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1 Introduction

Fractional calculus has been developed in the last fiftys/eatting across almost all areas of mathematics, both puate a
applied. In the field of ordinary fractional differentialwations, the fractional derivatives in the Riemann-Lidexdense
or in the Caputo sense where hardly studied. See for exaimpledoks 6,12, 18] where properties and applications are
treated in detail. The Caputo derivative of orde€ (0,1) was defined by Caputo in 1963][as

a1 t (1)
°p f(t)—l_(l_a)/a o patt L)

The Caputo derivative is usually considered for modelinggcpss involving memory effects, diffusion in
non-homogeneous domains, or in the study of anomaloussiiffiyiwhich is closely linked to non-Brownian motions.
Works in this direction are e.g1]10,13,15,17].

Clearly, from definition {), the Caputo derivative is an integro—differential operatvolving a singular kernel, given by

the function
% jft>0
Kity={ r=a ' ' 2
®) {O ift<o @

We can observe that the fractional derivative in the Capeiissis a generalized weighted backward sum where the kernel
(2) assigns more weight (“importance”) to the nearest ratehiahges of functiori.

In the aim to avoid the singular kern&)( and motivated by physical situations related to the ndemhoexponential
kernel in some constitutive equations (see for example b, 19]), Caputo and Fabrizio defined in 2014 p new
fractional derivative with no singular kernel. This frawtal derivative named Caputo-Fabrizio derivative (CFilgéfined

as

t alt-t
CFDOf(t) — M(O’)/ f(1)e T dr 3)
1-a a
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for every f € Wl(a,b)

€ ¢lab]/f' € LY(a,b)}, —o <a<b< +ow, a € (0,1), whereM(-) is a normalized
function such thai (0) =1.

= {f
=M(1)
The above definition was already treated in different aréagpplied mathematics. In Gomez—Aguilar et &] &
representation of the fractional diffusion equation andactfonal diffusion—advection equation by applying the CF
derivative is developed. Irlfl] a problem associated to a plate that is oscillating in ite glane with isotherm boundary
condition is modelled by using the CF derivative. Also, it6]] the Dirichlet problem and source problem for the

fractional advection—diffusion equation with time fratal CF derivative is studied in the half-plane.

Integro—differential operators with non-singular kemleds been widely studied in the area of mathematical asalysi
and clearly, 8) corresponds to an integro—differential operator. In thégper, we want to develop some properties,
examples and even the main objective, which is the demdiwstraf an existence and uniqueness theorem, focusing on
the integro-differential operatoB) viewed as a fractional derivative, paying special attantbd the notation, the spaces
of functions considered and the type of convergence giveraah case.

Following this purpose, we will provide new formulas for tb@mputation of the fractional derivativ8)(to powers
and trigonometric functions, being these formulas moregaehthan the previously given in the literature. Furthemmo
the mostimportant result is to give global existence anduemness of a solution to an initial value problem for a nadin
fractional differential equation for the CF derivative.€lproof is based on the existence for short times given bydaza
and Nieto in [L4] and a translation formula (which will be enunciated lateiProposition2 item 2). It is worth noting
that, due to the exposed results are purely mathematicatjlveonsider that the normalized functidvi defined in 8) is
given by

M(a)=1, foreverya € (0,1).

The paper is organized as follows: In Section 2 some usefybepties of the Caputo-Fabrizio derivativ®) @re
presented: the convergence to the classical derivativesranslation formula, the analysis of the inverse operéie
fractional derivation of power functions in terms of the tg—Leffler functions, among others. In Section 3, an ihitia
value problem for the governing equation

CEDf(M) =9 (t,f(1)

is considered, and the existence and uniqueness of a glahtibs is proved by using a previous result of existence for
short times given by Losada an Nieto 4.

2 Basic definitions and calculations

Hereinafter we denote By DY to the fractional derivative of Caputo—Fabrizio with lovienit a = 0.

Definition 1.For every nc Ng anda < (0,1), the fractional Caputo Fabrizio derivative of orderna is defined as
CFn(n+a CFnha d"
DO £(t) :=CFD <wf(t)> (4)

for every fe W (a,b) = {f ¢ ¥W[a,b]/f("D c Li(a,b)}, —w <a< b < 4.
Note 1The casen = 0 is the one given inf3).
Proposition 1Leta € (0,1), ne Nand fe W™ (a b). Then
1.For every te [a,b), (I){i@ochW*”)f(t) = ./: () (1)dr.
2.If (M1 is a sectional continuous function with a finite number oftsda (a, b), then(Lirfnlchw*“)f(t) = (1)

a.e.te (a,b).

In particular:

1.If f € €™V [a, b] then IiTOCaFD(‘””)f(t) = f(t)— fW(a) forallt e [a,b].
a

2'If f € €("2[a,b] then |i91°§D<“+“>f(t) = () forallt e (a,b].
a
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Proof.1. According to definitiord, it is sufficient to consider the case= 0. Let f € W'(a,b) be. Note that

L [rwe s [ et - a)ar

Then, taking the limit whero tends to zero and applying Lebesgue Convergence theonerin,lliholds for every
telab.

a(t—1 t
Hdr-/ f(1)dt
a

2. Now we take tha.1 norm, given by
b
1flluas = [ IfOl.

t at—t
Letg(t) = ﬁ/ﬁ f’(r)e“i_(t—a) dr — f/(t) be. Beingf’ a sectional continuous function {i&,b) it follows thatg is a

continuous function iria, b). Also, taking into account th&t has a finite number of roots, we can divide the intefaab)
in M subintervals wherg conserves its sign in every subinteryal, ;1) foralli =0,....M — 1,a9 = aanday = b.
TheL?! norm becomes

Il = [ 0]t = MZ; JANCCLS E(—l)“ [ e (5)

0, if g(t)>0in (aj,ai1)
17 If g(t) < O in (a'iaai+l)
Applying Fubini’s Theorem in each subinterval,

/ai+1 g(t)dt

a

/ai+1
/34
]
q  rditl

- f(1)e T dedr+
a Jog 1—0

&1 rair 1 , _at-1) &1 ,
+/ / (e 1 dtdr—/ #/(1)dr
a Ji l-a a

wherek; = , foreveryi=0,....M—1.

i/tf’(r)e—%’—?dr—f’(t) dt
1-a/a

2

t=1) &1

L et drd £/ (t)ct
| =51 me e dra— [
1

&

8 1 a@y1-1) a@-1"\ |
:/ /(1) 5 (e e —e La ) dr+
a L

Q1 ar LT R | at ] Q1
/ f'(1)ela (/ —eladt) dr—/ f/(1)dt
a t l-a a

_ ; 6
a 1 _a@1-0) _a@-1) (6)
= fi(ft)|——=|e T —e La dr+
a | a ]
Q41 1  a@e1-1) 1
+/ . "(1) (——e = ——1) dr
a a
Also, for everya > 3 it holds that
1 a@na-n 1 1 _a@-1 1
—Ze fa 4--1<|-Ze tu |+|=-1|<
a a (7)
@11
<26 fw +1<3
and
‘—% (e"(%” —e "‘f%”) ’ <4 8)
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Then, replacing®) in (5) and applying the Lebesgue Convergence Theorem to eachffibg finite sum %) (due to
inequalities 7) and @)), it follows that

b
i [1CED% £ = '3 oy = fim [ °ED" (1)~ 1) ok =

im P11 M ioe
= lim — e
al/‘l/a 1-a /a (T)

M-1

a

S dr— (1)

1 (e—‘”ﬁ*%,” e ﬂ dr+ ®)

aj a(ajq1-1)
+/ (1) lim (_ie——l—mt +%—1> dr

dt:

Then
lim CFDYf(t) = f'(t), ae.in(ab).
a1

The limitin 1’ follows by applying the Fundamental Theorem of Calculu jmfter assuming thdte %(Y[a, b]. Finally,
integrating by parts under the assumption that%2[a, b in (3) gives

CFRha 11, / ) U en - aft-1)
aDYf(t) = a f'(t)— f'(a)e” T-a —/ f’(t)e” 1o dr|. (20)
a

. —a) . o . o
Note that Ilfnff/(a)e“i—a(tfaa = 0 for everyt > a. Therefore, taking the limit whea 1 in (10) the limit in 2" holds.
a

Note 2The previous proposition enables us to redefine the fraatidaputo—Fabrizio derivative given in Definiti@for
everya € (0,1]. Roughly speaking, we can say that the fractional Caputav@teve is a left-continuous operator at any
positive integer.

RemarkWe would like to highlight that the convergence given in Risiion 1 item 2, does not necessary holds at the
lower extremé = a. It will be shown in Exampl that

(10{7;+02 (acost+(1—a)sint—ae%). (11)

CFD%sint =
From (1) it follows that®F D¢ sin0= 0 for everya € (0,1), whereas thatj??FD" sint = cost which tends to 1 when
a
t tends to 0.

Proposition 2.The following properties for the Caputo-Fabrizio deriwegihold:

1.Ifue Wi(a,b) and f(t) = ¢fD%u(t) , then f(a) = 0.
2.Let ge W(a,b) be anda € (0,1). Then for every a 0, the following translation formula is valid:

“Erg(t) = D%gn) ~exp{ 5, | D%gla) (12)

Proofl1. Beingu a function inW?(a, b), it yields thatu € {v € L}(a,b): V € L}(a,b)}. Also we have thaln(-) = e~ =
is a continuous and hence en bounded functida,in). Thenu(-)h(-) € {v € L*(a,b): V' € L'(a,b)} and from Theorem
8.1 of Chapter 8 of Brezi®] , we have that

t at-1)\/ at-1)
/ (u(r)e“lT) dr=u(t)e Ta

a

t
(13)

a

Using (13) in definition @) it holds that

f(t) =CFD%(t) = -

a(t—a t a(t—1
u(t) — u(@)e e —/ u(r)e o aadr].

Taking the limit whert \ a we get thatf (a) = 0.
2. Relation (L2) is due to the property of the integral over adjacent intistva
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Let us make the inverse reasoning. Suppose that we wantdolat a “Caputo—Fabrizio primitive” of some given
function f. That is, we want to find a functiomsuch that

CEDu(t) = f(t). (14)

Following the procedure described it¥] (that is, differentiating 14) respect on time to both sides and integrating later),
from Propositior2-1 we have

t t
u(t) —u(a) = a/ f(r)dt+(1—a)[f(t) - f(a)] = a/ f(r)dr+ (1—a)f(t). (15)
a a
Calling©f19 1 (t) to the right side in15), the Barrow’s rule for the fractional integral of Caput@dfizio holds:
u(t) — u(a) = CEI°f(t) (16)

and the following definition becomes natural.

Definition 2.For everya € (0,1] and f € L*(a,b) the fractional integral of Caputo-Fabrizio of f is defined by
t
CaFI"f(t):(l—a)f(t)+a/ f(1)dr, t>a (17)
a

Proposition 3Let f be a function in L(a, b) or W(a, b) as required. Then
1.The fractional integral of Caputo-Fabrizio is an inverggerator of the fractional derivative of Caputo-Fabrizi@and
only if f(a) = 0. That is,
CR1@(CEDf(t)) = f(t) < f(a) =0.
2.The fractional derivative of Caputo-Fabrizio is an ingeroperator of the fractional integral of Caputo-Fabriziand
only if f(a) =0.
CED? (CR191(1)) = f(t) « f(a) =0.

ProofBy using Propositior2-1 and Fubini’s theorem it holds that
CEI (CEDYf (1)) = f(t) - f(a),

and then 1holds.
Integration by parts yields that

at

caFDa(came(t)): f(t)—f(a)exp{—m}, (18)

and then 2holds.

Note 3lt is interesting the fact that the fractional derivatifgD?, in general, is not a left inverse operator of the fractional
integral®f 19, which is not the case when we consider fractional derieatin the Caputo and Riemann-Liouville sense.
In fact, these derivatives are both left inverse operatbthefractional integral of Rieman—Liouville (see for exale
[6]).

However, wheror 1 we hope to recover, as we know ti(11f) = f for every integrable functiofi. Making a tends

to 1 in equation18) it holds that, for every € [a,b]

i\ CFpa (CFa i _ o at _
(Llr/nl 2D (4191 (1)) _(y%[f(t) f(a)exp{ 1_0{} = f(t).
Proposition 4Leta € (0,1) andf > 0 be. Then
_ a
where E 5(-) is the Mittag-Leffler function defined for everg R by
00 tk
Eqgt) =y ——
b= 2 Flaki p)

andr (-) is the Gamma function.
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ProofRecall the Beta function defined by

1
B(zw) = / L1t Idt, z>0w>0. (20)
0
A known property of this function (see p. 10 afj] is that
_r@rw
B(zw) == W) (21)
From 0) and Q1) it easily follows that
t - _ _ r(2)l (w) _
_ a1l w1l — _a\ztw-1l _ _ a)\ztw-1
/a(r a) (t—1)" "dr =B(zw)(t—a) Taiw (t—a) . (22)
Now, by using the uniform convergence of the series we have
1 t a
CFpa(t_ B _ _— _ \B-1, 1% (t-T)
FDY(t—a) 1_G/EIB(T a)fle 1%ty
B e CDRa N
_1—01/&1“ a) kZO " T—a (t—1)"dt (23)
_ B < [ B—l(_l)k a K k
= 1_akZO a(r a) " T (t—1)%dr

/t(r —a)P Yt —r1)kdr

(D% a K (B
( >(t_a)pkl‘(ﬁ+k+1)

BrB), _pa| & (-1%—a)"
t-a) [kzl F(k:B)

- - - (r 59

_ g(t _a)ft {1— I (B)Ewg (—%(t - a))] .

Remarki=rom Eq. (7) of Chapter 18.1 in Erdéh8][we deduce that
)!mELB(—x) =0, VB>0.

Then
iim 2 (t— a)p- {1_ I (B)Evp (—%(t . a))] —B(t—a)pL

a1
RemarkProposition4 can be used to give an example of a functfowhich is not differentiable (in the classical sense) at
t = a but it is “Caputo-Fabrizio differentiable” at= a. Takinga= 0 andf3 = a /2 in (19) we have

CF 2_09/2.a/21 -
Data/ :Tta/ [1—1_(0/2)E1,a/2 (‘ﬁt)

(24)

(@© 2019 NSP
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And this function can be defined by Otat 0 becaus&+ a/2—1> 0 for everyk > 1.
Corollary 1.1f a € (0,1) and me N, then

a k!

%!<_1?Ta>mlexp{_%(t_a)}.

In the right side of 25) we see that the first term (which is the dominant one) doetends to zero whea tendsto 1. The

second addend is closely related to the memory effect ofjieeator, and the third term is the “exponential perturlrgtio
which is a natural consequence of the considered operator.

| m-2 g\ Mkl ok
CFDA(t—a)m= Nt —aym iy 0 Z)<_1—a> (t—a)
a a K=

(25)

ProofTaking into account that the Mittag—Leffler function vergfie that
m—2 +k

Eim(t) = tm%l [exp{t} - z tk—|1 , and replacing it in19) we have
K=o K

CFDA(t—a)™ = %’(t _aq)ml [1— I (M)Exm (-La(t —a))

=1
N

e ——q=

/// o @ r e ow el ow oW oW e B b 2

i 20
N
N

K/ — -g=
0547

. . .
|5 (T ey AU P Pe) PRl gl__.

=
1l

Fig. 1: €FDYt for some values oft.
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Let us see other examples related to some classical fusction

Example 1The exponential function
Itis easy to see that

_at ] .
CFpagct W {ed—e 1*“} ifc(l—a)+a#0, (26)
2 era ifc(l—a)+a=0.
Takingc = 1in (26)
CFpad — ¢ — e 1%,
and the expected limit holds:
lim FD% = ¢.
a1
Another interesting result is when= —c andc > — 1% In fact:
ciD%" = L/t o T dr =
-0/ -
C c(1-ajt . (c—ca+a)s—at
=———|eTa — lime ©Ta
cl—a)+a s——o
I
S c(l-a)+ a®
which gives the following special result for= 1:
CfDY =¢.
Example 2T he fractional derivative of the sine function.
Integrating by parts it holds that
1 a a at a?
CFpa o i —Toa CFPa oj
D t) = ——sin(t t)— a — ——=~"D t 27
sin(t) 1_O{S|n()+(1_o{)zcos() (1_a)2e i—a)p sin(t) (27)
Then
CFDYsin(t) = _ (acos(t)+(1—a)sin(t) —ae*%). (28)
(1-a)?+a?

Noting thate I tends to 0 whem 1, it follows that
lim ©FD% sint = cogt).
lim, )

Analogously,

CFDcogt) = —asin(t)+(1—a)cos(t)—(1—a)e‘%)

1
(1-a)’+a? (

and e
l D% cogt) = —sin(t).
al% cogt) sin(t)

See Figure 2 where some graphics related to this computehitgted.

RemarkFinally, let us present three computational examples whiclves that the changes in a time interval in the past
makes consequences in the output function given by the CratzpeConsider the three functions definedtif as

fi(t) =t (29)
-fo 25

(@© 2019 NSP
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Fig. 2: CFDY sint for some values ofr.

and
2t—-1 0<t<1
falt) = {tz 1<t. (31)
Note that f; agree in a neighbourhood af= 2 for i = 1,2,3, being f; and f3 differentiable functions and

f, € H1(0,b) for everyb > 0 with a jump for its derivative at= 1.

Let us see thgfT D f1(2) £ SFD f,(2) # §7DY f3(2) for everya € (0,1), while for the local classical derivative we
have thatf](2) = 14(2) = 4(2).
From Corollaryl, we have that
4 2(1-a) 2(1-d) _

SFD"fl(Z):a— Ttz et (32)

Now, for everyt > 1

1 t 4.
CFDY fy (1) = m/o e 120 £ (7)dr.

(33)
1 t
_ [ettetary o [ et 02rdr
1-aJo 1-a/1
Integrating 83) and then evaluating at= 2 we have
2a
4 2(1-a) etTa 2-3a0 _a
CFRha
DY fy(2) = — — - Ta. 4
0 2( ) a a2 a + a € (3 )
Let h be the function defined dga) = $FD? f;(2) —SF D f5(2) for everya in (0,1). Then
2— a  2— a
h(a) = aza = aSa e Ta#£0 foreverya e (0,1). (35)

Note thath(a) — O whena 7 1.

(@© 2019 NSP
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1 t a
SFD"f3()=—/ e 1% 0 £(1)dr
1-alo
L t (36)
:—/ e 1_<“T)-2dr+—/ e Ta(-02rdr.
1-a o 1-— 1
Substituting byt = 2 it yields that
4 20-a) 2 2 201-0a) .«
CF
Again, letg be the function defined aga) = §FD? f;(2) —SF D f3(2) for everya in (0,1) be. Then
2 a 2(1-— a
g(a) = ?e‘iz—_a - %e‘l—_a #0 foreverya € (0,1), (38)

while g(a) — 0 whena 7 1.

3 Global Solution to a Nonlinear Fractional Differential Equation

The following Theorem is similar (not equal and the diffezes will be especified later) to Theorem 1 in the work of
Losada and Nietol[4] as well as its proof.

Theorem 1Let¢: [a,0) x R — R be a Lipschitz function respect on the second variable witistant L, i.e.
[$(t.s1) -t ) <Llsi—% Vs,n€eR,

and leta € (0,1) be such that L< ﬁ Then if¢ (a,ag) = 0, problem

CEDOf(t) = ¢(t, (1)), t>a,
{f(a) = ap (39)

has a unique solution & ¢’[a, T|, for every Te (a, a+ lf%l‘m).
The differences from Theorefnand [L4, Theorem 1] are:

i)The definitions of the Caputo—Fabrizio derivati& &nd integral 17) are different from those considered itd].
i) The initial time is general (not necessary given by 0).
iii)The order of differenciatiorr depends on the Lipschitz constant
iv)The assumptionp (a,ap) = 0 is imposed by Propositia&1 (and it is also necessary in the performance of the proof).

Theorem 2Let ¢: [0,0) x R — R be a Lipschitz function respect on the second variable wathstant L, and let be
a € (0,1) such that L< 1. Then, problem

CFDYf(t) = ¢ (t, (1)), t>0,
{f(O) =2 “o

has a unique solution € #’[0,T], for every finite time Te R™, that is, globally in time.

ProofLet the pair{Ty, f1} given by Theoreni which solves the problem

CFDYf(t) = ¢(t, f(t)), t>0,
{f(o) =2 @D

(@© 2019 NSP
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in the intervall0, T;]. Consider next the problem

CFpa _
DUf(t) = $(t, T (1), t>Ta “2)
f(t) = fa(t) vt € [0,Ty.
By using the translation formula given in Proposit®12, it holds that problem42) is equivalent to
CEDYI(1) = §(t, (1) —e Te DT, t>T, @3)
(1) = () vt € [0,Ty).
Also, beingf; the solution to problen41), problem(43) is equivalent to
CF pa SIS
{ D) = (t. F(1) —e o (Ti fy(Ty), t> Ty ”
f(t) = fa(t) vt € [0,Ty.
Let us focus now in the sub-problem related4d) given by
CE pa —
EDf(t) = o(t, (), t>T 45)
f(T1) = f1(Ta)

where®(t,x) = ¢ (t,x) — et ¢ (Ta, f2(T1)).

a(t—Tq)
Being ¢ a Lipschitz function respect on the second variable withstamtL ande™ = < 1 for everyt > Ty, easily
follows that® is a Lipschitz function respect on the second variable wathstant. By hypothesid < ﬁ then we can
apply Theoreni to (45), and there exists a pafil,, f,} such thatf, is the unique solution to problem¥) in the interval
[Tl,Tz], where

1-(1-oa)L
To-Ti< ———. 4
2— T < oL (46)
Note that the same argument can be used to obtain a solutnitem
att
D"f():q&(t f(t)) — _1_CFD"f(T2) t>T
t) te (T]_,Tz] . 47

2(
= { fi(t) te[0,T]

Also recalling thatf; is a solution to problen¥@) and f; is a solution to problem4), we have

CFDC{ :—/ f/ — 1 & dT
SRS / fi(re T dr 4 / fh(r)e T dr
(T,
—e 7—%1 ¢(T1, f(Te) + CF DU (Tp)
a(T; a(Ty
— e T Ty, £(T0) + (T, F(To)) — &~ Eat CFDAF(Ty)
=¢(Tp, f(T2))

and then, problemi(?) can be written as

CEDIf(t) = da(t, (1), t>To
F(t) = fa(t) te (Tl,Tz] (48)
fi(t) te€[0,Ty)
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a

(t-Tp) . . . .
where®,(t,x) = ¢(t,x) — e = ¢ (T, f(T2)). Once again, by Theoreththere exists a unique solution to the sub-

problem
{C%D"f(t) = o(t, f(t), t>T (49)
f(T2) = f2(T2)
for everyT; such that
T2<T3<T2+71_(i[ ot (50)

Calling AT to some positive constant such that AT < % successively applying the former procedure, there

exists a continuous functiofy, which is the unique solution to

{CFDO’f(t):tp(t,f(t)), 0<t<NAT (51)

f(0) =ao
for everyN € N. BeingN an arbitrary natural, the solution of probledi) is globally defined in time.

RemarKThe effects of memory in the Caputo-Fabrizio derivativestrewn in the need of considering the sub-problem
(44) with an “initial condition” which must be known all over theterval [0, T1], in contrast to the local property of the
classical derivative which requires only the initial caimh at the timeTy.

4 Conclusions

We have analyzed and proved some useful properties relatéket fractional Caputo—Fabrizio derivative such as
translation property, convergence to integer order déviss.and inverse operator. Also a computation of this foact
derivative to power functions, sin and cosine functiongl exponential function were given, attempting to proviae, i
each case, expressions as simple as possible. Note tharthe that converges to zero whean,~ 1 were visually
separated than the terms that converges to the classidaatilers. Finally, an existence and uniqueness of a global
solution to a nonlinear fractional differential equatioasaproved.
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