
Received: 23 February 2018

DOI: 10.1002/mma.5196

R E S E A R C H A R T I C L E

Two different fractional Stefan problems that are
convergent to the same classical Stefan problem

Sabrina D. Roscani Domingo A. Tarzia

CONICET - Departamento de
Matemática, FCE, Universidad Austral
de Rosario, Paraguay 1950, S2000FZF
Rosario, Argentina

Correspondence
Sabrina D. Roscani, CONICET -
Departamento de Matemática, FCE,
Universidad Austral de Rosario, Paraguay
1950, S2000FZF Rosario, Argentina.
Email: sabrinaroscani@gmail.com

Funding information
CONICET, Grant/Award Number: PIP
0275; ANPCyT PICTO Austral 2016,
Grant/Award Number: 090

MSC Classification: 35R11; 26A33; 35C05;
33E20; 80A22

Two fractional Stefan problems are considered by using Riemann-Liouville and
Caputo derivatives of order 𝛼 ∈ (0, 1) such that, in the limit case (𝛼 = 1), both
problems coincide with the same classical Stefan problem. For the one and the
other problem, explicit solutions in terms of the Wright functions are presented.
We prove that these solutions are different even though they converge, when
𝛼 ↗ 1, to the same classical solution. This result also shows that some limits are
not commutative when fractional derivatives are used.
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1 INTRODUCTION

In this paper, two fractional Stefan problems are considered. These kind of problems are free boundary problems where
the governed equation is a fractional diffusion equation in the temporal variable t.

A one-phase classical Stefan problem for a semi-infinite material with initial and boundary conditions can be
formulated as

(i) 𝜕

𝜕t
u(x, t) = 𝜆

𝜕2

𝜕x2 u(x, t), 0 < x < s(t), 0 < t < T,

(ii) u(x, 0) = 𝑓 (x), 0 ≤ x ≤ b = s(0),

(iii) u(0, t) = g(t), 0 < t ≤ T,

(iv) u(s(t), t) = 0, 0 < t ≤ T,

(v) d
dt

s(t) = −k 𝜕

𝜕x
u(s(t), t), 0 < t ≤ T,

(1)

where 𝜆 is the diffusivity and k is the conductivity of the material. This kind of problems have been widely studied (see
other works1-3).

The fractional Caputo derivative4 in the t variable is defined by

C
0 D𝛼

t u(x, t) = 0I1−𝛼
t ut(x, t) = 1

Γ(1 − 𝛼) ∫
t

0

𝜕

𝜕t
u(x, 𝜏)

(t − 𝜏)𝛼
d𝜏, (2)
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where 0I𝛽t 𝑓 (x, t) = 1
Γ(𝛽)

∫ t
0

𝑓 (x,𝜏)
(t−𝜏)1−𝛽

d𝜏 is the fractional Riemann-Liouville integral defined for every 𝛽 > 0, and Γ is the
Gamma function.

If we replace in problem (1) the time derivative by the Caputo derivative (2), then the following fractional one-phase
Stefan problem is obtained:

(i) C
0 D𝛼

t u(x, t) = 𝜆2 𝜕

𝜕x2 u(x, t), 0 < x < s(t), 0 < t < T,

(ii) u(x, 0) = 𝑓 (x), 0 ≤ x ≤ b = s(0),
(iii) u(0, t) = g(t), 0 < t ≤ T,
(iv) u(s(t), t) = 0, 0 < t ≤ T,
(v) C

0 D𝛼s(t) = −ux(s(t), t), 0 < t ≤ T.

(3)

Some works5-11 focused in problems like (3).
Let us aboard now the physical approach. The classical mathematical model for heat flux is through the Fourier law,

which says that the heat flux is proportional to the temperature gradient

ql(x, t) = −k 𝜕

𝜕x
u(x, t). (4)

However, in the last 40 years, many generalizations of the Fourier law has been proposed,12-16 giving rise to the emergence
of new models. In particular, Gurtin and Pipkin17 proposed the following law for the heat conduction, characterized by
the nonlocality given by:

q = −k ∫
t

0
K(t − 𝜏)∇u(𝜏)d𝜏,

and different theories can be developed from the consideration of different kernels of convolution. For example, in the
works of Povstenko18 and Voller et al,19 a nonlocal flow given by

q = −k RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t) (5)

is considered, where the fractional derivative is the Riemann-Liouville derivative respect on time of order 1 − 𝛼(𝛼 ∈ (0, 1))
defined by

RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t) = 1

Γ(𝛼)
𝜕

𝜕t ∫
t

0

𝜕

𝜕x
u(x, 𝜏)

(t − 𝜏)1−𝛼 d𝜏, 𝛼 ∈ (0, 1).

Note that the nonlocal flux coincide with the Fourier flux for 𝛼 = 1 because RL
0 D0

t = Id.
Therefore, we consider this nonlocal flux. If (5) is replaced in the heat balance equation, then a fractional diffusion

equation for the fractional Riemann-Liouville derivative is obtained

𝜕

𝜕t
u(x, t) = 𝜆

𝜕

𝜕x

(
RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t)

)
. (6)

Recalling that RL
0 D1−𝛼

t is the left inverse operator of 0I1−𝛼
t , we can apply RL

0 D1−𝛼
t to both sides of equation (3-i) obtaining,

under certain hypothesis, the fractional diffusion equation (6).
Fractional diffusion equations for Caputo derivatives, like (3-i), are linked to the modeling of diffusive processes in

heterogeneous media, such called sub or superdiffusive processes (see related works20-23).
Now, let us focus in the Stefan condition. The classical Stefan condition derived in a one-phase Stefan problem is

given by
d
dt

s(t) = ql(x, t)|||(s(t)−,t), 0 < t ≤ T, (7)

where ql is the local flux given by (4). Thus, replacing the nonlocal flux (5) in (7), we obtain the following “fractional
Stefan condition”:

d
dt

s(t) = − RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t)

||||(s(t),t), 0 < t ≤ T.
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Therefore, the second fractional Stefan problem that we can consider is given by

(i) 𝜕

𝜕t
u(x, t) = 𝜆

𝜕

𝜕x

(
RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t)

)
, 0 < x < s(t), 0 < t < T,

(ii) u(x, 0) = 𝑓 (x), 0 ≤ x ≤ b = s(0),
(iii) u(0, t) = g(t), 0 < t ≤ T,
(iv) u(s(t), t) = 0, 0 < t ≤ T,

(v) d
dt

s(t) = − RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t)

||||(s(t),t), 0 < t ≤ T.

(8)

The last formulation is not usually considered because of the singularity of the Riemann-Liouville derivative and also
because the Caputo derivative is a better choice for posing fractional initial-boundary problems for fractional parabolic
operators.

We have seen that equations (8-i) and (3-i) are closely linked. However, what happen with the fractional Stefan
conditions (8-v) and (3-v)?

For example, if we apply RL
0 D1−𝛼

t to both sides of the Stefan condition (3-v), we get

d
dt

s(t) = −RL
0 D1−𝛼

t
𝜕

𝜕x
u(s(t), t),

which is not exactly as condition (8-v), unless 𝛼 = 1. In fact, the right side of (8-v) is

− RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t)

||||(s(t),t) = − lim
x→s(t)

RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t)

= − lim
x→s(t)

𝜕

𝜕t
1

Γ(𝛼) ∫
t

0
(t − 𝜏)𝛼−1 𝜕

𝜕x
u(x, 𝜏)d𝜏.

(9)

The aim of this paper is to show explicit solutions to problems (3) and (8), respectively, and prove that they are different,
which clearly implies that the “fractional Stefan conditions” (8-v) and (3-v) are different and that for fractional derivatives
some limits like (9) are not commutative.

2 PREVIOUS RESULTS

Definition 1. For every x ∈ R, Wright function is defined by

W(x; 𝜌; 𝛽) =
∞∑

k=0

xk

k!Γ(𝜌k + 𝛽)
, 𝜌 > −1 and 𝛽 ∈ R. (10)

An important particular case of a Wright function is the Mainardi function defined by

M𝜌(x) = W(−x,−𝜌, 1 − 𝜌) =
∞∑

n=0

(−x)n

n!Γ (−𝜌n + 1 − 𝜌)
, 0 < 𝜌 < 1.

Proposition 1. Let 𝜌 ∈ (0, 1) be. Then, the next assertions follows.

1. Let 𝛽 ∈ R be. For every x ∈ R, we have
𝜕

𝜕x
W(x, 𝜌, 𝛽) = W(x, 𝜌, 𝜌 + 𝛽).

2. If 𝛽 ≥ 0, then W( − x, − 𝜌, 𝛽) is a positive and strictly decreasing function in R+.
3. Let 𝛼 > 0 and 𝛽 ∈ R be. For every x > 0 and c > 0,

0I𝛼x x𝛽−1W (−cx−𝜌,−𝜌, 𝛽) = x𝛽+𝛼−1W (−cx−𝜌,−𝜌, 𝛽 + 𝛼) . (11)

Proof. See the work of Wright24 for 1. Item 2 follows from theorem 8 in the work of Stankovic25 and the chain rule.
Item 3 is a particular case of corollary 5 in the work of Pskhu.26
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Lemma 1. For every n ∈ N, it holds that27

1. (2n)! = 2nn!(2n − 1)!!.
2. Γ

(
n + 1

2

)
= (2n−1)!!

2n

√
𝜋,

where the definition (2n − 1)!! = (2n − 1)(2n − 3) · · · 5 · 3 · 1 is used for compactness expression.

Proposition 2. Let x ∈ R
+
0 be. Then, the following limits hold:

lim
𝛼↗1

M𝛼∕2 (2x) = lim
𝛼↗1

W
(
−2x,−𝛼

2
, 1 − 𝛼

2

)
= M1∕2(2x) = e−x2√

𝜋
, (12)

lim
𝛼↗1

W
(
−2x,−𝛼

2
,
𝛼

2

)
= e−x2√

𝜋
, (13)

lim
𝛼↗1

[
1 − W

(
−2x,−𝛼

2
, 1
)]

= erf(x), (14)

and
lim
𝛼↗1

[
W

(
−2x,−𝛼

2
, 1
)]

= erfc(x), (15)

where erf(·) is the error function defined by erf(x) = 2√
𝜋
∫ x

0 e−z2 dz and erfc(·) is the complementary error function defined
by erfc(x) = 1 − erf(x). Moreover, the convergence is uniform over compact sets.

Proof. See the work of Roscani and Santillan Marcus9 for (12) and (14). Now, for proving (13), let 𝛼 be such that
0 < 𝛼 < 1. From (10),

W
(
−2x; −𝛼

2
; 𝛼

2

)
=

∞∑
k=0

(−2x)k

k!Γ
(
− 𝛼

2
k + 𝛼

2

) . (16)

Let us limit the series by a convergent series, which not depend on 𝛼, so we can apply the Weierstrass M-test and
interchange the series and the limit. Recall that, for all x ∈ R,28

1
Γ(x)Γ(1 − x)

= sin(𝜋x)
𝜋

, (17)

and for every k ∈ N,
Γ(k + 1) = kΓ(k). (18)

Then, |||||||
1

k!Γ
(
− 𝛼

2
k + 𝛼

2

)||||||| =
|||||||

1

Γ(k + 1)Γ
(

1 − 𝛼

2
k + 𝛼

2
− 1

)|||||||
=
|||||||
Γ
(

𝛼

2
k − 𝛼

2
+ 1

)
sin

(
𝜋

(
𝛼

2
k − 𝛼

2
+ 1

))
𝜋Γ(k + 1)

|||||||
≤
|||||||
Γ
(

𝛼

2
(k − 1) + 1

)
𝜋Γ(k + 1)

||||||| .
(19)

Now, let x∗ > 0 be the abscissa of the minimum of the Gamma function and let k0 such that 𝛼

2
(k0 − 1) + 1 > x∗.

Applying that the Gamma function is an increasing function in (x∗,+∞), it yields|||||||
Γ
(

𝛼

2
(k − 1) + 1

)
Γ(k + 1)

||||||| ≤
Γ
(

k
2
+ 1

2

)
Γ(k + 1)

, for all k ≥ k0. (20)

Let us separate in even and odd terms. If k = 2n, n ∈ N, then applying Lemma 1, it results that

Γ
(

k
2
+ 1

2

)
Γ(k + 1)

=
Γ
(

n + 1
2

)
Γ(2n + 1)

=
(2n − 1)!!

√
𝜋

2n(2n)!
<

1
2n = 1√

2
k
. (21)
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If k = 2n + 1, n ∈ N, from Lemma 1, we have

Γ
(

k
2
+ 1

2

)
Γ(k + 1)

= Γ (n + 1)
Γ(2n + 2)

= n!
(2n + 1)!

= n!
(2n + 1)2nn!(2n − 1)!!

=

= 1
(2n + 1)2n(2n − 1)!!

≤ 1
2n+1 = 1

2
k+1

2

<
1√
2

k
.

(22)

From (21) and (22), we can state that

Γ
(

k
2
+ 1

2

)
Γ(k + 1)

≤ 1√
2

k
, for all k ≥ k0. (23)

From (19), (20), and (23), it results that the series (16) is bounded by a convergent series that not depend on 𝛼. Taking
the limit when 𝛼 ↗ 1, using (17) and Lemma 1, the limit (13) holds

lim
𝛼↗1

W
(
−2x; −𝛼

2
; 𝛼

2

)
=

=
∞∑

k=0
lim
𝛼↗1

x2k

(2k)!Γ
(
− 𝛼

2
2k + 1 − 𝛼

2

) +
∞∑

k=0
lim
𝛼↗1

−x2k+1

(2k + 1)!Γ(1 − 𝛼(k + 1))

=
∞∑

k=0

x2k

(2k)!Γ
(
−k + 1

2

) =
∞∑

k=0

x2kΓ
(

k + 1
2

)
sin(𝜋((−k + 1∕2)))

𝜋(2k)!

= 1√
𝜋

∞∑
k=0

(
−x2)k

4kk!
= 1√

𝜋
e−

x2

4 .

Remark 1. Proposition 2 shows that two different Wright functions Γ
(

1 − 𝛼

2

)
M𝛼∕2 (2x) and Γ

(
𝛼

2

)
W

(
−2x,− 𝛼

2
,
𝛼

2

)
are convergent to the Gaussian function G(x) = e−x2 . A graphic for a particular value is given in Figure 1 and the key
of this article is to prove that these functions does not intersect for any positive real value.

FIGURE 1 Functions Γ
(

1 − 𝛼

2

)
M𝛼∕2(2x) and Γ

(
𝛼

2

)
W

(
−2x,− 𝛼

2
,
𝛼

2

)
, for 𝛼 = 3

4
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Proposition 3. Let x > 0 be and let 0 < 𝜌 ≤ 𝜇 < 𝛿. Then,

Γ(𝛿)W(−x,−𝜌, 𝛿) < Γ(𝜇)W(−x,−𝜌, 𝜇).

Proof. Consider 𝛼 = 𝛿 − 𝜇 and 𝛽 = 𝜇 in (11). Then,

0I𝛿−𝜇𝑦 𝑦𝜇−1W (−c𝑦−𝜌,−𝜌, 𝜇) = 𝑦𝛿−1W (−c𝑦−𝜌,−𝜌, 𝛿) . (24)

Making the substitution y = x−1/𝜌, using (24) and Proposition 1, it yields that

W(−x,−𝜌, 𝛿) = W(−𝑦−𝜌,−𝜌, 𝛿) = 𝑦−𝛿+1
0I𝛿−𝜇𝑦 𝑦𝜇−1W(−𝑦−𝜌,−𝜌, 𝜇) =

= 𝑦−𝛿+1 1
Γ(𝛿 − 𝜇)

𝑦

∫
0

t𝜇−1W (−t−𝜌,−𝜌, 𝜇) (𝑦 − t)𝛿−𝜇−1dt

< 𝑦−𝛿+1 1
Γ(𝛿 − 𝜇)

W(−𝑦−𝜌,−𝜌, 𝜇)

𝑦

∫
0

t𝜇−1(𝑦 − t)𝛿−𝜇−1dt

= 𝑦−𝛿+1 1
Γ(𝛿 − 𝜇)

W(−𝑦−𝜌,−𝜌, 𝜇)Γ(𝜇 − 1 + 1)Γ(𝛿 − 𝜇)
Γ(𝛿)

𝑦𝛿−1

= Γ(𝜇)
Γ(𝛿)

W(−𝑦−𝜌,−𝜌, 𝜇) = Γ(𝜇)
Γ(𝛿)

W(−x,−𝜌, 𝜇).

3 TWO DIFFERENT EXPLICIT SOLUTIONS

We consider two particular fractional Stefan problems

(i) C
0 D𝛼

t u(x, t) = 𝜕

𝜕x2 u(x, t), 0 < x < s(t), 0 < t < T,

(ii) s(0) = 0,
(iii) u(0, t) = 1, 0 < t ≤ T,
(iv) u(s(t), t) = 0, 0 < t ≤ T,
(v) C

0 D𝛼s(t) = −ux(s(t), t), 0 < t ≤ T,

(25)

and

(i) 𝜕

𝜕t
u(x, t) = 𝜕

𝜕x

(
RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t)

)
, 0 < x < s(t), 0 < t < T,

(ii) s(0) = 0,
(iii) u(0, t) = 1, 0 < t ≤ T,
(iv) u(s(t), t) = 0, 0 < t ≤ T,

(v) d
dt

s(t) = − RL
0 D1−𝛼

t
𝜕

𝜕x
u(x, t)

||||(s(t),t), 0 < t ≤ T.

(26)

It was proved in the work of Roscani and Santillan Marcus9 that the pair {w𝛼, r𝛼} is a solution to problem (25), where

w𝛼(x, t) =1 − 1

1 − W
(
−2𝜂𝛼,− 𝛼

2
, 1
) [

1 − W
(
− x

t𝛼∕2 ,−
𝛼

2
, 1
)]

,

r𝛼(t) =2𝜂𝛼t𝛼∕2,

(27)

and 𝜂𝛼 is the unique solution to the equation

2x
[
1 − W

(
−2x,−𝛼

2
, 1
)]

= M𝛼∕2(2x)
Γ(1 − 𝛼∕2)
Γ(1 + 𝛼∕2)

, x > 0. (28)
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By the other side, it was proved in the work of Roscani and Tarzia29 that the pair {u𝛼, s𝛼} is a solution to problem (26),
where

u𝛼(x, t) =1 − 1

1 − W
(
−2𝜉𝛼,− 𝛼

2
, 1
) [

1 − W
(
− x

t𝛼∕2 ,−
𝛼

2
, 1
)]

s𝛼(t) =2𝜉𝛼t𝛼∕2,

(29)

and 𝜉𝛼 is the unique solution to the equation

2x
[
1 − W

(
−2x,−𝛼

2
, 1
)]

= 2xW
(
−2x,−𝛼

2
, 1
)
+ W

(
−2x,−𝛼

2
, 1 + 𝛼

2

)
, x > 0. (30)

Looking at the similarity between solutions (27) and (29), it is natural to ask whether both are the same solution or not.

Theorem 1. The explicit solutions (27) to problem (25) and (29) to problem (26) are different.

Proof. From the work of Wright,24 we know that, for every x ∈ R, the next equality holds

xW
(
−x,−𝛼

2
, 1
)
+ W

(
−x,−𝛼

2
, 1 + 𝛼

2

)
= 2

𝛼
W

(
−x,−𝛼

2
,
𝛼

2

)
. (31)

Replacing equality (31) into (30), we can say that the parameter 𝜉𝛼 appearing in solution (29) is the unique solution
to the equation

2x
[
1 − W

(
−2x,−𝛼

2
, 1
)]

= 2
𝛼

W
(
−2x,−𝛼

2
,
𝛼

2

)
, x > 0. (32)

By the other side, we know that the parameter 𝜂𝛼 , which is part of the solution (27) to problem (25), is the unique
solution to Equation (28).

Therefore, if we suppose that solutions (27) and (29) coincides, from (28) and (32), we can conclude that there exists
𝜈𝛼 > 0 such that

M𝛼∕2(2𝜈𝛼)
Γ(1 − 𝛼∕2)
Γ(1 + 𝛼∕2)

= 2
𝛼

W
(
−2𝜈𝛼,−

𝛼

2
,
𝛼

2

)
or equivalently,

M𝛼∕2(2𝜈𝛼)Γ(1 − 𝛼∕2) = Γ(𝛼∕2)W
(
−2𝜈𝛼,−

𝛼

2
,
𝛼

2

)
.

However, this is a contradiction from Proposition 3 and then the thesis holds.

Theorem 2. If we take the limit when 𝛼 ↗ 1, the solutions (29) and (27) converge to the unique solution {u, s} to the
classical Stefan problem

(i) ut(x, t) = 𝜕

𝜕x2 u(x, t), 0 < x < s(t), 0 < t < T,

(ii) u(0, t) = 1, 0 < t ≤ T,
(iii) u(s(t), t) = 0, 0 < t ≤ T, s(0) = 0,
(iv) s′(t) = −ux(s(t), t), 0 < t < T.

(33)

Proof. The unique solution to problem (33) is given by (see, eg, the works of Cannon2 and Tarzia3)

w(x, t) = 1 − 1
erf (𝜂1)

erf

(
x

2
√

t

)
,

s(t) = 2𝜂1
√

t,

(34)

where 𝜂1 is the unique solution to the equation

𝜂1 erf(𝜂1) =
e−𝜂2

1√
𝜋
. (35)

Note that, if we take 𝛼 = 1 in Equation (28), we recover Equation (35). Now, let the sequence {𝜂𝛼}𝛼 be, where 𝜂𝛼 is
the unique positive solution to Equation (28). Then,

2𝜂𝛼 = M𝛼∕2(2𝜂𝛼)
Γ(1 − 𝛼∕2)
Γ(1 + 𝛼∕2)

+ 2𝜂𝛼W
(
−2𝜂𝛼,−

𝛼

2
, 1
)
.



ROSCANI AND TARZIA 6849

If we define the following functions for every x ∈ R+ and 0 < 𝛼 < 1:

𝑓𝛼(x) = M𝛼∕2(2x)
Γ(1 − 𝛼∕2)

2Γ(1 + 𝛼∕2)
+ xW

(
−2x,−𝛼

2
, 1
)

and
𝑓1(x) =

e−x2√
𝜋
+ xerfc(x),

we have that f𝛼(𝜂𝛼) = 𝜂𝛼 , f1(𝜂1) = 𝜂1. Let us prove that

lim
𝛼↗1

𝜂𝛼 = 𝜂1. (36)

Firstly, from Proposition 2, it holds that
lim
𝛼↗1

𝑓𝛼(x) = 𝑓1(x), (37)

where the convergence is uniform over compact sets.
Secondly, analyzing 𝑓 ′

1, we have that 𝑓 ′
1(0) = 1, 𝑓 ′

1(+∞) = 0−, there exists a unique 𝜂0 ≈ 0.3195 such that 𝑓 ′
1(𝜂0) = 0

and 𝑓 ′
1(x) < 0, for all x > 𝜂0. In fact, 𝜂0 is the unique positive solution to equation

√
𝜋xex2 erfc(x) = 4x2. Being

𝜂1 ≈ 0.6201, it follows that 𝑓 ′
1(𝜂1) < 0. Then, there exists an interval [𝜂1 − 𝜌, 𝜂1 + 𝜌], for some 𝜌 > 0, where f1 is

decreasing.
Thirdly, let 𝜀 > 0 be (𝜀 < 𝜌) and let be the line of equation y = x. Clearly, P1(𝜂1, 𝜂1) ∈ r and we can take Pa(a, a)

and Pb(b, b) in r (a < 𝜂1 < b) such that

d(P1,Pa) < 𝜀, d(P1,Pb) < 𝜀 and 𝑓1 is decreasing in [a, b]. (38)

Being f1(𝜂1) = 𝜂1, it holds that f1(a) − a > 0 and f1(b) − b < 0.
Now, let h0 = min{𝑓1(a) − a, b − 𝑓1(b)} > 0. From (37), it results that there exists 𝛼0 ∈ (0, 1) such that

|𝑓𝛼(x) − 𝑓1(x)| < h0 for all x ∈ [a, b], for all 𝛼 ∈ (𝛼0, 1].

Then, if 𝛼 ∈ (𝛼0, 1], we have that

𝑓𝛼(a) > 𝑓1(a) − h0 > a and 𝑓𝛼(b) < 𝑓1(b) + h0 < b.

Applying Bolzano's theorem ( f𝛼 is continuous in R+ for all 𝛼 ∈ (0, 1]), it holds that the unique solution 𝜂𝛼 to equation
f𝛼(x) = x belongs to (a, b). From (38) and calling P𝛼(𝜂𝛼, 𝜂𝛼), we get that |𝜂𝛼 − 𝜂1| < d(P𝛼,P1) < d(Pa,P1) < 𝜀, for
all 𝛼 ∈ (𝛼0, 1], and (36) holds.

Finally, applying Propositions 1 and 2, we get that

lim
𝛼↗1

w𝛼(x, t) = lim
𝛼↗1

1 − 1

1 − W
(
−2𝜂𝛼,− 𝛼

2
, 1
) [

1 − W
(
− x

t𝛼∕2 ,−
𝛼

2
, 1
)]

= 1 − 1
erf(𝜂1)

erf

(
x

2
√

t

)
and

lim
𝛼↗1

r𝛼 = lim
𝛼↗1

2𝜂𝛼t𝛼∕2 = 2𝜂1
√

t,

which proves that solution (27) of problem (25) converges to solution (34) of problem (33) as we wanted to see. The
second part of the proof is analogous.

4 CONCLUSIONS

We have considered two fractional Stefan problems involving Riemann-Liouville and Caputo derivatives of order 𝛼 ∈
(0, 1) such that in the limit case (𝛼 = 1) both problems coincide with the same classical Stefan problem, and the rela-
tion between the governed equations and the Stefan conditions is analyzed. For both problems, explicit solutions were
presented and it has been proved that these solutions are different, and therefore, the fractional Stefan conditions are dif-
ferent (unless 𝛼 = 1). Finally, the convergence when 𝛼 ↗ 1 was computed obtaining for both problems the same classical
solution.
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