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1 Introduction

Fractional calculus has been developed in the last fifty years cutting across almost all areas of mathematics, both pure and
applied. In the field of ordinary fractional differential equations, the fractional derivatives in the Riemann–Liouville sense
or in the Caputo sense where hardly studied. See for example the books [6,12,18] where properties and applications are
treated in detail. The Caputo derivative of orderα ∈ (0,1) was defined by Caputo in 1967 [3] as

C
aDα f (t) =

1
Γ (1−α)

∫ t

a

f ′(τ)
(t − τ)α dτ. (1)

The Caputo derivative is usually considered for modeling process involving memory effects, diffusion in
non-homogeneous domains, or in the study of anomalous diffusion, which is closely linked to non-Brownian motions.
Works in this direction are e.g. [1,10,13,15,17].
Clearly, from definition (1), the Caputo derivative is an integro–differential operator involving a singular kernel, given by
the function

K(t) =

{

t−α

Γ (1−α) if t > 0,

0 if t ≤ 0
. (2)

We can observe that the fractional derivative in the Caputo sense is a generalized weighted backward sum where the kernel
(2) assigns more weight (“importance”) to the nearest rates ofchanges of functionf .
In the aim to avoid the singular kernel (2), and motivated by physical situations related to the need of an exponential
kernel in some constitutive equations (see for example the works [5,19]), Caputo and Fabrizio defined in 2015 [4] a new
fractional derivative with no singular kernel. This fractional derivative named Caputo-Fabrizio derivative (CF), isdefined
as

CF
a Dα f (t) =

M(α)

1−α

∫ t

a
f ′(τ)e−

α(t−τ)
1−α dτ (3)
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for every f ∈ W1(a,b) = { f ∈ C [a,b]/ f ′ ∈ L1(a,b)}, −∞ ≤ a < b ≤ +∞, α ∈ (0,1), whereM(·) is a normalized
function such thatM(0) = M(1) = 1.

The above definition was already treated in different areas of applied mathematics. In Gómez–Aguilar et al. [9] a
representation of the fractional diffusion equation and a fractional diffusion–advection equation by applying the CF
derivative is developed. In [11] a problem associated to a plate that is oscillating in its own plane with isotherm boundary
condition is modelled by using the CF derivative. Also, in [16], the Dirichlet problem and source problem for the
fractional advection–diffusion equation with time fractional CF derivative is studied in the half-plane.

Integro–differential operators with non-singular kernels has been widely studied in the area of mathematical analysis,
and clearly, (3) corresponds to an integro–differential operator. In thispaper, we want to develop some properties,
examples and even the main objective, which is the demonstration of an existence and uniqueness theorem, focusing on
the integro-differential operator (3) viewed as a fractional derivative, paying special attention to the notation, the spaces
of functions considered and the type of convergence given ineach case.

Following this purpose, we will provide new formulas for thecomputation of the fractional derivative (3) to powers
and trigonometric functions, being these formulas more compact than the previously given in the literature. Furthermore,
the most important result is to give global existence and uniqueness of a solution to an initial value problem for a nonlinear
fractional differential equation for the CF derivative. The proof is based on the existence for short times given by Lozada
and Nieto in [14] and a translation formula (which will be enunciated later in Proposition2 item 2). It is worth noting
that, due to the exposed results are purely mathematical, wewill consider that the normalized functionM defined in (3) is
given by

M(α) = 1, for everyα ∈ (0,1).

The paper is organized as follows: In Section 2 some useful properties of the Caputo-Fabrizio derivative (3) are
presented: the convergence to the classical derivatives, the translation formula, the analysis of the inverse operator, the
fractional derivation of power functions in terms of the Mittag–Leffler functions, among others. In Section 3, an initial
value problem for the governing equation

CF
a D f (t) = ϕ(t, f (t))

is considered, and the existence and uniqueness of a global solution is proved by using a previous result of existence for
short times given by Losada an Nieto in [14].

2 Basic definitions and calculations

Hereinafter we denote byCFDα to the fractional derivative of Caputo–Fabrizio with lowerlimit a= 0.

Definition 1.For every n∈ N0 andα ∈ (0,1), the fractional Caputo Fabrizio derivative of order n+α is defined as

CF
a D(n+α) f (t) := CF

a Dα
(

dn

dtn
f (t)

)

(4)

for every f∈W(n+1)(a,b) = { f ∈ C (n)[a,b]/ f (n+1) ∈ L1(a,b)}, −∞ ≤ a< b≤+∞.

Note 1.The casen= 0 is the one given in(3).

Proposition 1.Let α ∈ (0,1), n∈ N and f ∈W(n+1)(a,b). Then

1.For every t∈ [a,b], lim
αց0

CF
a D(α+n) f (t) =

∫ t

a
f (n+1)(τ)dτ.

2.If f (n+1) is a sectional continuous function with a finite number of roots in (a,b), then lim
αր1

CF
a D(α+n) f (t) = f (n+1)(t)

a. e. t∈ (a,b).

In particular:

1’.If f ∈ C (n+1)[a,b] then lim
αց0

CF
a D(α+n) f (t) = f (n)(t)− f (n)(a) for all t ∈ [a,b].

2’.If f ∈ C (n+2)[a,b] then lim
αր1

CF
a D(α+n) f (t) = f (n+1)(t) for all t ∈ (a,b].
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Proof.1. According to definition1, it is sufficient to consider the casen= 0. Let f ∈W1(a,b) be. Note that
∣

∣

∣

∣

1
1−α

∫ t

a
f ′(τ)e−

α(t−τ)
1−α dτ −

∫ t

a
f ′(τ)dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

1
1−α

∫ t

a
f ′(τ)

[

e−
α(t−τ)
1−α − (1−α)

]

dτ
∣

∣

∣

∣

.

Then, taking the limit whenα tends to zero and applying Lebesgue Convergence theorem, limit 1 holds for every
t ∈ [a,b].

2. Now we take theL1 norm, given by

|| f ||L1(a,b) =

∫ b

a
| f (t)|dt.

Let g(t) =
1

1−α

∫ t

a
f ′(τ)e−

α(t−τ)
1−α dτ − f ′(t) be. Being f ′ a sectional continuous function in(a,b) it follows that g is a

continuous function in(a,b). Also, taking into account thatf ′ has a finite number of roots, we can divide the interval(a,b)
in M subintervals whereg conserves its sign in every subinterval(ai ,ai+1) for all i = 0, ...,M−1, a0 = a andaM = b.
TheL1 norm becomes

||g||L1(a,b) =

∫ b

a
|g(t)|dt =

M−1

∑
i=0

∫ ai+1

ai

|g(t)|dt =
M−1

∑
i=0

(−1)ki

∫ ai+1

ai

g(t)dt (5)

whereki =

{

0, if g(t)≥ 0 in (ai ,ai+1)

1, if g(t)< 0 in (ai ,ai+1)
, for everyi = 0, ...,M−1.

Applying Fubini’s Theorem in each subinterval,
∫ ai+1

ai

g(t)dt

=

∫ ai+1

ai

[

1
1−α

∫ t

a
f ′(τ)e−

α(t−τ)
1−α dτ − f ′(t)

]

dt

=
∫ ai+1

ai

∫ t

a

1
1−α

f ′(τ)e−
α(t−τ)

1−α dτdt−
∫ ai+1

ai

f ′(t)dt

=
∫ ai

a

∫ ai+1

ai

1
1−α

f ′(τ)e−
α(t−τ)

1−α dtdτ+

+
∫ ai+1

ai

∫ ai+1

τ

1
1−α

f ′(τ)e−
α(t−τ)

1−α dtdτ −
∫ ai+1

ai

f ′(τ)dτ

=
∫ ai

a
f ′(τ)

[

−
1
α

(

e−
α(ai+1−τ)

1−α −e−
α(ai−τ)

1−α

)]

dτ+
∫ ai+1

ai

f ′(τ)e
ατ

1−α

(

∫ ai+1

τ

1
1−α

e−
αt

1−α dt

)

dτ −
∫ ai+1

ai

f ′(τ)dτ

=
∫ ai

a
f ′(τ)

[

−
1
α

(

e−
α(ai+1−τ)

1−α −e−
α(ai−τ)

1−α

)]

dτ+

+

∫ ai+1

ai

f ′(τ)
(

−
1
α

e−
α(ai+1−τ)

1−α +
1
α
−1

)

dτ.

(6)

Also, for everyα ≥ 1
2 it holds that

∣

∣

∣

∣

−
1
α

e−
α(ai+1−τ)

1−α +
1
α
−1

∣

∣

∣

∣

≤

∣

∣

∣

∣

−
1
α

e−
α(ai+1−τ)

1−α

∣

∣

∣

∣

+

∣

∣

∣

∣

1
α
−1

∣

∣

∣

∣

≤

≤ 2e−
α(ai+1−τ)

1−α +1≤ 3

(7)

and
∣

∣

∣

∣

−
1
α

(

e−
α(ai+1−τ)

1−α −e−
α(ai−τ)

1−α

)∣

∣

∣

∣

≤ 4. (8)
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Then, replacing (6) in (5) and applying the Lebesgue Convergence Theorem to each partof the finite sum (5) (due to
inequalities (7) and (8)), it follows that

lim
αր1

∣

∣

∣

∣

CF
a Dα f − f ′

∣

∣

∣

∣

L1(a,b) = lim
αր1

∫ b

a

∣

∣

CF
a Dα f (t)− f ′(t)

∣

∣dt =

= lim
αր1

∫ b

a

∣

∣

∣

∣

1
1−α

∫ t

a
f ′(τ)e−

α(t−τ)
1−α dτ − f ′(t)

∣

∣

∣

∣

dt =

=
M−1

∑
i=0

(−1)ki

∫ ai

a
f ′(τ) lim

αր1

[

−
1
α

(

e−
α(ai+1−τ)

1−α −e−
α(ai−τ)

1−α

)]

dτ+

+

∫ ai+1

ai

f ′(τ) lim
αր1

(

−
1
α

e−
α(ai+1−τ)

1−α +
1
α
−1

)

dτ

= 0.

(9)

Then
lim
αր1

CF
a Dα f (t) = f ′(t), a.e. in (a,b).

The limit in 1’ follows by applying the Fundamental Theorem of Calculus in1, after assuming thatf ∈ C (1)[a,b]. Finally,
integrating by parts under the assumption thatf ∈ C

2[a,b] in (3) gives

CF
a Dα f (t) =

1
α

[

f ′(t)− f ′(a)e−
α(t−a)
1−α −

∫ t

a
f ′′(τ)e−

α(t−τ)
1−α dτ

]

. (10)

Note that lim
αր1

f ′(a)e−
α(t−a)
1−α = 0 for everyt > a. Therefore, taking the limit whenα ր 1 in (10) the limit in 2’ holds.

Note 2.The previous proposition enables us to redefine the fractional Caputo–Fabrizio derivative given in Definition3 for
everyα ∈ (0,1]. Roughly speaking, we can say that the fractional Caputo–Derivative is a left–continuous operator at any
positive integer.

Remark.We would like to highlight that the convergence given in Proposition1 item 2’, does not necessary holds at the
lower extremet = a. It will be shown in Example2 that

CFDα sint =
1

(1−α)2+α2

(

α cost +(1−α)sint −αe
−αt
1−α

)

. (11)

From (11) it follows thatCFDα sin0= 0 for everyα ∈ (0,1), whereas that lim
αր1

CFDα sint = cost which tends to 1 when

t tends to 0.

Proposition 2.The following properties for the Caputo-Fabrizio derivative hold:

1.If u∈W1(a,b) and f(t) = CF
a Dαu(t) , then f(a) = 0.

2.Let g∈W1(a,b) be andα ∈ (0,1). Then for every a> 0, the following translation formula is valid:

CF
a Dαg(t) = CFDαg(t)−exp

{

−α(t −a)
1−α

}

CFDαg(a). (12)

Proof.1. Beingu a function inW1(a,b), it yields thatu∈
{

v ∈ L1(a,b) : v′ ∈ L1(a,b)
}

. Also we have thath(·) = e−
α(t−·)
1−α

is a continuous and hence en bounded function in[a,b]. Thenu(·)h(·) ∈
{

v ∈ L1(a,b) : v′ ∈ L1(a,b)
}

and from Theorem
8.1 of Chapter 8 of Brezis [2] , we have that

∫ t

a

(

u(τ)e−
α(t−τ)

1−α
)′

dτ = u(τ)e−
α(t−τ)

1−α
∣

∣

∣

t

a
. (13)

Using (13) in definition (3) it holds that

f (t) = CF
a Dαu(t) =

1
1−α

[

u(t)−u(a)e−
α(t−a)
1−α −

∫ t

a
u(τ)e−

α(t−τ)
1−α

α
1−α

dτ
]

.

Taking the limit whent ց a we get thatf (a) = 0.
2. Relation (12) is due to the property of the integral over adjacent intervals.
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Let us make the inverse reasoning. Suppose that we want to calculate a “Caputo–Fabrizio primitive” of some given
function f . That is, we want to find a functionu such that

CF
a Dαu(t) = f (t). (14)

Following the procedure described in [14] (that is, differentiating (14) respect on time to both sides and integrating later),
from Proposition2-1 we have

u(t)−u(a) = α
∫ t

a
f (τ)dτ +(1−α)[ f (t)− f (a)] = α

∫ t

a
f (τ)dτ +(1−α) f (t). (15)

CallingCF
a Iα f (t) to the right side in (15), the Barrow’s rule for the fractional integral of Caputo–Fabrizio holds:

u(t)−u(a) = CF
a Iα f (t) (16)

and the following definition becomes natural.

Definition 2.For everyα ∈ (0,1] and f ∈ L1(a,b) the fractional integral of Caputo-Fabrizio of f is defined by

CF
a Iα f (t) = (1−α) f (t)+α

∫ t

a
f (τ)dτ, t ≥ a. (17)

Proposition 3.Let f be a function in L1(a,b) or W1(a,b) as required. Then

1.The fractional integral of Caputo-Fabrizio is an inverseoperator of the fractional derivative of Caputo-Fabrizio if and
only if f(a) = 0. That is,

CF
a Iα (CF

a Dα f (t)
)

= f (t)⇔ f (a) = 0.

2.The fractional derivative of Caputo-Fabrizio is an inverse operator of the fractional integral of Caputo-Fabrizio if and
only if f(a) = 0.

CF
a Dα (CF

a Iα f (t)
)

= f (t)⇔ f (a) = 0.

Proof.By using Proposition2-1 and Fubini’s theorem it holds that

CF
a Iα (CF

a Dα f (t)
)

= f (t)− f (a),

and then 1. holds.
Integration by parts yields that

CF
a Dα (CF

a Iα f (t)
)

= f (t)− f (a)exp

{

−
αt

1−α

}

, (18)

and then 2. holds.

Note 3.It is interesting the fact that the fractional derivativeCF
a Dα , in general, is not a left inverse operator of the fractional

integralCF
a Iα , which is not the case when we consider fractional derivatives in the Caputo and Riemann–Liouville sense.

In fact, these derivatives are both left inverse operators of the fractional integral of Rieman–Liouville (see for example
[6]).
However, whenα ր 1 we hope to recover, as we know thatD1(I1 f ) = f for every integrable functionf . Makingα tends
to 1 in equation (18) it holds that, for everyt ∈ [a,b]

lim
αր1

CF
a Dα (CF

a Iα f (t)
)

= lim
αր1

[

f (t)− f (a)exp

{

−
αt

1−α

}]

= f (t).

Proposition 4.Let α ∈ (0,1) andβ > 0 be. Then

CF
a Dα(t −a)β =

β
α
(t −a)β−1

[

1−Γ (β )E1,β

(

−
α

1−α
(t −a)

)]

, (19)

where Eα ,β (·) is the Mittag–Leffler function defined for every t∈R by

Eα ,β (t) =
∞

∑
k=0

tk

Γ (αk+β )

andΓ (·) is the Gamma function.
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Proof.Recall the Beta function defined by

B(z,w) =
∫ 1

0
tz−1(1− t)w−1dt, z> 0, w> 0. (20)

A known property of this function (see p. 10 of [7]) is that

B(z,w) =
Γ (z)Γ (w)
Γ (z+w)

. (21)

From (20) and (21) it easily follows that
∫ t

a
(τ −a)z−1(t − τ)w−1dτ = B(z,w)(t −a)z+w−1 =

Γ (z)Γ (w)
Γ (z+w)

(t −a)z+w−1. (22)

Now, by using the uniform convergence of the series we have

CF
a Dα(t −a)β =

1
1−α

∫ t

a
β (τ −a)β−1e−

α
1−α (t−τ)dτ

=
β

1−α

∫ t

a
(τ −a)β−1

∞

∑
k=0

(−1)k

k!

(

α
1−α

)k

(t − τ)kdτ

=
β

1−α

∞

∑
k=0

∫ t

a
(τ −a)β−1(−1)k

k!

(

α
1−α

)k

(t − τ)kdτ.

(23)

Takingz= β andw= k+1 in (22) and replacing then in (23) we get

CF
a Dα(t −a)β =

β
1−α

∞

∑
k=0

(−1)k

k!

(

α
1−α

)k∫ t

a
(τ −a)β−1(t − τ)kdτ

=
β

1−α

∞

∑
k=0

(−1)k

k!

(

α
1−α

)k

(t −a)β+k Γ (β )k!
Γ (β + k+1)

=
βΓ (β )

α
(t −a)β−1

[

−
∞

∑
k=1

(

− α
1−α (t −a)

)k

Γ (k+β )

]

=
βΓ (β )

α
(t −a)β−1

[

1
Γ (β )

−E1,β

(

−
α

1−α
(t −a)

)]

=
β
α
(t −a)β−1

[

1−Γ (β )E1,β

(

−
α

1−α
(t −a)

)]

.

Remark.From Eq. (7) of Chapter 18.1 in Erdélyi [8] we deduce that

lim
x→∞

E1,β (−x) = 0, ∀β > 0.

Then

lim
αր1

β
α
(t −a)β−1

[

1−Γ (β )E1,β

(

−
α

1−α
(t −a)

)]

= β (t −a)β−1.

Remark.Proposition4 can be used to give an example of a functionf which is not differentiable (in the classical sense) at
t = a but it is “Caputo-Fabrizio differentiable” att = a. Takinga= 0 andβ = α/2 in (19) we have

CFDα tα/2 =
α/2

α
tα/2−1

[

1−Γ (α/2)E1,α/2

(

−
α

1−α
t

)]

=
1
2

tα/2−1

[

1−Γ (α/2)
∞

∑
k=0

(

− α
1−α t

)k

Γ
(

k+ α
2

)

]

=
1
2

tα/2−1

[

−Γ (α/2)
∞

∑
k=1

(

− α
1−α t

)k

Γ
(

k+ α
2

)

]

=
−Γ (α/2)

2

(

1−α
α

)α/2−1 ∞

∑
k=1

(−1)k
( α

1−α t
)k+α/2−1

Γ
(

k+ α
2

)

(24)
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And this function can be defined by 0 att = 0 becausek+α/2−1> 0 for everyk≥ 1.

Corollary 1.If α ∈ (0,1) and m∈ N, then

CF
a Dα(t −a)m =

m
α
(t −a)m−1+

m!
α

m−2

∑
k=0

(

−
1−α

α

)m−k−1 (t −a)k

k!
−

m!
α

(

−
1−α

α

)m−1

exp

{

−
α

1−α
(t −a)

}

.

(25)

In the right side of (25) we see that the first term (which is the dominant one) does nottends to zero whenα tends to 1. The
second addend is closely related to the memory effect of the operator, and the third term is the “exponential perturbation”
which is a natural consequence of the considered operator.

Proof.Taking into account that the Mittag–Leffler function verifies that

E1,m(t) =
1

tm−1

[

exp{t}−
m−2

∑
k=0

tk

k!

]

, and replacing it in (19) we have

CF
a Dα(t −a)m=

m
α
(t −a)m−1

[

1−Γ (m)E1,m

(

−
α

1−α
(t −a)

)]

=
m
α
(t −a)m−1

{

1−
Γ (m)

[

− α
1−α (t −a)

]m−1

[

exp

{

−
α

1−α
(t −a)

}

−
m−2

∑
k=0

[

− α
1−α (t −a)

]k

k!

]}

=
m
α
(t −a)m−1+

1
α

m−2

∑
k=0

m!
k!

(

−
1−α

α

)m−k−1

(t −a)k−
m!
α

(

−
1−α

α

)m−1

exp

{

−
α

1−α
(t −a)

}

Fig. 1: CFDα t for some values ofα.
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Let us see other examples related to some classical functions.

Example 1.The exponential function
It is easy to see that

CFDαect =

{

c
c(1−α)+α

[

ect −e−
αt

1−α
]

if c(1−α)+α 6= 0,
ct

1−α e
−αt
1−α if c(1−α)+α = 0.

(26)

Takingc= 1 in (26)

CFDαet = et −e−
αt

1−α ,

and the expected limit holds:
lim
αր1

CFDαet = et .

Another interesting result is whena=−∞ andc>− α
1−α . In fact:

C
−

F
∞Dαect =

1
1−α

∫ t

−∞
cecτe−

α(t−τ)
1−α dτ =

=
c

c(1−α)+α

(

e
c(1−α)t

1−α − lim
s→−∞

e
(c−cα+α)s−αt

1−α

)

=
c

c(1−α)+α
ect

which gives the following special result forc= 1:

C
−

F
∞Dαet = et .

Example 2.The fractional derivative of the sine function.
Integrating by parts it holds that

CFDα sin(t) =
1

1−α
sin(t)+

α
(1−α)2 cos(t)−

α
(1−α)2e−

αt
1−α −

α2

(1−α)2
CFDα sin(t) (27)

Then
CFDα sin(t) =

1
(1−α)2+α2

(

α cos(t)+ (1−α)sin(t)−αe−
αt

1−α
)

. (28)

Noting thate−
αt

1−α tends to 0 whenα ր 1, it follows that

lim
αր1

CFDα sint = cos(t).

Analogously,
CFDα cos(t) =

1
(1−α)2+α2

(

−α sin(t)+ (1−α)cos(t)− (1−α)e−
αt

1−α
)

and
lim
αր1

CFDα cos(t) =−sin(t).

See Figure 2 where some graphics related to this compute are exhibited.

Remark.Finally, let us present three computational examples whichproves that the changes in a time interval in the past
makes consequences in the output function given by the CF operator. Consider the three functions defined inR

+
0 as

f1(t) = t2, (29)

f2(t) =

{

t 0≤ t ≤ 1
t2 1< t,

(30)

c© 2019 NSP
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Fig. 2: CFDα sint for some values ofα.

and

f3(t) =

{

2t −1 0≤ t ≤ 1
t2 1< t.

(31)

Note that fi agree in a neighbourhood oft = 2 for i = 1,2,3, being f1 and f3 differentiable functions and
f2 ∈ H1(0,b) for everyb> 0 with a jump for its derivative att = 1.

Let us see thatCF
0 Dα f1(2) 6= CF

0 Dα f2(2) 6= CF
0 Dα f3(2) for everyα ∈ (0,1), while for the local classical derivative we

have thatf ′1(2) = f ′2(2) = f ′3(2).
From Corollary1, we have that

CF
0 Dα f1(2) =

4
α
−

2(1−α)

α2 +
2(1−α)

α2 e−
2α

1−α . (32)

Now, for everyt > 1

CF
0 Dα f2(t) =

1
1−α

∫ t

0
e−

α
1−α (t−τ) f ′2(τ)dτ.

=
1

1−α

∫ 1

0
e−

α
1−α (t−τ)dτ +

1
1−α

∫ t

1
e−

α
1−α (t−τ)2τdτ.

(33)

Integrating (33) and then evaluating att = 2 we have

CF
0 Dα f2(2) =

4
α
−

2(1−α)

α2 −
e−

2α
1−α

α
+

2−3α
α

e−
α

1−α . (34)

Let h be the function defined ash(α) = CF
0 Dα f1(2)−CF

0 Dα f2(2) for everyα in (0,1). Then

h(α) =
2−α

α2 e−
2α

1−α −
2−3α

α
e−

α
1−α 6= 0 for everyα ∈ (0,1). (35)

Note thath(α)→ 0 whenα ր 1.
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Analogously, for everyt > 1, we have

CF
0 Dα f3(t) =

1
1−α

∫ t

0
e−

α
1−α (t−τ) f ′3(τ)dτ.

=
1

1−α

∫ 1

0
e−

α
1−α (t−τ) ·2dτ +

1
1−α

∫ t

1
e−

α
1−α (t−τ)2τdτ.

(36)

Substituting byt = 2 it yields that

CF
0 Dα f3(2) =

4
α
−

2(1−α)

α2 −
2
α

e−
2α

1−α +
2(1−α)

α2 e−
α

1−α . (37)

Again, letg be the function defined asg(α) = CF
0 Dα f1(2)−CF

0 Dα f3(2) for everyα in (0,1) be. Then

g(α) =
2

α2 e−
2α

1−α −
2(1−α)

α2 e−
α

1−α 6= 0 for everyα ∈ (0,1), (38)

while g(α)→ 0 whenα ր 1.

3 Global Solution to a Nonlinear Fractional Differential Equation

The following Theorem is similar (not equal and the differences will be especified later) to Theorem 1 in the work of
Losada and Nieto [14] as well as its proof.

Theorem 1.Let ϕ : [a,∞)×R→ R be a Lipschitz function respect on the second variable with constant L, i.e.

|ϕ(t,s1)−ϕ(t,s2)| ≤ L|s1− s2| ∀s1,s2 ∈ R,

and letα ∈ (0,1) be such that L< 1
1−α . Then ifϕ(a,a0) = 0, problem

{

CF
a Dα f (t) = ϕ(t, f (t)), t > a,

f (a) = a0
(39)

has a unique solution f∈ C [a,T], for every T∈
(

a,a+ 1−(1−α)L
αL

)

.

The differences from Theorem1 and [14, Theorem 1] are:

i)The definitions of the Caputo–Fabrizio derivative (3) and integral (17) are different from those considered in [14].
ii)The initial time is general (not necessary given by 0).
iii)The order of differenciationα depends on the Lipschitz constantL.
iv)The assumptionϕ(a,a0) = 0 is imposed by Proposition2-1 (and it is also necessary in the performance of the proof).

Theorem 2.Let ϕ : [0,∞)×R → R be a Lipschitz function respect on the second variable with constant L, and let be
α ∈ (0,1) such that L< 1

1−α . Then, problem
{

CFDα f (t) = ϕ(t, f (t)), t > 0,
f (0) = a0

(40)

has a unique solution f∈ C [0,T], for every finite time T∈ R
+, that is, globally in time.

Proof.Let the pair{T1, f1} given by Theorem1 which solves the problem

{

CFDα f (t) = ϕ(t, f (t)), t > 0,
f (0) = a0

(41)
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in the interval[0,T1]. Consider next the problem

{

CFDα f (t) = ϕ(t, f (t)), t > T1

f (t) = f1(t) ∀ t ∈ [0,T1].
(42)

By using the translation formula given in Proposition2-2, it holds that problem (42) is equivalent to

{

CF
T1

Dα f (t) = ϕ(t, f (t))−e−
α(t−T1)

1−α CFDα f (T1), t > T1

f (t) = f1(t), ∀ t ∈ [0,T1].
(43)

Also, beingf1 the solution to problem(41), problem(43) is equivalent to

{

CF
T1

Dα f (t) = ϕ(t, f (t))−e−
α(t−T1)

1−α ϕ(T1, f1(T1)), t > T1

f (t) = f1(t) ∀ t ∈ [0,T1].
(44)

Let us focus now in the sub-problem related to(44) given by

{

CF
T1

Dα f (t) = Φ(t, f (t)), t > T1

f (T1) = f1(T1)
(45)

whereΦ(t,x) = ϕ(t,x)−e−
α(t−T1)

1−α ϕ(T1, f1(T1)).

Being ϕ a Lipschitz function respect on the second variable with constantL ande−
α(t−T1)

1−α ≤ 1 for everyt ≥ T1, easily
follows thatΦ is a Lipschitz function respect on the second variable with constantL. By hypothesisL < 1

1−α , then we can
apply Theorem1 to (45), and there exists a pair{T2, f2} such thatf2 is the unique solution to problem (45) in the interval
[T1,T2], where

T2−T1 <
1− (1−α)L

αL
. (46)

Note that the same argument can be used to obtain a solution toproblem















CF
T2

Dα f (t) = ϕ(t, f (t))−e−
α(t−T2)

1−α CFDα f (T2), t > T2

f (t) =

{

f2(t) t ∈ (T1,T2]

f1(t) t ∈ [0,T1]

. (47)

Also recalling thatf1 is a solution to problem (42) and f2 is a solution to problem (45), we have

CFDα f (T2) =
1

1−α

∫ T2

0
f ′(τ)e−

α(T2−τ)
1−α dτ

=
1

1−α
e−

α(T2−T1)
1−α

∫ T1

0
f ′1(τ)e

−
α(T1−τ)

1−α dτ +
1

1−α

∫ T2

T1

f ′2(τ)e
−

α(T2−τ)
1−α dτ

= e−
α(T2−T1)

1−α ϕ(T1, f (T1))+
CF

T1
Dα f (T2)

= e−
α(T2−T1)

1−α ϕ(T1, f (T1))+ϕ(T2, f (T2))−e−
α(T2−T1)

1−α CFDα f (T1)

= ϕ(T2, f (T2))

and then, problem (47) can be written as











CF
T2

Dα f (t) = Φ2(t, f (t)), t > T2

f (t) =

{

f2(t) t ∈ (T1,T2]

f1(t) t ∈ [0,T1]

(48)
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whereΦ2(t,x) = ϕ(t,x)− e−
α(t−T2)

1−α ϕ(T2, f (T2)) . Once again, by Theorem1 there exists a unique solution to the sub-
problem

{

CF
T2

Dα f (t) = Φ(t, f (t)), t > T2

f (T2) = f2(T2)
(49)

for everyT3 such that

T2 < T3 < T2+
1− (1−α)L

αL
. (50)

Calling ∆T to some positive constant such that 0< ∆T <
1−(1−α)L

αL , successively applying the former procedure, there
exists a continuous functionfN which is the unique solution to

{

CFDα f (t) = ϕ(t, f (t)), 0< t < N∆T
f (0) = a0

(51)

for everyN ∈ N. BeingN an arbitrary natural, the solution of problem (41) is globally defined in time.

Remark.The effects of memory in the Caputo-Fabrizio derivative areshown in the need of considering the sub-problem
(44) with an “initial condition” which must be known all over theinterval [0,T1], in contrast to the local property of the
classical derivative which requires only the initial condition at the timeT1.

4 Conclusions

We have analyzed and proved some useful properties related to the fractional Caputo–Fabrizio derivative such as
translation property, convergence to integer order derivatives and inverse operator. Also a computation of this fractional
derivative to power functions, sin and cosine functions, and exponential function were given, attempting to provide, in
each case, expressions as simple as possible. Note that the terms that converges to zero whenα ր 1 were visually
separated than the terms that converges to the classical derivatives. Finally, an existence and uniqueness of a global
solution to a nonlinear fractional differential equation was proved.
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