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Sabrina D. Roscani1 · Domingo A. Tarzia1

Received: 13 November 2017 / Revised: 16 February 2018 / Accepted: 23 February 2018
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2018

Abstract A generalized Neumann solution for the two-phase fractional Lamé–Clapeyron–
Stefan problem for a semi-infinite material with constant initial temperature and a particular
heat flux condition at the fixed face is obtained, when a restriction on data is satisfied. The
fractional derivative in the Caputo sense of order α ∈ (0, 1) respect on the temporal variable
is considered in two governing heat equations and in one of the conditions for the free
boundary. Furthermore, we find a relationship between this fractional free boundary problem
and another one with a constant temperature condition at the fixed face and based on that fact,
we obtain an inequality for the coefficient which characterizes the fractional phase–change
interface obtained in Roscani and Tarzia (Adv Math Sci Appl 24(2):237–249, 2014). We
also recover the restriction on data and the classical Neumann solution, through the error
function, for the classical two-phase Lamé–Clapeyron–Stefan problem for the case α = 1.

Keywords Caputo fractional derivative · Lamé–Clapeyron–Stefan problem · Neumann
solutions · Heat flux boundary condition · Temperature boundary condition

Mathematics Subject Classification 35R11 · 26A33 · 35C05 · 35R35 · 80A22

1 Introduction

In the past decades the fractional diffusion equation has been extensively studied (Eidelman
et al. 2004;Luchko et al. 2001;Mainardi 2010; Povstenko 2015; Pskhu 2005, 2009; Sakamoto
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andYamamoto2011) and in the recent years someworks on fractional free boundary problems
(that is, free boundary problems where a fractional derivative is involved) were published
(Atkinson 2012; Błasik and Klimek 2015; Ceretani and Tarzia 2017; Junyi and Mingyu
2009; Rajeev and Singh 2017; Roscani and Santillan 2013; Roscani and Tarzia 2014; Tarzia
2015; Voller 2014; Voller et al. 2013). In particular, in Kholpanov et al. (2003), the classical
Lamé–Clapeyron–Stefan problem was studied by using the fractional derivative of order 1

2 .
Recall that free boundary problems for the one-dimensional classical heat equation are

problems linked to the processes of melting and freezing, which have a latent heat condition
at the solid–liquid interface connecting the velocity of the free boundary and the heat fluxes
of the two temperatures corresponding to the solid and liquid phases. This kind of problems
are known in the literature as Stefan problems or, more precisely, as Lamé–Clapeyron–Stefan
problems. We remark that the first work on phase-change problems was done by Lamé and
Clapeyron (1831) by studying the solidification of the Earth planet, which has been missing
in the scientific literature for more than a century. Next, 60 years later, the phase-change
problem was continued by Stefan through several works around year 1890 (Stefan 1889)
by studying the melting of the polar ice. For this reason, we call these kind of problems as
Lamé–Clapeyron–Stefan problems or simply by Stefan problems.

Nowadays, there exist thousands of papers on the classical Lamé–Clapeyron–Stefan prob-
lem, for example the books (Alexiades and Solomon 1993; Cannon 1984; Crank 1984; Elliott
and Ockendon 1982; Fasano 2005; Gupta 2003; Lunardini 1991; Rubinstein 1971) and the
large bibliography given in Tarzia (2000). Especially, a review on explicit solutions with
moving boundaries was given in Tarzia (2011).

In this paper, a generalized Neumann solution for the two-phase fractional Lamé–
Clapeyron–Stefan problem for a semi-infinite domain is obtained when a constant initial
data and a Neumann boundary condition at the fixed face are considered. Recently, a gener-
alized Neumann solution for the two-phase fractional Lamé–Clapeyron–Stefan problem for
a semi-infinite domain with constant initial data and a Dirichlet condition at the fixed face
was given in Roscani and Tarzia (2014).

So, the classical time derivative will be replaced by a fractional derivative in the sense of
Caputo of order 0 < α < 1, which is present in the two governing heat equations and in one
of the governing conditions for the free boundary. The fractional Caputo derivative is defined
in Caputo (1967) as:

Dα f (t) =
⎧
⎨

⎩

1
Γ (1−α)

∫ t

0
(t − τ)−α f ′(τ ) dτ, 0 < α < 1

f ′(t), α = 1
(1)

where Γ is the Gamma function defined in R+ by the following expression:

Γ (x) =
∫ ∞

0
t x−1e−t dt.

It is known that the fractional Caputo derivative verifies that (Kilbas et al. 2006): for every
b ∈ R

+,

Dα is a linear operator in W 1(0, b) = { f ∈ C 1(0, b] : f ′ ∈ L1(0, b)}, (2)

Dα(C) = 0 for every constant C ∈ R, (3)

and

Dα(tβ) = Γ (β + 1)

Γ (β − α + 1)
tβ−α for every constant β > −1. (4)
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Now we define the two functions (Wright and Mainardi functions) which are very impor-
tant in order to obtain the explicit solution given in the following sections.

The Wright function is defined in Wright (1933) as:

W (x; ρ;β) =
∞∑

n=0

xn

n!Γ (ρn + β)
, x ∈ R, ρ > −1, β ∈ R (5)

and the Mainardi function, which is a particular case of the Wright functions, is defined in
Gorenflo et al. (1999) as:

Mρ(x) = W (−x,−ρ, 1 − ρ) =
∞∑

n=0

(−x)n

n!Γ (−ρn + 1 − ρ)
, x ∈ R, 0 < ρ < 1. (6)

Proposition 1 Some basic properties of the Wright function are the following:

1. (Kilbas et al. 2006) TheWright function (5) is a differentiable function for every ρ > −1,
β ∈ R such that

∂W

∂x
(x; ρ;β) = W (x; ρ;β + ρ).

2. (Roscani and Santillan 2013) limα→1− W
(−x;−α

2 ; 1) = W
(−x;− 1

2 ; 1
) = erfc

( x
2

)
,

and limα→1− 1 − W
(−x;−α

2 ; 1) = 1 − W
(−x;− 1

2 ; 1) = erf
( x
2

)
.

3. (Pskhu 2005) For all α, c ∈ R
+, ρ ∈ (0, 1), β ∈ R we have

Dα(xβ−1W (−cx−ρ,−ρ, β)) = xβ−α−1W (−cx−ρ,−ρ, β − α).

4. (Roscani and Santillan 2013) For every α ∈ (0, 1), W (−x,−α
2 , 1) is a positive and

strictly decreasing function in R+ such that 0 < W
(−x,−α

2 , 1
)

< 1.
5. (Wright 1934) For every α ∈ (0, 1), and β > 0,

lim
x→∞ W

(
−x,−α

2
, β

)
= 0. (7)

In Tarzia (1981) the following classical phase-change problem was studied:

Problem Find the free boundary x = s(t), and the temperatures Ts = Ts(x, t) and Tl =
Tl(x, t) such that the following equations and conditions are satisfied:

(i) Ts t − λ2s Ts xx = 0, x > s(t), t > 0,
(ii) Tl t − λ2l Tl xx = 0, 0 < x < s(t), t > 0
(iii) s(0) = 0,
(iv) Ts(x, 0) = Ts(∞, t) = Ti < Tm x > 0, t > 0,
(v) Ts(s(t), t) = Tm, t > 0,
(vi) Tl(s(t), t) = Tm, t > 0,
(vii) ksTs x (s(t), t) − klTl x (s(t), t) = ρl ṡ(t), t > 0,
(viii) klTl x (0, t) = − q0

t1/2
, t > 0,

(8)

where λ2s = ks
ρcs

, λ2l = kl
ρcl

, ks , cs and kl ,cl are the diffusion, conductivity and specific heat
coefficients of the solid and liquid phases, respectively, ρ is the common density of mass, l
is the latent heat of fusion by unit of mass, Ti is the constant initial temperature, Tm is the
melting temperature and q0 is the coefficient which characterizes the heat flux at the fixed
face x = 0.
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The explicit solution to problem (8) was obtained in Tarzia (1981) through the error
function, when the following restriction is satisfied by data:

q0 >
ks(Tm − Ti)

λs
√

π
. (9)

In this paper we consider a “fractional melting problem”, of order 0 < α < 1, for the
semi-infinitematerial x > 0with an initial constant “fractional temperature” and a “fractional
heat flux boundary condition” at the face x = 0. We will use a Caputo derivative operator,
which converges to the classical derivative when α tends to 1. The interesting aspect is that
for the limit case (α = 1) the results obtained for this generalization coincide with the
results of the classical case. So, in view of the analogy that exists between the classical
case and the fractional one, we make an abuse of language by using terminologies such as
“fractional temperature”, “fractional heat equation” or “fractional Stefan condition”. These
terms go hand in hand with the generalization proposed in the sense of operators and we do
not pretend to give them a physical approach.

Although it is known that the Caputo fractional operator is linked to memory effects in
materials (Metzler and Klafter 2000; Vazquez 2017) or to processes of anomalous diffusion
in non–homogeneous media (Filipovitch et al. 2016), the discussion about fractional Stefan
problems and their possible physical interpretations is yet an open problem. An interesting
discussion on this topic can be seen in Ceretani (2018).

It is necessary to point that the physical approach associated with this type of operators is
of our current interest, mainly because of the mathematical coherence that the results have
together with their convergence to the classical known results.

So, the problem to be studied is the following:

Problem Find the fractional free boundary x = r(t), defined for t > 0, and the fractional
temperature Θ = Θ(x, t), defined for x > 0, t > 0, such that the following equations and
conditions are satisfied (0 < α < 1):

(i) Dα
t Θs − λ2s Θs xx = 0, x > r(t), t > 0,

(ii) Dα
t Θl − λ2l Θl xx = 0, 0 < x < r(t), t > 0

(iii) r(0) = 0,
(iv) Θs(x, 0) = Θs(∞, t) = Ti < Tm x > 0, t > 0,
(v) Θs(r(t), t) = Tm, t > 0,
(vi) Θl(r(t), t) = Tm, t > 0,
(vii) ksΘs x (r(t), t) − klΘl x (r(t), t) = ρlDαr(t), t > 0,
(viii) klΘl x (0, t) = − q0

tα/2 , t > 0,

(10)

Note that the suffix t in the operator Dα denotes that the fractional derivative is taken in
the t-variable.

In Sect. 2, a necessary condition for the coefficient q0 > 0, which characterizes the
fractional heat flux boundary condition at the face x = 0, is obtained in order to have an
instantaneous two-phase fractional Lamé–Clapeyron–Stefan problem.

In Sect. 2.1, we give a sufficient condition for the coefficient q0 > 0 (which coincides with
the necessary condition for q given in Sect. 2) in order to obtain a generalized Neumann solu-
tion for the two-phase fractional Lamé–Clapeyron–Stefan problem (10) for a semi-infinite
material with a constant initial condition and a fractional heat flux boundary condition at the
fixed face x = 0. This solution is given as a function of the Wright and Mainardi functions.

123



Explicit solution for a two-phase fractional Stefan problem…

Moreover, when α = 1, we recover the Neumann solution, through the error function, for
the classical two-phase Lamé–Clapeyron–Stefan problem given in Tarzia (1981), when an
inequality for the coefficient that characterizes the heat flux boundary condition is satisfied.

In Sect. 2.2, we consider two two-phase fractional Lamé–Clapeyron–Stefan problems
having a fractional heat flux and a fractional temperature boundary conditions on the fixed
face x = 0, respectively, and a possible equivalence between them is analyzed.

In Sect. 2.3, an inequality for the coefficient which characterizes the free boundary of
the two-phase fractional Lamé–Clapeyron–Stefan problem with a fractional temperature
boundary condition given recently in Roscani and Tarzia (2014), is also obtained.

In Sect. 3, we recover the results obtained in Roscani and Santillan (2013) for the one-
phase fractional Lamé–Clapeyron–Stefan problem as a particular case of the present work
(see Sects. 2.1, 2.2).

2 Necessary condition to obtain an instantaneous two-phase fractional
Stefan problem with a heat flux boundary condition at the fixed face

In order to obtain a necessary condition for data to have an instantaneous phase-change
process for problem (10) we consider the following fractional heat conduction problem of
order 0 < α < 1 for the solid phase in the first quadrant with an initial constant temperature
and a heat flux boundary condition at x = 0:

(i) Dα
t Θ − λ2s Θxx = 0, x > 0, t > 0,

(ii) Θ(x, 0) = Ti, x > 0,
(iii) ksΘx (0, t) = − q0

tα/2 , t > 0.
(11)

Lemma 1 We have:

1. The solution of the fractional heat problem (11) is given by

Θ(x, t) = Ti + q0λsΓ (1 − α/2)

kS
W

(

− x

λs tα/2 ,−α

2
, 1

)

, x > 0, t > 0. (12)

2. If the coefficient q0 satisfies the inequalities

0 < q0 ≤ ks(Tm − Ti)

λsΓ (1 − α/2)
, (13)

then problem (10) is only a fractional heat conduction problem for the initial solid phase.
By the contrary, if

q0 >
ks(Tm − Ti)

λsΓ (1 − α/2)
, (14)

then (14) is a necessary condition for data which ensures an instantaneous fractional
phase-change problem (10).

Proof 1. From Proposition 1, items 1 and 3, and properties (2) and (3), we can state that

Θ(x, t) = a + b

[

1 − W

(

− x

λs tα/2 ,−α

2
, 1

)]

, x > 0, t > 0, (15)

is a solution to the fractional diffusion equation (11–i), where a and b are two constants
to be determined.
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Taking the derivative of (15) with respect to x , by using Proposition 1 item 1, we get

Θx (x, t) = b

λs tα/2 Mα/2

(
x

λs tα/2

)

. (16)

From conditions (11-ii) and (11-iii), and beingMα/2(0) = 1
Γ (1−α/2) andW

(
0,−α

2 , 1
) =

1, we obtain that

a = Ti + q0λs
ks

Γ (1 − α/2), b = −q0λsΓ (1 − α/2)

kS
, (17)

that is, we obtain the expression (12) as a solution to problem (11).
2. From Proposition 1 items 4 and 5, it results that function (12)

Θ(x, t) = Ti + q0λsΓ (1 − α/2)

kS
W

(

− x

λs tα/2 ,−α

2
, 1

)

is a decreasing function in the variable x for every t ∈ R
+ such that Θ(∞, t) = Ti is

a constant for all t > 0. Therefore, problem (10) has an instantaneous fractional phase-
change problem if and only if the constant temperature at the boundary x = 0 is greater
than the melting temperature Tm, that is if and only if

Ti + q0λs
ks

Γ (1 − α/2) > Tm,

which is equivalent to have that inequality (14) holds. �	

Remark 1 When α = 1, the inequality (14) is given by (9) because Γ
( 1
2

) = √
π , which was

first established in Tarzia (1981).

2.1 Sufficient condition to obtain an instantaneous two-phase-fractional Stefan
problem with a heat flux boundary condition at the fixed face

In this section, we study a two-phase Lamé–Clapeyron–Stefan problem for the time fractional
diffusion equation, of order 0 < α < 1, with an initial constant temperature and a heat flux
boundary condition at the face x = 0 given by the differential equations and initial and
boundary conditions given in problem (10). Taking into account the result in the previous
Section and the method developed in Roscani and Tarzia (2014), an explicit solution to
problem (10) can be obtained. In fact, we have the following result:

Proposition 2 Let Ti < Tm be. If the coefficient q0 satisfies the inequality (14) then there
exists an instantaneous fractional phase-change (melting) process and the problem (10) has
the generalized Neumann explicit solution given by:

Θl(x, t) = Tm + q0λlΓ (1 − α/2)

kl

[

W

(

− x

λl tα/2 ,−α

2
, 1

)

− W
(
−λlμα,−α

2
, 1

)]

,

(18)

Θs(x, t) = Ti + (Tm − Ti)
W

(
− x

λs tα/2 ,−α
2 , 1

)

W
(−μα,−α

2 , 1
) , (19)

r(t) = μαλs t
α/2, (20)
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where the coefficient μα > 0 is a solution of the following equation:

Gα(x) = Γ
(
1 + α

2

)

Γ
(
1 − α

2

) x, x > 0 (21)

with

Gα(x) = q0λlΓ (1 − α/2)

ρlλs
Mα/2(λx) − ks(Tm − Ti)

ρlλ2s
F2α(x), (22)

F2α(x) = Mα/2(x)

W
(−x,−α

2 , 1
) , (23)

and

λ = λs

λl
> 0. (24)

Proof Following Roscani and Tarzia (2014), we propose the following solution:

Θl(x, t) = A + B

[

1 − W

(

− x

λl tα/2 ,−α

2
, 1

)]

, (25)

Θs(x, t) = C + D

[

1 − W

(

− x

λs tα/2 ,−α

2
, 1

)]

, (26)

r(t) = μλs t
α/2, (27)

where the coefficients A, B,C, D and μ are constants and must be determined. According
to the results in the previous section and the linearity of the fractional derivative, functions
Θs and Θl are solutions of the fractional diffusion equations (10-i) and (10-ii), respectively.
Starting from conditions (10-vi) and (10-viii), we obtain the following system of two equa-
tions:

Tm = Θl(r(t), t) = A + B
[
1 − W

(
μλ,−α

2
, 1

)]
(28)

− q0
tα/2 = klΘl∞(0, t) = Bkl

λl tα/2 Mα/2(0), (29)

from which we obtain:

A = Tm + q0λlΓ
(
1 − α

2

)

kl

[
1 − W

(
−μλl ,−α

2
, 1

)]
, B = q0λlΓ

(
1 − α

2

)

kl
. (30)

Then, the fractional temperature of the liquid phase is given by (18).
From conditions (10-iv) and (10-v) we have the system of equations:

Ti = Θs(x, 0) = C + D, (31)

Tm = Θs(r(t), t) = C + D
[
1 − W

(
−μ,−α

2
, 1

)]
, (32)

and then we have:

C = Ti + Tm − Ti
W

(−μ,−α
2 , 1

) , D = − Tm − Ti
W

(−μ,−α
2 , 1

) . (33)

Therefore, the fractional temperature of the solid phase is given by (19).
In order to determine the coefficient μ > 0 we must consider the fractional Lamé–

Clapeyron–Stefan condition (10-vii) which, taking into account Proposition 1 and (4), gives
us the Eq. (21).
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It was proved in Roscani and Tarzia (2014) that F2α(+∞) = +∞; then the function
Gα = Gα(x), defined by (43), has the following properties:

Gα(0+) = q0λl
ρlλs

− ks(Tm − Ti)

ρlλ2sΓ
(
1 − α

2

) , Gα(+∞) = −∞. (34)

From the continuity of Gα [due to Proposition 1 item (4) and (34)], it yields that equation
(21) has a solution μα > 0 if Gα(0+) > 0 which is verified under condition (14). Then, the
solution {(18)–(20)} holds.

Remark 2 The solution of the Eq. (21) will be unique if we can prove that function Gα is
a strictly decreasing function in R

+, or equivalently if we can prove that function F2α is an
increasing function in R+ (taking into account that function Mα/2 is a decreasing function).

Function F2α(x) = Mα/2(x)
W(−x;− α

2 ,1)
is a continuous positive function, which is a quotient of

two decreasing functions. Some graphics are presented below:

(a) (b)

We can see in the graphics that F2α is an increasing function for every chosen parameter.
We wonder if this situation is true for every α ∈ (0, 1). A simple computation gives that F2α
is an increasing function if and only if

[
Mα/2(x)

]2 − W
(
−x;−α

2
, 1

)
· W

(
−x;−α

2
, 1 − α

)
> 0. (35)

We have proved in Roscani and Tarzia (2017) that for every x > 0,

Γ (1 − α)W
(
−x;−α

2
, 1 − α

)
> Γ

(
1 − α

2

)
Mα/2(x) > W

(
−x;−α

2
, 1

)
> 0, (36)

but this is not a sufficient condition to prove (35).
Also, the inequality (35) is a Turán-type inequality for Wright functions of parameter

−α
2 ∈ (−1, 0). An analogue result for Wright functions with positive parameter was proved

in Mehretz (2017), that is, it was proved that

[W (x;α, β + α)]2 − W (x;α, β)W (x;α, β + 2α) ≥ 0, ∀ x > 0, α > 0, β > 0.

So we state the following conjecture:
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Conjecture 1 The function F2α : R+ → R
+ such that F2α(x) = Mα/2(x)

W(−x;− α
2 ,1)

is an increas-

ing function with F2α(0+) = 1
Γ (1− α

2 )
and F2α(+∞) = +∞.

Theorem 1 Let Ti < Tm be. If the coefficient q0 satisfies the inequality (14), under the
assumption of Conjecture 1, then { (18)–(20)} is the unique generalized Nuemann similarity-
solution to the free boundary problem (10), where μα is the unique solution to Eq. (21).

Remark 3 If (x, t) is in the liquid face (0 < x < s(t), t > 0), then 0 < x < λsμtα/2,
or equivalently 0 < x

tα/2 < λsμ. Multiplying by λl gives 0 < x
λl tα/2 < λμ. Then, from

Proposition 1 item 4 it follows that W
(
− x

λl tα/2 ,−α
2 , 1

)
− W

(−λlμα,−α
2 , 1

)
> 0 and,

therefore, the explicit temperature of the liquid phase corresponding to problem (10) satisfies
the following inequality:

Θl(x, t) = Tm + q0λlΓ (1 − α/2)

kl

[

W

(

− x

λl tα/2 ,−α

2
, 1

)

− W
(
−λlμα,−α

2
, 1

)]

> Tm, 0 < x < r(t), t > 0 (37)

Analogously the explicit temperature of the solid phase corresponding to problem (10)
satisfies the following inequality:

Ti < Θs(x, t) < Tm, x > r(t), t > 0. (38)

Proposition 3 Let Ti < Tm be. By considering α = 1 in Proposition 2, we recover the clas-
sical Neumann explicit solution and the inequality (9) for the coefficient which characterized
the heat flux at x = 0 obtained in Tarzia (1981).

Proof As it was said in Remark 1, the inequality (9) is recovered because Γ (1/2) = √
π .

By the other side,

Θl(x, t) = Tm + q0λlΓ (1 − α/2)

kl

[

W

(

− x

λl t1/2
,−1

2
, 1

)

− W
(
−λlμ1,−α

2
, 1

)]

,

(39)

Θs(x, t) = Ti + (Tm − Ti)
W

(
− x

λ2t1/2
,− 1

2 , 1
)

W
(−μ1,− 1

2 , 1
) , (40)

r(t) = μ1λs t
1/2, (41)

where the coefficient μ = μ1 > 0 is the solution of equation:

G1(x) = Γ (3/2)

Γ (1/2)
x, x > 0 (42)

with

G1(x) = q0λlΓ (1/2)

ρlλs
M1/2(λx) − ks(Tm − Ti)

ρlλ2s
F2(x), (43)

F2(x) = M1/2(x)

W
(−x,− 1

2 , 1
) , (44)

and

λ = λs

λl
> 0. (45)
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Taking into account that Γ (3/2) =
√

π

2 , M1/2(x) = e−(x/2)2 and that W
(−x,− 1

2 , 1
) =

erfc
( x
2

)
(see Roscani and Santillan 2013), it results that

Θ1
s (x, t) = Ti + (Tm − Ti)

erfc
(

x
λs tα/2

)

erfc
(

μ1
2

) , (46)

Θ1
l (x, t) = Tm + q0λl

√
π

kl

[

erfc

(
x

λl t1/2

)

− erfc

(
λμ1

2

)]

, (47)

r1(t) = μ1λs
√
t, (48)

where μ1 > 0 is the solution of the equation:

q0
ρlλs

exp

(

−λ2x2

4

)

− ks(Tm − Ti)

ρlλ2s
√

π

exp
(
− x2

4

)

erfc
( x
2

) = x

2
, x > 0 (49)

or equivalently, μ1
2 is a solution of the equation:

q0
ρlλs

exp
(−λ2x2

) − ks(Tm − Ti)

ρlλ2s
√

π

exp
(−x2

)

erfc (x)
= x, x > 0. (50)

Therefore, the tender
{
Θ1

s (x, t),Θ1
l (x, t), r1(t)

}
, where μ1/2 is the solution of the Eq.

(50), is the solution of the problem (8) given in Tarzia (1981).

Theorem 2 Let Ti < Tm be. If the coefficient q0 satisfies the inequality (14) and the
Conjecture 1 holds, then the similarity-solution to the problem (10) converges to the
similarity-solution to the classical Lamé–Clapeyron–Stefan problem (8) when α → 1−.

2.2 Two-phase fractional Stefan problems with a heat flux and a temperature
boundary condition at the fixed face admitting the same similarity solution

Let Ti < Tm be. If the coefficient q0 satisfies the inequality (14), then the solution of the
problem (10) is given by (18)–(20) where μα is a solution of the Eq. (21). In this case, we
can compute the liquid temperature Θl at the fixed face x = 0, which is given by:

Θl(0
+, t) = Tm + q0λlΓ (1 − α/2)

kl

[
1 − W

(
−λμα;−α

2
, 1

)]
> Tm, ∀ t > 0. (51)

Since this temperature is greater than Tm the melting temperature and it is constant for all
positive time, we can consider the following fractional free boundary problem:

Problem Find the free boundary x = s(t), defined for t > 0, and the temperature T =
T (x, t), defined for x > 0, t > 0 such that the following equations and conditions are
satisfied (0 < α < 1):

(i) Dα
t Ts − λ2s Ts xx = 0, x > s(t), t > 0,

(ii) Dα
t Tl − λ2l Tl xx = 0, 0 < x < s(t), t > 0

(iii) s(0) = 0,
(iv) Ts(x, 0) = Ts(+∞, t) = Ti < Tm x > 0, t > 0,
(v) Ts(s(t), t) = Tm, t > 0,
(vi) Tl(s(t), t) = Tm, t > 0,
(vii) ksTs x (s(t), t) − klTl x (s(t), t) = ρlDα

t s(t), t > 0,
(viii) T (0, t) = T0, t > 0,

(52)
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where the imposed temperature T0 at the fixed face x = 0 is greater than the melting
temperature, that is T0 > Tm. The problem (52) was recently solved in Roscani and Tarzia
(2014) and the solution is given by:

Tm < Tl(x, t) = Tm + (T0 − Tm)
W

(
− x

λl tα/2 ,−α
2 , 1

)
− W

(−λξα,−α
2 , 1

)

1 − W
(−λξα,−α

2 , 1
)

= T0 − (T0 − Tm)
1 − W

(
− x

λl tα/2 ,−α
2 , 1

)

1 − W
(−λξα,−α

2 , 1
) , 0 < x < s(t), t > 0 (53)

Ti < Ts(x, t) = Ti + (Tm − Ti)
W

(
− x

λs tα/2 ,−α
2 , 1

)

W
(−ξα,−α

2 , 1
)

= Tm − (Tm − Ti)

⎡

⎣1 −
W

(
− x

λs tα/2 ,−α
2 , 1

)

W
(−ξα; α

2 , 1
)

⎤

⎦ < Tm, x > s(t), t > 0

(54)

s(t) = ξαλs t
α/2, (55)

where the coefficient ξ = ξα > 0 is a solution of the following equation:

Fα(x) = Γ
(
1 + α

2

)

Γ
(
1 − α

2

) x, x > 0 (56)

with

Fα(x) = kl(T0 − Tm)

ρlλsλl
F1α(λx) − ks(Tm − Ti)

ρlλ2s
F2α(x), (57)

F1α(x) = Mα/2(x)

1 − W
(−x,−α

2 , 1
) , (58)

and F2α was defined in (44).

Proposition 4 Let Ti < Tm be. If the coefficient q0 satisfies the inequality (14) then both free
boundary problems (10) and (52) with data T0 given by

T0 = Tm + q0λlΓ (1 − α/2)

kl

[
1 − W

(
−λμal;−α

2
, 1

)]
(59)

admit the same similarity solutions.

Proof Let Ti < Tm be. If the coefficient q0 satisfies the inequality (14) then the solution of
the free boundary problem (10) is given by (18)–(20), where the coefficientμα is a solution of
Eq. (21). In this case, the temperature at the fixed face x = 0 is given by (51) and, therefore,
we can now consider the free boundary problem (52) with data (52-vii) at the fixed face

123



S. D. Roscani, D. A. Tarzia

x = 0, where T0 is defined by (51). Note that

Fα(μα) = kl(T0 − Tm)

ρlλsλl
F1α(λμα) − ks(Tm − Ti)

ρlλ2s
F2α(μα)

= q0Γ (1 − α/2)

ρlλs

[
1 − W

(
−λμα;−α

2
, 1

)]
F1α(λμα) − ks(Tm − Ti)

ρlλ2s
F2α(μα)

= q0Γ (1 − α/2)

ρlλs
Mα/2(λμα) − ks(Tm − Ti)

ρlλ2s
F2α(μα) = Gα(μα)

(60)
Then, we can affirm that μα is a solution to (21) if and only if μα is a solution to (56).

Therefore, we have solutions given by (53)–(55) and (18)–(20) to problems (52) and (10),
respectively, where the coefficient ξα = μα .

Clearly, for every 0 < α < 1, it results that r(t) = s(t) for all t > 0. Moreover
Ts(x, t) = Θs(x, t) and Tl(x, t) = Θl(x, t), and the thesis holds.

Theorem 3 Let Ti < Tm be. If the coefficient q0 satisfies the inequality (14), under the
assumption of Conjecture 1, then the free boundary problem (10) is equivalent to the free
boundary problem (52), in the sense of similarity solutions, with data T0 given by:

T0 = Tm + q0λlΓ (1 − α/2)

kl

[
1 − W

(
−λμα;−α

2
, 1

)]
. (61)

Proof If the Conjecture 1 is true, then Eq. (56) admits a unique positive solution.

2.3 Inequality for the coefficient which characterizes the free boundary for the
two-phase fractional Stefan problem with a temperature boundary condition
at the fixed face

Now, we consider problem (52) with data Ti < Tm < T0, whose solution given by (53)–(56)
has been recently obtained in Roscani and Tarzia (2014).

Theorem 4 The coefficient ξα which characterizes the phase–change interface (55) of the
free boundary problem (52) verifies the inequality

1 − W

(

−λs

λl
ξα;−α

2
, 1

)

<
T0 − Tm
Tm − Ti

klλs
ksλl

. (62)

Proof If we consider the solution (53)–(56) of the free boundary problem (52) where the
coefficient ξα > 0 is a solution of the Eq. (56) for data T0 > Tm, then, by taking into account
Proposition 1, we have that the corresponding coefficient q0 (which characterizes the heat
flux boundary condition (10-viii) on the fixed face x = 0) is given by:

q0 = T0 − Tm
1 − W

(−λμα;−α
2 , 1

)
kl

λlΓ (1 − α/2)
. (63)

and then we can compute the coefficient q0. Therefore, the inequality (14) for q0 is
transformed in the inequality (62) for the coefficient ξα defined in Roscani and Tarzia (2014),
and, therefore, the result holds.

Remark 4 If we consider α = 1 in the inequality (62) we obtain the inequality

erf

(
λs

λl

μ1

2

)

<
T0 − Tm
Tm − Ti

klλs
ksλl

(64)

given in Tarzia (1981) for the Neumann solution for the classical two-phase Stefan problem.
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3 The one-phase fractional Stefan problem

In Roscani and Santillan (2013), the following two one-phase fractional Lamé–Clapeyron–
Stefan problems were studied:

(i) Dα
t Θ − λ2 Θxx = 0, 0 < x < r(t), t > 0

(ii) r(0) = 0,
(iii) Θ(r(t), t) = Tm, t > 0,
(iv) −kΘx (r(t), t) = ρlDα

t r(t), t > 0,
(v) kΘx (0, t) = − q0

tα/2 , t > 0,

(65)

and
(i) Dα

t T − λ2 Txx = 0, 0 < x < s(t), t > 0
(ii) s(0) = 0,
(iii) T (s(t), t) = Tm, t > 0,
(iv) −kTx (s(t), t) = ρlDα

t s(t), t > 0,
(v) kTx (0, t) = T0, t > 0,

(66)

whereλ2 = k
ρc . These twoproblems canbe considered as particular cases of the free boundary

problems (10) and (52), respectively.

Corollary 1 The results given in Roscani and Santillan (2013) for the one-phase fractional
Stefan problems (65) and (66) can be recovered by taking Ti = Tm in the free boundary
problems (10) and (52), respectively.

Proof It is sufficient to observe that the inequality (14) is automatically verified if we take
Ti = Tm because q0 > 0. Then the two free boundary problems (65) and (66) are equivalents
respect on similarity solutions.

4 Conclusions

– We have obtained a generalized Neumann solution for the two-phase fractional Lamé–
Clapeyron–Stefan problem for a semi-infinite material with a constant initial condition
and a heat flux boundary condition on the fixed face x = 0, when a restriction on data is
satisfied. The explicit solution is given through the Wright and Mainardi functions.

– When α = 1, we have recovered the Neumann solution through the error function for
the corresponding classical two-phase Lamé–Clapeyron–Stefan problem given in Tarzia
(1981).We also recover the inequality for the corresponding coefficient that characterizes
the heat flux boundary condition at x = 0.

– We have proposed a conjecture, from which it can be proved the equivalence between
the two-phase fractional Lamé–Clapeyron–Stefan problems with a heat flux and a tem-
perature boundary conditions on the fixed face x = 0 for similarity solutions. Moreover,
an inequality for the coefficient which characterizes the free boundary given in Roscani
and Tarzia (2014) was obtained.

– We have recovered the results obtained in Roscani and Santillan (2013) for the one-phase
fractional Lamé–Clapeyron–Stefan problem as a particular case of the present work by
taking Ti = Tm.
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