problems, considering a similarity solution, the phase-change interface 𝑠(𝑡) is assumed to be proportional to 

√
𝑡, 

e.g. 𝑠(𝑡) = 2𝜆
√

𝛼𝑡, where 𝛼 is the diffusion coefficient and 𝜆 is an unknown parameter that should be determine as part of the solution 
[8]. We can formulate free boundary problems, stating four different cases, which consist in the determination of 𝜆 and one thermal 
coefficient chosen among {𝑘, 𝑙, 𝑐, 𝜌}. We can also formulate moving boundary problems for the simultaneous determination of two 
thermal coefficient chosen among: density (𝜌), latent heat (𝑙), specific heat (𝑐) and thermal conductivity (𝑘). In these problems the 
phase-change interface is already known and is related to a parameter 𝜎 obtained experimentally through a phase-change process 
[22]. We remark that the idea to use an overspecified condition to determine thermal coefficients was introduced in [5] and the 
reference within. Other methods to determine thermal coefficients are, for example, inverse heat transfer, optimization problems and 
experimental methods [2,9,10,14–16,18–20,24,26].

In [6] a semi-infinite material under a solidification process with the Solomon-Wilson-Alexiades mushy zone model with a heat 
flux condition at a fixed boundary was considered. The problem was also overspecified through a convective boundary condition, 
formulating several free boundary and moving boundary problems. If the mushy zone collapses into the phase change interface, this 
problem reduces to the Stefan problems (1). Therefore the formulae obtained for the unknown thermal coefficients in [6] can be 
used for the free and moving boundary problems associated to (1).

When we consider a Robin or convective conditions Eq. (1e), we have a more realistic case, in contrast to the classical Dirichlet 
boundary condition, where the external temperature is assumed to be instantaneously transferred to the material. In [21] and [22], 
the author considered the same Stefan problem with the difference that the convective condition was replaced with a Dirichlet 
condition, formulating free and moving boundary problems for the simultaneous determination of two unknown parameters in [21]

and [22], respectively. In this article we will analyze the convergence of problem (1) to the Stefan problems considered in [21] and 
[22], when the heat transfer coefficient ℎ tends to +∞ (that is, ℎ very large). Although this convergence between problems was 
briefly discussed in [6], we give in this article a more exhaustive analysis, presenting for each case of the free and moving boundary 
problems, an upper bound for the parameter error, obtaining in every case a bound of order 𝑜( 1

ℎ
).

In Section 2 we summarize the formulae for the unknown thermal coefficients corresponding to four cases for free boundary 
problem and six cases for moving boundary problem, and present the similarity type solution to problem (1). In Section 3 we present 
the formulae for the unknown thermal coefficients corresponding to four cases for free boundary problem considered in [21] and 
six cases for moving boundary problem considered in [22]. Next we analyze case by case, the convergence between the two Stefan 
problems, when the heat transfer coefficient ℎ tends to +∞. Finally, in Section 4 we show a numerical example of the convergence, 
for a phase change material, Paraffin 𝐶18, which is a useful substance in heating or cooling processes.

2. Formulae for the unknown thermal coefficients

In order to give, case by case, the formulae for the unknown thermal coefficients, let us consider the following real functions and 
2

parameters 𝐴𝑖 (𝑖 = 0, .., 4), which help us to obtain simple mathematical expressions for the unknown thermal coefficients:
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𝐸0(𝑥) = erf(𝑥), 𝐸0(𝑥,ℎ) = erf(𝑥) +
√

𝑘𝜌𝑐√
𝜋

1
ℎ
, 𝐴0 =

√
𝑘𝜌𝑐(𝑇𝑓 − 𝑇0)

𝑞
√

𝜋
,

𝐸1(𝑥) = 𝑥𝑒𝑥
2 erf (𝑥), 𝐸1(𝑥,ℎ) = 𝑥𝑒𝑥

2 erf (𝑥) + 𝑞𝑐

𝑙
√

𝜋

1
ℎ
, 𝐴1 =

𝑐(𝑇𝑓 − 𝑇0)

𝑙
√

𝜋
,

𝐸2(𝑥) =
erf(𝑥)
𝑥𝑒𝑥

2 , 𝐸2(𝑥,ℎ) =
erf(𝑥)
𝑥𝑒𝑥

2 + 𝑙𝑘𝜌

𝑞
√

𝜋

1
ℎ
, 𝐴2 =

𝑙𝑘𝜌(𝑇𝑓 − 𝑇0)

𝑞2
√

𝜋
,

𝐸3(𝑥) =
erf(𝑥)

𝑥
, 𝐸3(𝑥,ℎ) =

erf(𝑥)
𝑥

+ 𝑘

𝜎
√

𝜋

1
ℎ
, 𝐴3 =

𝑘(𝑇𝑓 − 𝑇0)

𝑞𝜎
√

𝜋
,

𝐸4(𝑥) = 𝑥 erf(𝑥), 𝐸4(𝑥,ℎ) = 𝑥 erf(𝑥) + 𝜎𝜌𝑐√
𝜋

1
ℎ
, 𝐴4 =

𝜎𝜌𝑐(𝑇𝑓 − 𝑇0)

𝑞
√

𝜋
.

Proposition 1. The error function erf and the functions 𝐸𝑖 (𝑖 = 0, .., 4) have the following properties:

0 < erf(𝑥) < 1, erf(+∞) = 1, erf(0+) = 0, erf ′(𝑥) > 0, erf ′′(𝑥) < 0. (2)

𝐸1(𝑥) > 0, 𝐸1(+∞) = +∞, 𝐸1(0+) = 0, 𝐸′
1(𝑥) > 0. (3)

0 < 𝐸2(𝑥) <
2√
𝜋
, 𝐸2(+∞) = 0, 𝐸2(0+) =

2√
𝜋
, 𝐸′

2(𝑥) < 0. (4)

0 < 𝐸3(𝑥) <
2√
𝜋
, 𝐸3(+∞) = 0, 𝐸3(0+) =

2√
𝜋
, 𝐸′

3(𝑥) < 0. (5)

𝐸4(𝑥) > 0, 𝐸4(+∞) = +∞, 𝐸4(0+) = 0, 𝐸′
4(𝑥) > 0. (6)

Let us consider the following restrictions (which can be considered as the necessary and sufficient condition for the existence and 
uniqueness of the solution for some particular cases):

0 <

√
𝑘𝜌𝑐(𝑇𝑓 − 𝑇0)

𝑞
√

𝜋
−

√
𝑘𝜌𝑐√
𝜋

1
ℎ

< 1 (𝑅1)

(𝑇𝑓 − 𝑇0)
𝑞

− 1
ℎ

> 0 (𝑅2)

0 <
𝑙𝑘𝜌(𝑇𝑓 − 𝑇0)

2𝑞2
− 𝑙𝑘𝜌

2𝑞
1
ℎ

< 1 (𝑅3)

0 <
𝑘(𝑇𝑓 − 𝑇0)

2𝑞𝜎
− 𝑘

2𝜎
1
ℎ

< 1 (𝑅4)

𝑞

𝜎𝜌𝑙
> 1 (𝑅5)

0 <
(𝑇𝑓 − 𝑇0)

𝑞

√
𝑘𝜌𝑐√
𝜋

< 1 (𝑅1∞)

0 <
(𝑇𝑓 − 𝑇0)

𝑞2
𝑙𝑘𝜌

2
< 1 (𝑅3∞)

0 < (𝑇𝑓 − 𝑇0)
𝑘

2𝜎𝑞
< 1 (𝑅4∞)

Remark 1. Note that if the restriction (𝑅1) holds, as 
√

𝑘𝜌𝑐∕
√

𝜋 > 0, then the restriction (𝑅2) holds too. In a similar way, if (𝑅3)

holds then (𝑅2) holds, and if (𝑅4) holds then (𝑅2) also holds. The restrictions with subindex ∞ are the ones corresponding to the 
limit problem (1∞) defined in the next section.

2.1. Free boundary problems

We consider the following four cases for the free boundary problem (1), where we determine the temperature 𝑇 (𝑥, 𝑡), the free 
boundary interface 𝑠(𝑡) (i.e., the coefficient 𝜆 is defined below in (7b)) and one thermal coefficient:
3

FB: (1) 𝜆, 𝑙, (2) 𝜆, 𝑘, (3) 𝜆, 𝜌, (4) 𝜆, 𝑐.
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Table 1

Formulae and restrictions for the unknown thermal coefficients for the four cases with free 
boundary formulation with the corresponding restrictions.

Case N◦ Unknown coeff. Restrictions Solution

FB-1 𝜆, 𝑙 𝑅1 𝑙 = 𝑞
√

𝑐

𝑘𝜌

𝑒−𝜆2

𝜆
, and 𝜆 > 0∕ 𝐸0(𝜆,ℎ) =𝐴0

FB-2 𝜆, 𝑘 𝑅2 𝑘 = 𝑐𝑞2

𝜌𝑙2
𝑒−2𝜆

2

𝜆2 , and 𝜆 > 0∕ 𝐸1(𝜆,ℎ) =𝐴1

FB-3 𝜆, 𝜌 𝑅2 𝜌 = 𝑐𝑞2

𝑘𝑙2
𝑒−2𝜆

2

𝜆2 , and 𝜆 > 0∕ 𝐸1(𝜆,ℎ) =𝐴1

FB-4 𝜆, 𝑐 𝑅3 𝑐 = 𝜌𝑘𝑙2

𝑞2
𝜆2𝑒2𝜆

2
, and 𝜆 > 0∕ 𝐸2(𝜆,ℎ) =𝐴2

Theorem 1. The Stefan problem (1) has the similarity solution (𝑇 , 𝑠) given by:⎧⎪⎨⎪⎩
𝑇 (𝑥, 𝑡) = (𝑇𝑓 − 𝑇0)𝜑

(
𝑥

2
√

𝛼𝑡

)
+ 𝑇0, if 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0, (7a)

𝑠(𝑡) = 2𝜆
√

𝛼𝑡, if 𝑡 > 0, (7b)

if and only if the parameter 𝜆 > 0 and the thermal coefficient satisfy the following conditions:⎧⎪⎪⎨⎪⎪⎩
𝜆𝑒𝜆

2 = 𝑞

𝑙

√
𝑐

𝑘𝜌
, (8a)

1 +
√

𝜋
ℎ√
𝑘𝜌𝑐

erf(𝜆) = ℎ

𝑞
(𝑇𝑓 − 𝑇0), (8b)

where 𝐵𝑖 = ℎ
√

𝛼∕𝑘 (Biot number), erf is the error function and 𝜑 is defined by:

𝜑(𝜂) =
1 +

√
𝜋𝐵𝑖𝑒𝑟𝑓 (𝜂)

1 +
√

𝜋𝐵𝑖𝑒𝑟𝑓 (𝜆)
. (9)

Proof 1. When we look for a similarity solution to problem, the temperature 𝑇 (𝑥, 𝑡) is a function of the single variable 𝜂 = 𝑥

2
√

𝛼𝑡
, 

where 𝛼 = 𝑘

𝜌𝑐
is the diffusion coefficient. Through Eq. (1a), (1c) and (1e), we obtain the following differential problem for the 

function 𝜑:⎧⎪⎨⎪⎩
𝜑′′(𝜂) + 2𝜂𝜑′(𝜂) = 0, 0 < 𝜂 < 𝜆, (10a)

𝜑′(0) − 2𝐵𝑖𝜑(0) = 0, (10b)

𝜑(𝜆) = 1 . (10c)

Solving problem (10), we obtain (9). Using the rest of the equations in problem (1), the following conditions must be satisfy:⎧⎪⎨⎪⎩
𝜑′(𝜆) = 𝜆

2𝑙
𝑐(𝑇𝑓 − 𝑇0)

, (11a)√
𝑘𝜌𝑐𝜑′(0)(𝑇𝑓 − 𝑇0) = 2𝑞 , (11b)

which is equivalent to (8), by using the expression (9).

Table 1 summarizes the formulae for the unknown thermal coefficients corresponding to the four cases for the free boundary 
problem (1) following [6]. In some cases, the formulae are not identical to the ones in [6], but it can be obtained using the parameter 
equations (8).

2.2. Moving boundary problems

For the moving boundary formulation, the phase change interface is already known, given by:

𝑠(𝑡) = 2𝜎
√

𝑡 , (12)

where 𝜎 must be obtained experimentally (𝜎 = 𝜆
√

𝛼) through a phase-change process [22]. We consider the six cases for a moving 
boundary problem, where we determine the temperature 𝑇 (𝑥, 𝑡) and the following parameters (here 𝜎 > 0 is a known coefficient):
4

MB: (1) 𝑙, 𝜌, (2) 𝑙, 𝑘, (3) 𝑙, 𝑐, (4) 𝜌, 𝑘, (5) 𝜌, 𝑐, (6) 𝑘, 𝑐.
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Table 2

Formulae for the unknown thermal coefficients for the six cases with moving boundary formulation 
with the corresponding restrictions.

Case N◦ Unknown 
coeff.

Restrictions Solution

MB-1 𝑙, 𝜌 𝑅4 𝑙 = 𝑐𝑞𝜎

𝑘

𝑒−𝜉2

𝜉2
, 𝜌 =

(
𝜉

𝜎

)2
𝑘

𝑐
, where 𝜉 > 0∕ 𝐸3(𝜉, ℎ) =𝐴3.

MB-2 𝑘, 𝑙 𝑅2 𝑘 = 𝜌𝑐𝜎2

𝜉2
, 𝑙 = 𝑞

𝜌𝜎
𝑒−𝜉2 , where 𝜉 > 0∕𝐸4(𝜉, ℎ) =𝐴4.

MB-3 𝑙, 𝑐 𝑅4 𝑙 = 𝑞

𝜌𝜎
𝑒−𝜉2 , 𝑐 =

(
𝜉

𝜎

)2
𝑘

𝜌
, where 𝜉 > 0∕ 𝐸3(𝜉, ℎ) =𝐴3.

MB-4 𝜌, 𝑘 𝑅2 𝜌 = 𝑞

𝑙𝜎
𝑒−𝜉2 , 𝑘 = 𝜎𝑐𝑞

𝑙

𝑒−𝜉2

𝜉2
, where 𝜉 > 0∕ 𝐸1(𝜉, ℎ) =𝐴1.

MB-5 𝑐, 𝜌 𝑅4 𝜌 = 𝑞

𝑙𝜎
𝑒−𝜉2 , 𝑐 = 𝑙𝑘

𝜎𝑞
𝜉2𝑒𝜉2 , where 𝜉 > 0∕ 𝐸3(𝜉, ℎ) =𝐴3.

MB-6 𝑘, 𝑐 𝑅2, 𝑅5 𝑐 =
𝑞
√

𝜋

𝜎𝜌

𝐸4(𝜉)
(𝑇𝑓 − 𝑇0) −

𝑞

ℎ

, 𝑘 =
𝑞𝜎

√
𝜋

(𝑇𝑓 − 𝑇0) −
𝑞

ℎ

𝐸3(𝜉),

where 𝜉 =
√

ln
(

𝑞

𝜌𝑙𝜎

)
.

Next we present the similarity solution to the Stefan problem (1).

Theorem 2. If the moving boundary is given by (12), with 𝜎 > 0, then the Stefan problem (1) has the similarity solution 𝑇 given by:

𝑇 (𝑥, 𝑡) = (𝑇𝑓 − 𝑇0)𝜙

(
𝑥

2
√

𝛼𝑡

)
+ 𝑇0, if 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0 , (13)

if and only if the thermal coefficients satisfy the following conditions:⎧⎪⎪⎨⎪⎪⎩
𝜎𝑒𝜎

2𝜌𝑐∕𝑘 = 𝑞

𝑙𝜌
, (14a)

1 +
√

𝜋
ℎ√
𝑘𝜌𝑐

erf

(
𝜎

√
𝜌𝑐

𝑘

)
= ℎ

𝑞
(𝑇𝑓 − 𝑇0) , (14b)

where 𝜙 is defined by:

𝜙(𝜂) =
1 +

√
𝜋𝐵𝑖𝑒𝑟𝑓 (𝜂)

1 +
√

𝜋𝐵𝑖 erf
(
𝜎

√
𝜌𝑐

𝑘

) . (15)

Proof 2. Similar to Proof 1.

Table 2 summarizes the formulae for the unknown thermal coefficients corresponding to the six cases for the moving boundary 
problem (1), following [6].

3. Convergence analysis when 𝒉 tends to infinity

In this section we will analyze the convergence of problem (1) when the heat transfer coefficient in the Robin condition (1e), ℎ
goes to infinity. If for each ℎ > 0 the solution to problem (1) is such that 𝑇 (0, ⋅) and 𝑇𝑥(0, ⋅) admit bounds independent of ℎ (what 
actually happens in the most common physical situations), then, we get that 𝑇 (0, 𝑡) goes to 𝑇0. In other words, if we were able to 
consider an infinite value for the heat transfer coefficient, then the temperature function given through problem (1) would satisfy 
the temperature boundary condition:

𝑇 (0, 𝑡) = 𝑇0, ∀𝑡 > 0. (1e∞)

Let us note as (1∞) the problem (1) with the condition (1e) modified by (1e∞). This problem is also over-specified, and therefore, 
for free boundary problems, we can formulate four cases of simulation determination of coefficients. This was studied in [21], giving 
the formulae for the coefficients in each case and the restrictions for the data. For moving boundary problems, we can formulate six 
cases of simulation determination of coefficients, which was studied in [22].

We will show that, when ℎ goes to infinity, the solutions given in this paper in each case tend to the solutions in [21] and [22], 
5

for free boundary problems and moving problems, respectively.
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Table 3

Formulae and restrictions for the unknown thermal coefficients for the four cases with free boundary 
formulation in [21], with the corresponding restrictions.

Case N◦ Unknown coeff. Restrictions Solution

FB-1 𝜆∞, 𝑙∞ 𝑅1∞ 𝑙∞ = 𝑞
√

𝑐

𝑘𝜌

𝑒−𝜆2∞

𝜆∞
, and 𝜆∞ > 0∕ 𝐸0(𝜆∞) =𝐴0.

FB-2 𝜆∞, 𝑘∞ 𝑘∞ = 𝑐𝑞2

𝜌𝑙2
𝑒−2𝜆

2
∞

𝜆2
∞

, and 𝜆∞ > 0∕ 𝐸1(𝜆∞) =𝐴1 .

FB-3 𝜆∞, 𝜌∞ 𝜌∞ = 𝑐𝑞2

𝑘𝑙2
𝑒−2𝜆

2
∞

𝜆2
∞

, and 𝜆∞ > 0∕ 𝐸1(𝜆∞) =𝐴1.

FB-4 𝜆∞, 𝑐∞ 𝑅3∞ 𝑐∞ = 𝜌𝑘𝑙2

𝑞2
𝜆2
∞𝑒2𝜆

2
∞ , and 𝜆∞ > 0∕ 𝐸2(𝜆∞) =𝐴2 .

3.1. Free boundary problems

The next theorem is one of the main results in [21], which presents the similarity type solution for the free boundary problem 
(1∞):

Theorem 3. The Stefan problem (1∞) has the similarity solution �̃� , ̃𝑠 given by:⎧⎪⎨⎪⎩
�̃� (𝑥, 𝑡) =

(𝑇𝑓 − 𝑇0)
erf(𝜆∞)

erf

(
𝑥

2
√

𝛼𝑡

)
+ 𝑇0, if 0 < 𝑥 < �̃�(𝑡), 𝑡 > 0, (16a)

�̃�(𝑡) = 2𝜆∞
√

𝛼𝑡 , if 𝑡 > 0, (16b)

if and only if the parameter 𝜆∞ > 0 and the thermal coefficients satisfy the following conditions:⎧⎪⎪⎨⎪⎪⎩
𝜆∞𝑒𝜆

2
∞ = 𝑞

𝑙

√
𝑐

𝑘𝜌
, (17a)

erf(𝜆∞) =
√

𝑘𝜌𝑐
(𝑇𝑓 − 𝑇0)

𝑞
√

𝜋
. (17b)

We summarize, in Table 3, the results for the four cases with free boundary in problem (1∞).

Note that the coefficient’s expressions for 𝑘∞, 𝑐∞, 𝜌∞ have been slightly modified, from the ones presented in [21], using the 
following equation:

erf(𝜆∞) =
𝑐(𝑇𝑓 − 𝑇0)

𝑙
√

𝜋

𝑒−𝜆2∞

𝜆∞
.

Remark 2. Note that if ℎ →∞, the conditions in (8) converge to the conditions in (17), by the unicity of positive solutions for 𝜆 and 
𝜆∞, we have that 𝜆 = 𝜆(ℎ) → 𝜆∞. Rewriting 𝜑 as:

𝜑(𝜂) =

1√
𝜋𝐵𝑖

+ erf(𝜂)

1√
𝜋𝐵𝑖

+ erf(𝜆)
,

we have that 1∕𝐵𝑖 → 0, therefore 𝜑(𝑥) → erf(𝑥)∕ erf(𝜆∞), and finally we get that 𝑇 = 𝑇 (ℎ) → �̃� and 𝑠 = 𝑠(ℎ) → �̃�.

Next we prove some properties for the auxiliary functions, that analyze mainly the convergence of 𝜆 to 𝜆∞. Next we prove only 
Proposition 5 for the Case 1, and state that the proof of Propositions 6 to 8 are similar to the Case 1 using the properties of the 
corresponding auxiliary functions.

Proposition 2. Let us define, for each fixed ℎ > 0, 𝜆 = 𝜆(ℎ) as the unique positive solution of the equation:

𝐸0(𝑥,ℎ) =𝐴0 , (18)

and 𝜆∞ as the unique positive solution of the equation:

𝐸0(𝑥) =𝐴0 , (19)
6

then:
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1. 𝜆 < 𝜆∞, ∀ℎ > 0,

2. {𝜆}ℎ is an increasing sequence, that is: ℎ𝑖 < ℎ𝑗 ⇒ 𝜆(ℎ𝑖) < 𝜆(ℎ𝑗 ),
3. and the difference between 𝜆∞ and 𝜆 is bounded by 𝑜(1∕ℎ), that is:

0 < 𝜆∞ − 𝜆 <

√
𝑘𝜌𝑐√

𝜋𝐸′
0(𝜆∞)

1
ℎ
, ∀ℎ > 0. (20)

Proof 3. First we note that:

𝐸0(𝑥,ℎ) =𝐸0(𝑥) +
√

𝑘𝜌𝑐√
𝜋

1
ℎ

> 𝐸0(𝑥), ∀𝑥 > 0,

resulting in:

𝐴0 =𝐸0(𝜆,ℎ) > 𝐸0(𝜆), ∀𝜆 > 0.

Noting that 𝐴0 = 𝐸0(𝜆∞), we have that 𝐸0(𝜆∞) > 𝐸0(𝜆), ∀𝜆 > 0. Using the property of 𝐸0 being an increasing function, we get 
𝜆 < 𝜆∞, ∀ℎ > 0.

The second property of this proposition comes directly from the definition of 𝜆(ℎ) and the fact that 𝐸0 is increasing. For the third 
property of this proposition, we use the mean value theorem, obtaining:

|𝜆− 𝜆∞| = |𝐸0(𝜆,ℎ) −𝐸0(𝜆∞, ℎ)||𝐸′
0(𝑥)| , for some 𝑥 between 𝜆 and 𝜆∞ . (21)

Using the definition of 𝜆 and 𝜆∞, we have:

|𝐸0(𝜆,ℎ) −𝐸0(𝜆∞, ℎ)| = √
𝑘𝜌𝑐√
𝜋

1
ℎ

.

Using the fact that 𝐸′
0 is positive and decreasing, then |𝐸′

0(𝑥)| ≥𝐸′
0(𝜆∞), ∀𝑥 < 𝜆∞. From this bound and (21), we get (20).

Proposition 3. Let us define, for each fixed ℎ > 0, 𝜆 = 𝜆(ℎ) as the unique positive solution of the equation:

𝐸1(𝑥,ℎ) =𝐴1 , (22)

and 𝜆∞ as the unique positive solution of the equation:

𝐸1(𝑥) =𝐴1 , (23)

then:

1. 𝜆 < 𝜆∞, ∀ℎ > 0,

2. {𝜆}ℎ is an increasing sequence, that is: ℎ𝑖 < ℎ𝑗 ⇒ 𝜆(ℎ𝑖) < 𝜆(ℎ𝑗 ),
3. and the difference between 𝜆∞ and 𝜆 is bounded by 𝑜(1∕ℎ), that is exists ℎ1 > 0 such that:

0 < 𝜆∞ − 𝜆 <
𝑞𝑐√

𝜋𝑙𝐸′
1(𝜆(ℎ1))

1
ℎ
, ∀ℎ > ℎ1. (24)

Proof 4. The proof of the first and second properties is similar to Proposition 2, using the fact that 𝐸1 is an increasing function.

For the third property of this proposition, we use the mean value theorem, obtaining:

|𝜆− 𝜆∞| = |𝐸1(𝜆,ℎ) −𝐸1(𝜆∞, ℎ)||𝐸′
1(𝑥)| , for some 𝑥 between 𝜆 and 𝜆∞ . (25)

Using the definition of 𝜆 and 𝜆∞, we have:

|𝐸1(𝜆,ℎ) −𝐸1(𝜆∞, ℎ)| = 𝑞𝑐

𝑙
√

𝜋

1
ℎ

.

Using the fact that 𝐸′
1 is positive and increasing, and that {𝜆}ℎ is an increasing sequence, there exists ℎ1 > 0 such that: |𝐸′

1(𝑥)| ≥
𝐸′
1(𝜆(ℎ1)), ∀𝑥 > 𝜆(ℎ1). From this bound and (25), we get (24).

Proposition 4. Let us define, for each fixed ℎ > 0, 𝜆 = 𝜆(ℎ) as the unique positive solution of the equation:

𝐸2(𝑥,ℎ) =𝐴2 , (26)
7

and 𝜆∞ as the unique positive solution of the equation:
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𝐸2(𝑥) =𝐴2 , (27)

then:

1. 𝜆 > 𝜆∞, ∀ℎ > 0,

2. {𝜆}ℎ is a decreasing sequence, that is: ℎ𝑖 < ℎ𝑗 ⇒ 𝜆(ℎ𝑖) > 𝜆(ℎ𝑗 ),
3. and the difference between 𝜆∞ and 𝜆 is bounded by 𝑜(1∕ℎ), that is exists ℎ2 > 0 such that:

|𝜆∞ − 𝜆| < 𝑘𝜌𝑙

𝑞
√

𝜋|𝐸′
2(𝜆(ℎ2))| 1

ℎ
, ∀ℎ > ℎ2. (28)

Proof 5. First we note that:

𝐸2(𝜆) +
𝑙𝑘𝜌

𝑞
√

𝜋

1
ℎ
=𝐸2(𝜆∞), ∀𝜆 > 0,

resulting in 𝐸2(𝜆∞) > 𝐸2(𝜆), ∀𝜆 > 0. Using the decreasing character of 𝐸2, we get 𝜆 > 𝜆∞, ∀ℎ > 0.

The second property of this proposition comes directly from the definition of 𝜆(ℎ) and the fact that 𝐸2 is decreasing.

For the third property of this proposition, we use the mean value theorem, obtaining:

|𝜆− 𝜆∞| = |𝐸2(𝜆,ℎ) −𝐸2(𝜆∞, ℎ)||𝐸′
2(𝑥)| , for some 𝑥 between 𝜆 and 𝜆∞. (29)

Using the definition of 𝜆 and 𝜆∞, we have:

|𝐸2(𝜆,ℎ) −𝐸2(𝜆∞, ℎ)| = 𝑙𝑘𝜌

𝑞
√

𝜋

1
ℎ

.

Using the fact that 𝐸′
2 is bounded and 𝐸′

2(+∞) = 0, there exists ℎ2 such that: |𝐸′
2(𝑥)| ≥ 𝐸′

2(𝜆(ℎ2)), ∀𝑥 ∈ (𝜆∞, 𝜆(ℎ2)). From this 
bound and (29), we get (28).

We consider now the four cases for the unknown thermal coefficients for the corresponding free boundary problem (1).

3.1.1. Case 1: simultaneous determination of {𝜆, 𝑙}

Proposition 5. Let 𝜆 and 𝑙 be the unknown parameters in Problem (1) for certain ℎ, and let 𝜆∞ and 𝑙∞ be the unknown parameters in 
Problem (1∞). Then:

1. {𝜆}ℎ is an increasing sequence that goes to 𝜆∞ with order 𝑜(1∕ℎ), that is Eq. (20) is satisfied.

2. {𝑙}ℎ is a sequence that goes to 𝑙∞ with order 𝑜(1∕ℎ), that is exists ℎ∗ > 0 such that:

|𝑙∞ − 𝑙| < 𝑞𝑐√
𝜋𝐸′

0(𝜆∞)

(
1 + 2𝜆2∞

𝜆∗2 exp(𝜆∗2)

)
1
ℎ
, ∀ℎ > ℎ∗, (30)

where 𝜆∗ = 𝜆(ℎ∗).

Proof 6. The first property of this proposition is given by Proposition 2. For the second property, observe that:

|𝑙∞ − 𝑙| = 𝑞

√
𝑐

𝑘𝜌

||||| 𝑒
−𝜆2

𝜆
− 𝑒−𝜆2∞

𝜆∞

||||| .
Using the mean value theorem for the function 𝑓 (𝑥) = 𝑒−𝑥2

𝑥
, we have that exists ℎ∗ > 0 such that:

||||| 𝑒
−𝜆2

𝜆
− 𝑒−𝜆2∞

𝜆∞

||||| ≤
(

1 + 2𝜆2∞
𝜆∗2 exp(𝜆∗2)

)|𝜆∞ − 𝜆|, ∀𝜆 ∈ (𝜆∗, 𝜆∞).

From this bound and Eq. (20) we get Eq. (30).

3.1.2. Case 2: simultaneous determination of {𝜆,𝑘}

Proposition 6. Let 𝜆 and 𝑘 be the unknown parameters in Problem (1) for certain ℎ, and let 𝜆∞ and 𝑘∞ be the unknown parameters in 
Problem (1∞). Then:
8

1. {𝜆}ℎ is an increasing sequence that goes to 𝜆∞ with order 𝑜(1∕ℎ), that is Eq. (24) is satisfied.
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Table 4

Formulae for the unknown thermal coefficients for the six cases with moving boundary formulation in [22]

with the corresponding restrictions.

Case N◦ Unknown 
coeff.

Restrictions Solution

MB-1 𝑙∞, 𝜌∞ 𝑅4∞ 𝑙∞ = 𝑐𝑞𝜎

𝑘

𝑒−𝜉2∞

𝜉2∞
, 𝜌∞ =

(
𝜉∞
𝜎

)2
𝑘

𝑐
, where 𝜉∞ > 0∕ 𝐸3(𝜉∞) =𝐴3.

MB-2 𝑙∞, 𝑘∞ 𝑙∞ = 𝑞

𝜌𝜎
𝑒−𝜉2∞ , 𝑘∞ = 𝜌𝑐𝜎2

𝜉2∞
, where 𝜉∞ > 0∕𝐸4(𝜉∞) =𝐴4.

MB-3 𝑙∞, 𝑐∞ 𝑅4∞ 𝑙∞ = 𝑞

𝜌𝜎
𝑒−𝜉2∞ , 𝑐∞ =

(
𝜉∞
𝜎

)2
𝑘

𝜌
, where 𝜉∞ > 0∕ 𝐸3(𝜉∞) =𝐴3.

MB-4 𝜌∞, 𝑘∞ 𝜌 = 𝑞

𝑙𝜎
𝑒−𝜉2∞ , 𝑘 = 𝜎𝑐𝑞

𝑙

𝑒−𝜉2∞

𝜉2∞
, where 𝜉∞ > 0∕ 𝐸1(𝜉∞) =𝐴1.

MB-5 𝜌∞, 𝑐∞ 𝑅4∞ 𝜌∞ = 𝑞

𝑙𝜎
𝑒−𝜉2∞ , 𝑐∞ = 𝑙𝑘

𝜎𝑞
𝜉2∞𝑒𝜉2∞ , where 𝜉∞ > 0∕ 𝐸3(𝜉∞) =𝐴3.

MB-6 𝑘∞, 𝑐∞ 𝑅5 𝑐∞ =
𝑞
√

𝜋

𝜎𝜌

𝐸4(𝜉∞)
(𝑇𝑓 − 𝑇0)

, 𝑘∞ =
𝑞𝜎

√
𝜋

(𝑇𝑓 − 𝑇0)
𝐸3(𝜉∞),

where 𝜉∞ =
√

ln
(

𝑞

𝜌𝑙𝜎

)
.

2. {𝑘}ℎ is a sequence that goes to 𝑘∞ with order 𝑜(1∕ℎ), that is

|𝑘∞ − 𝑘| < 𝑞3𝑐2

𝜌𝑙3
√

𝜋𝐸′
1(𝜆1)

(
2 + 4𝜆2∞

𝜆31 exp(2𝜆
2
1)

)
1
ℎ
, ∀ℎ > ℎ1, (31)

where 𝜆1 = 𝜆(ℎ1) and ℎ1 is the one given by Proposition 3.

3.1.3. Case 3: simultaneous determination of {𝜆, 𝜌}

Proposition 7. Let 𝜆 and 𝜌 be the unknown parameters in Problem (1) for certain ℎ, and let 𝜆∞ and 𝜌∞ be the unknown parameters in 
Problem (1∞). Then:

1. {𝜆}ℎ is an increasing sequence that goes to 𝜆∞ with order 𝑜(1∕ℎ), that is Eq. (24) is satisfied.

2. {𝜌}ℎ is a sequence that goes to 𝜌∞ with order 𝑜(1∕ℎ), that is

|𝜌∞ − 𝜌| < 𝑞3𝑐2

𝑘𝑙3
√

𝜋𝐸′
1(𝜆1)

(
2 + 4𝜆2∞

𝜆31 exp(2𝜆
2
1)

)
1
ℎ
, ∀ℎ > ℎ1, (32)

where 𝜆1 = 𝜆(ℎ1) and ℎ1 is the one given by Proposition 3.

3.1.4. Case 4: simultaneous determination of {𝜆, 𝑐}

Proposition 8. Let 𝜆 and 𝑐 be the unknown parameters in Problem (1) for certain ℎ, and let 𝜆∞ and 𝑐∞ be the unknown parameters in 
Problem (1∞). Then:

1. {𝜆}ℎ is a decreasing sequence that goes to 𝜆∞ with order 𝑜(1∕ℎ), that is Eq. (28) is satisfied.

2. {𝑐}ℎ is a sequence that goes to 𝑐∞ with order 𝑜(1∕ℎ), that is

|𝑐∞ − 𝑐| < 𝑘2𝜌2𝑙3

𝑞3
√

𝜋|𝐸′
2(𝜆2)| (2𝜆2 + 4𝜆32) exp(2𝜆

2
2)

1
ℎ
, ∀ℎ > ℎ2, (33)

where 𝜆2 = 𝜆(ℎ2) and ℎ2 is the one given by Proposition 4.

3.2. Moving boundary problems

In the moving boundary formulation, the phase change interface is already known, given by (12). In Table 4 summarizes the 
results in [22], for moving boundary problems.

The next theorem is one of the main results in [22]:

Theorem 4. If the moving boundary �̃� is given by (12), with 𝜎 > 0, then the Stefan problem (1∞) has the similarity solution �̃� given by:

̃
(𝑇𝑓 − 𝑇0)

(
𝑥

)

9

𝑇 (𝑥, 𝑡) =
erf(𝜎∕

√
𝛼)

erf
2
√

𝛼𝑡
+ 𝑇0, if 0 < 𝑥 < �̃�(𝑡), 𝑡 > 0 , (34)
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if and only if the thermal coefficients satisfy the following conditions:⎧⎪⎪⎨⎪⎪⎩
𝜎𝑒𝜎

2𝜌𝑐∕𝑘 = 𝑞

𝑙𝜌
, (35a)

erf

(
𝜎

√
𝜌𝑐

𝑘

)
=
√

𝑘𝜌𝑐
(𝑇𝑓 − 𝑇0)

𝑞
√

𝜋
, (35b)

Remark 3. Note that if ℎ →∞, the conditions in (14) converge to the conditions in (35). Rewriting 𝜙 as:

𝜙(𝜂) =

1√
𝜋𝐵𝑖

+ erf(𝜂)

1√
𝜋𝐵𝑖

+ erf(𝜎∕
√

𝛼)
,

we have that 1∕𝐵𝑖 → 0, therefore 𝜙(𝑥) → erf(𝑥)∕ erf (𝜎∕
√

𝛼), and finally we get that 𝑇 = 𝑇 (ℎ) → �̃� .

Next we prove some properties for the last auxiliary functions, that analyze mainly the convergence of 𝜉 to 𝜉∞. The proof of 
Propositions 11 to 15 are similar to proof of Proposition 5. In this section we only prove Proposition 16 for Case 6 that is different 
from the rest.

Proposition 9. Let us define, for each fixed ℎ > 0, 𝜉 = 𝜉(ℎ) as the unique positive solution of the equation:

𝐸3(𝑥,ℎ) =𝐴3 , (36)

and 𝜉∞ as the unique positive solution of the equation:

𝐸3(𝑥) =𝐴3 , (37)

then:

1. 𝜉 > 𝜉∞, ∀ℎ > 0,

2. {𝜉}ℎ is a decreasing sequence, that is: ℎ𝑖 < ℎ𝑗 ⇒ 𝜉(ℎ𝑖) > 𝜉(ℎ𝑗 ),
3. and the difference between 𝜉∞ and 𝜉 is bounded by 𝑜(1∕ℎ), that is exists ℎ3 > 0 such that:

|𝜉∞ − 𝜉| < 𝑘

𝜎
√

𝜋|𝐸′
3(𝜉(ℎ3))| 1

ℎ
, ∀ℎ > ℎ3. (38)

Proof 7. Similar to the proof of Proposition 4.

Proposition 10. Let us define, for each fixed ℎ > 0, 𝜉 = 𝜉(ℎ) as the unique positive solution of the equation:

𝐸4(𝑥,ℎ) =𝐴4 , (39)

and 𝜉∞ as the unique positive solution of the equation:

𝐸4(𝑥) =𝐴4 , (40)

then:

1. 𝜉 > 𝜉∞, ∀ℎ > 0,

2. {𝜉}ℎ is an increasing sequence, that is: ℎ𝑖 < ℎ𝑗 ⇒ 𝜉(ℎ𝑖) < 𝜉(ℎ𝑗 ),
3. and the difference between 𝜉∞ and 𝜉 is bounded by 𝑜(1∕ℎ), that is exists ℎ4 > 0 such that:

|𝜉∞ − 𝜉| < 𝜌𝑐𝜎√
𝜋|𝐸′

4(𝜉(ℎ4))| 1
ℎ
, ∀ℎ > ℎ4. (41)

Proof 8. Similar to the proof of Proposition 3.

Now, we consider the six cases for the two unknown thermal coefficients for the corresponding moving boundary problem (1)

with data (12).

3.2.1. Case 1: simultaneous determination of {𝑙, 𝜌}

Proposition 11. Let 𝑙 and 𝜌 be the unknown parameters in the moving formulation of Problem (1) for certain ℎ, and let 𝑙∞ and 𝜌∞ be the 
10

unknown parameters in the moving formulation of Problem (1∞). Then:
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1. {𝜉}ℎ is a decreasing sequence that goes to 𝜉∞ with order 𝑜(1∕ℎ), that is Eq. (38) is satisfied.

2. {𝑙}ℎ is a sequence that goes to 𝑙∞ with order 𝑜(1∕ℎ), that is exists ℎ6 > 0 such that:

|𝑙∞ − 𝑙| < 𝑐𝑞√
𝜋|𝐸′

3(𝜉3)|
(

2𝜉26 + 1

𝜉2∞ exp(𝜉2∞)

)
1
ℎ
, ∀ℎ > ℎ6, (42)

where 𝜉6 = 𝜉(ℎ6).
3. {𝜌}ℎ is a sequence that goes to 𝜌∞ with order 𝑜(1∕ℎ), that is

|𝜌∞ − 𝜌| < 𝑘22𝜉4
𝜎3𝑐|𝐸′

3(𝜉4)| 1
ℎ
, ∀ℎ > ℎ3, (43)

where 𝜉4 = 𝜉(ℎ3) and ℎ3 is the one given by Proposition 9.

3.2.2. Case 2: simultaneous determination of {𝑙, 𝑘}

Proposition 12. Let 𝑙 = 𝑙(ℎ) and 𝑘 = 𝑘(ℎ) be the unknown parameters in the moving formulation of Problem (1) for certain ℎ, and let 𝑙∞
and 𝑘∞ be the unknown parameters in the moving formulation of Problem (1∞). Then:

1. {𝜉}ℎ is an increasing sequence that goes to 𝜉∞ with order 𝑜(1∕ℎ), that is Eq. (41) is satisfied.

2. {𝑙}ℎ is a sequence that goes to 𝑙∞ with order 𝑜(1∕ℎ), that is exists ℎ∗ > 0 such that:

|𝑙∞ − 𝑙| < 2𝑐𝑞𝜉∞√
𝜋𝐸′

4(𝜉
∗)

exp(−𝜉∗2) 1
ℎ
, ∀ℎ > ℎ∗, (44)

where 𝜉∗ = 𝜉(ℎ∗).
3. {𝑘}ℎ is a sequence that goes to 𝑘∞ with order 𝑜(1∕ℎ), that is exists ℎ∗ > 0 such that:

|𝑘∞ − 𝑘| < 2𝜌2𝑐2𝜎3

𝜉∗3
√

𝜋|𝐸′
4(𝜉

∗)| 1
ℎ
, ∀ℎ > ℎ∗. (45)

3.2.3. Case 3: simultaneous determination of {𝑙, 𝑐}

Proposition 13. Let 𝑙 = 𝑙(ℎ) and 𝑐 = 𝑐(ℎ) be the unknown parameters in the moving formulation of Problem (1) for certain ℎ, and let 𝑙∞
and 𝑐∞ be the unknown parameters in the moving formulation of Problem (1∞). Then:

1. {𝜉}ℎ is a decreasing sequence that goes to 𝜉∞ with order 𝑜(1∕ℎ), that is Eq. (38) is satisfied.

2. {𝑙}ℎ is a sequence that goes to 𝑙∞ with order 𝑜(1∕ℎ), that is exists ℎ∗ > 0 such that:

|𝑙∞ − 𝑙| < 2𝑘𝑞𝜉∗

𝜎2𝜌
√

𝜋|𝐸′
3(𝜉

∗)| exp(−𝜉2∞) 1
ℎ
, ∀ℎ > ℎ∗, (46)

where 𝜉∗ = 𝜉(ℎ∗).
3. {𝑐}ℎ is a sequence that goes to 𝑐∞ with order 𝑜(1∕ℎ), that is exists ℎ∗ > 0 such that:

|𝑐∞ − 𝑐| < 2𝑘2𝜉∗

𝜎3𝜌
√

𝜋|𝐸′
3(𝜉

∗)| 1
ℎ
, ∀ℎ > ℎ∗. (47)

3.2.4. Case 4: simultaneous determination of {𝜌, 𝑘}

Proposition 14. Let 𝜌 = 𝜌(ℎ) and 𝑘 = 𝑘(ℎ) be the unknown parameters in the moving formulation of Problem (1) for certain ℎ, and let 𝜌∞
and 𝑘∞ be the unknown parameters in the moving formulation of Problem (1∞). Then:

1. {𝜉}ℎ is an increasing sequence that goes to 𝜉∞ with order 𝑜(1∕ℎ), that is:

0 < 𝜉∞ − 𝜉 <
𝑞𝑐√

𝜋𝑙𝐸′
1(𝜉(ℎ1))

1
ℎ
, ∀ℎ > ℎ1.

2. {𝜌}ℎ is a sequence that goes to 𝜌∞ with order 𝑜(1∕ℎ), that is

|𝜌∞ − 𝜌| < 2𝑐𝑞2𝜉∞
𝑙2𝜎

√
𝜋𝐸′

1(𝜉1)
exp(−𝜉21 )

1
ℎ
, ∀ℎ > ℎ1, (48)
11

where 𝜉1 = 𝜉(ℎ1).
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3. {𝑘}ℎ is a sequence that goes to 𝑘∞ with order 𝑜(1∕ℎ), that is

|𝑘∞ − 𝑘| < 𝑞2𝑐2𝜎(2𝜉2∞ + 1)

𝑙2𝜉21 exp(𝜉
2
1 )
√

𝜋𝐸′
1(𝜉1)

1
ℎ
, ∀ℎ > ℎ1. (49)

3.2.5. Case 5: simultaneous determination of {𝜌, 𝑐}

Proposition 15. Let 𝜌 = 𝜌(ℎ) and 𝑐 = 𝑐(ℎ) be the unknown parameters in the moving formulation of Problem (1) for certain ℎ, and let 𝜌∞
and 𝑐∞ be the unknown parameters in the moving formulation of Problem (1∞). Then:

1. {𝜉}ℎ is a decreasing sequence that goes to 𝜉∞ with order 𝑜(1∕ℎ), that is Eq. (38) is satisfied.

2. {𝜌}ℎ is a sequence that goes to 𝜌∞ with order 𝑜(1∕ℎ), that is

|𝜌∞ − 𝜌| < 2𝑘𝑞𝜉4
𝑙𝜎2

√
𝜋|𝐸′

3(𝜉4)| exp(−𝜉2∞) 1
ℎ
, ∀ℎ > ℎ3, (50)

where 𝜉4 = 𝜉(ℎ3).
3. {𝑐}ℎ is a sequence that goes to 𝑐∞ with order 𝑜(1∕ℎ), that is

|𝑐∞ − 𝑐| < 𝑘2𝑙(2𝜉4 + 2𝜉34 ) exp(𝜉
3
4 )

𝜎2𝑞
√

𝜋|𝐸′
4(𝜉4)| 1

ℎ
, ∀ℎ > ℎ3. (51)

3.2.6. Case 6: simultaneous determination of {𝑘, 𝑐}

Proposition 16. Let 𝑘 = 𝑘(ℎ) and 𝑐 = 𝑐(ℎ) be the unknown parameters in the moving formulation of Problem (1) for certain ℎ, and let 𝑘∞
and 𝑐∞ be the unknown parameters in the moving formulation of Problem (1∞). Then:

1. {𝜉}ℎ is a constant sequence and 𝜉 = 𝜉∞.

2. {𝑘}ℎ is a sequence that goes to 𝑘∞ with order 𝑜(1∕ℎ), that is exists ℎ∗ > 0 such that:

|𝑘∞ − 𝑘| < erf(𝜉∞)𝜎
√

𝜋𝑞2

𝜉∞(𝑇𝑓 − 𝑇0)(𝑇𝑓 − 𝑇0 − 𝑞∕ℎ∗)
1
ℎ
, ∀ℎ > ℎ∗. (52)

3. {𝑐}ℎ is a sequence that goes to 𝑐∞ with order 𝑜(1∕ℎ), that is exists ℎ∗ > 0 such that:

|𝑐∞ − 𝑐| < 𝜉∞ erf(𝜉∞)
√

𝜋𝑞2

𝜎𝜌(𝑇𝑓 − 𝑇0)(𝑇𝑓 − 𝑇0 − 𝑞∕ℎ∗)
1
ℎ
, ∀ℎ > ℎ∗. (53)

Proof 9. First we note that 𝜉 = 𝜉∞ for every ℎ > 0. Using the corresponding expressions for each coefficient, we have:

|𝑘∞ − 𝑘| = 𝑞𝜎
√

𝜋𝐸3(𝜉∞)
||||| 1
(𝑇𝑓 − 𝑇0)

− 1
(𝑇𝑓 − 𝑇0 − 𝑞∕ℎ)

||||| ,
|𝑐∞ − 𝑐| = 𝑞

√
𝜋

𝜎𝜌
𝐸4(𝜉∞)

||||| 1
(𝑇𝑓 − 𝑇0)

− 1
(𝑇𝑓 − 𝑇0 − 𝑞∕ℎ)

||||| .
(54)

Using Restriction 𝑅2 and algebraic operations, we have that for ℎ > ℎ∗:||||| 1
(𝑇𝑓 − 𝑇0)

− 1
(𝑇𝑓 − 𝑇0) − 𝑞∕ℎ

||||| ≤ 𝑞

(𝑇𝑓 − 𝑇0)(𝑇𝑓 − 𝑇0 − 𝑞∕ℎ∗)
1
ℎ

, (55)

where ℎ∗ is any positive fixed value. From these bounds, the proposition holds.

4. Numerical example

We analyzed the convergence for Paraffin 𝐶18, a phase change material which is a substance that releases or absorbs sufficient 
energy at the phase transition (from liquid to solid or vice versa) to provide useful heat or cooling. The thermal data in Table 5 was 
obtained from [25], and calculated from (8). In Table 6 we show the values of each restriction for the thermal parameters considered, 
12

in each case the restriction is satisfied.
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Table 5

Thermal coefficients for Paraffin 𝐶18 .

Parameter Units Paraffin

𝑘 J∕s m ◦C 0.15

𝜌 kg∕m3 900

𝑐 J∕kg ◦C 2160

𝑙 J∕kg 244000

𝑇0
◦C 0

𝑇𝑓
◦C 28

ℎ kg∕◦C s5∕2 62170.7

𝜆 adim. 0.33664961

𝜎 m∕s1∕2 0.000093513781

𝑞 kg∕s5∕2 23000

𝐵𝑖 adim. 115.13092944

Table 6

Restrictions for Paraffin 𝐶18 .

Restriction Variable condition Value

𝑅1 0 < 𝑅 < 1 0.3681285

𝑅1∞ 0 < 𝑅 < 1 0.37089332

𝑅2 0 < 𝑅 0.00120130

𝑅3 0 < 𝑅 < 1 0.86023995

𝑅3∞ 0 < 𝑅 < 1 0.87175803

𝑅4 0 < 𝑅 < 1 0.96347287

𝑅4∞ 0 < 𝑅 < 1 0.97637317

𝑅5 𝑅 > 1 1.12000479

Fig. 1. Convergence for each unknown parameter, for the four cases of free boundary problems.

4.1. Free boundary problems

In Fig. 1 we plot, for each case, the convergence of each parameter normalized by the parameter of the limit problem (1∞), for 
example, in Case 1, we plot 𝜆

𝜆∞
and 𝑙

𝑙∞
. Note that from this normalization, we can deduce the relative error between the parameters, 
13

for example, if 𝜆∕𝜆∞ = 1.10, then the relative error 𝑒𝑟 is:
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Fig. 2. Convergence for each unknown parameter, for the six cases of moving boundary problems.

𝑒𝑟 =
𝜆− 𝜆∞

𝜆∞
= 0.10 = 10% .

From Fig. 1, we observe that the case with the slowest convergence is Case 4, which needs values of ℎ ≈ 3.7 × 105 to reach a 
relative error lower than 2% in both parameters. The rest of the cases have similar behavior of convergence, beginning with a relative 
error lower than 2% in both parameters, where ℎ ≈ 6.2 × 104.

4.2. Moving boundary problems

In Fig. 2 we plot, for each case, the convergence of each thermal coefficient normalized by the parameter of the limit problem 
(1∞).

We observe that the case with the slowest convergence is Case 1, with a similar behavior for both parameters, reaching a relative 
error lower than 4% for ℎ > 9 × 105. Next we have Case 3 and 5, where for both cases the parameter 𝑐 has a slower convergence 
compared to the parameter 𝑙 or 𝜌, for cases 3 and 5, respectively. Here, for both cases, the relative error for the specific heat is lower 
than 4% for ℎ > 9 × 105. Instead, the latent heat of fusion and the density starts with a relative error lower than 4%, for cases 3 
and 5, respectively. Finally, the cases 2, 4 and 6 have the fastest convergence. In Cases 2 and 4, we have a similar situation as the 
one described before, where the conductivity 𝑘 has a slower convergence compared to the parameter 𝑙 and 𝜌, for Cases 2 and 4, 
14

respectively.
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Note that Case 6 is the only case where the converging curves for the two coefficients coincide. Analyzing the corresponding 
equations, we observe that 𝜉∞ = 𝜉, and when we compute 𝑘∕𝑘∞ and 𝑐∕𝑐∞ we get same result:

𝑘∕𝑘∞ = 𝑐∕𝑐∞ =
𝑇𝑓 − 𝑇0

(𝑇𝑓 − 𝑇0) −
𝑞

ℎ

.

5. Conclusions

We considered a phase-change process with two conditions at the boundary 𝑥 = 0, a Robin and a Neumann type conditions. 
This overspecified condition allowed us to obtain formulae for the simultaneous determination of two unknown thermal coefficients. 
We state four cases of free boundary problems (the solid-liquid interface is unknown), and six cases of moving boundary problems 
(the solid-liquid interface is known a priori), where the formulae for the different cases where obtained by [6]. We analyzed the 
convergence of these problems to a solidification problem with Dirichlet and Neumann boundary conditions at the fixed face given 
in [21,22], when the heat transfer coefficient at this face goes to infinity.

For each case of the free and moving boundary problems, we present an upper bound for the parameter error, obtaining in every 
case a bound of order 𝑜( 1

ℎ
). To prove these bounds, we had to study the dependence of auxiliary functions of the parameters ℎ and 

𝑥, given in Section 2.

Finally, at the numerical example we had that for the free boundary problems, Case 4 presents the slowest convergence, corre-

sponding to the unknown parameters 𝜆 and 𝑐. For the moving boundary problems, Cases 1, 3 and 5 present similar convergence rate, 
which is overall slower than Cases 2, 4 and 6. We could justify analytically that in Case 6, corresponding to the unknown parameters 
𝑘 and 𝑐, the normalized curves coincide for both parameters.
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