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terms of the Wright functions are presented. Even though the similarity of the two solu- 
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and the other solutions to the same classical solution is also given. Numerical examples 

for the dimensionless version of the problem are presented and analyzed. 
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1. Introduction 

This paper deals with Stefan–like problems governed by fractional diffusion equations (FDE). A classical Stefan problem

is a problem where a phase-change occurs, usually linked to melting (change from solid to liquid) or freezing (change from

liquid to solid). In these problems the diffusion, considered as a heat flow, is expressed in terms of instantaneous local flow

of temperature modeled by the Fourier Law. Therefore, the governing equations related to each phase are the well-known

heat equations. There is also a latent heat-type condition at the interface that connects the velocity of the free boundary

and the heat flux of the temperatures in both phases known as “Stefan condition”. A vast literature on Stefan problems is

given in [1–5] . 

For example, the problem (1) is the mathematical formulation for classical one-dimensional two-phase Stefan problem:

Find the triple { u 1 , u 2 , s } such that they have sufficiently regularity and they verify that: 

(i ) ∂ 
∂t 

u 2 (x, t) = λ2 
2 

∂ 2 

∂x 2 
u 2 (x, t) , 0 < x < s (t) , 0 < t < T , 

(ii ) ∂ 
∂t 

u 1 (x, t) = λ2 
1 

∂ 2 

∂x 2 
u 1 (x, t) , x > s (t) , 0 < t < T , 

(iii ) u 1 (x, 0) = U i , 0 ≤ x, 

(i v ) u 2 (0 , t) = U 0 , 0 < t ≤ T , 

(v ) u 1 (s (t ) , t ) = u 2 (s (t ) , t ) = U m 

, 0 < t ≤ T , 

(v i ) ρl d 
dt 

s (t) = k 1 
∂ 
∂x 

u 1 (s (t ) , t ) − k 2 
∂ 
∂x 

u 2 (s (t ) , t ) , 0 < t ≤ T , 

(v ii ) s (0) = 0 , 

(1) 

where U i < U m 

< U 0 , λ
2 
j 
= 

k j 
ρc j 

, j = 1 (solid), j = 2 (liquid) and we have assumed that the thermophysical properties are

constant as well as the free boundary can be represented by an increasing function of time. 

Problem (1) is clearly governed by the heat equations ( 1 −i ) and ( 1 −ii ), and it has a phase-change condition (namely the

Stefan condition) given by equation ( 1 −v i ). 
When the governing equations ( 1 −i ) and ( 1 −ii ) , or the Stefan condition ( 1 −v i ) are replaced by other equations involving

fractional derivatives in problems like (1) , we will refer to them as fractional Stefan-like problems. 

For example, the heat equation can be replaced by a fractional diffusion equation (FDE), which is closely linked to the

study of anomalous diffusion. A detailed explanation about the relation between anomalous diffusion and randon walk

processes can be founded at the work done by Metzler and Klafter [6] . As we know, the diffusion equation is connected to

the Brownian motion, where the mean square displacement (msd) of particles is proportional to time. However, in Random

Walks the msd is proportional to a power of time. When the exponent of the power law is less than one, the phenomenon

is called subdiffusion. It is also interesting the approach given in [7–9] where it is suggested that anomalous diffusion could

be caused by heterogeneities in the domain. 

For the relation between fractional diffusion equations and their applications, we refer the reader to [10–13] and refer-

ences therein where applications to the theory of linear viscoelasticity or thermoelasticity, among other, are presented. 

In this paper, two approaches leading to subdiffusion are considered. The first one linked to the mathematical interest as

generalized operators which interpolates classical derivatives (see [14] ), and the second one related to Fourier’s generaliza-

tion laws (see [15] ). These two approaches derived in two different formulations for the FDE. In order to present them, let

u = u (x, t) be a function of the one-dimensional spatial variable x and time t . A first formulation for the FDE given in terms

of fractional integrals (see [16] ) is given by: 

0 I 
α
t u xx (x, t) = u (x, t) − u (x, 0) (2) 

where, 0 I 
α
t is the fractional integral of Riemann–Liouville of order α in the t−variable defined as 

0 I 
α
t u (x, t) = 

1 

�(α) 

∫ t 

0 

(t − τ ) α−1 u (x, τ )d τ

for every u such that u ( x , · ) ∈ L 1 (0, T ) for every x > 0. Eq. (2) is also derived in [6] , when a fractal time random walk is

considered. As it can be seen, no partial derivative in time is part of Eq. (2) , but differenciating respect on time to both

members we get a second formulation for a FDE 

RL 
0 D 

1 −α
t u xx (x, t) = u t (x, t) , (3) 

where RL 
0 D 

1 −α
t is the fractional derivative of Riemann–Liouville in the t−variable defined for every α ∈ (0, 1) as 

RL 
0 D 

1 −α
t u (x, t) = 

∂ 

∂t 
0 I 

α
t u (x, t) = 

1 

�(α) 

∂ 

∂t 

∫ t 

0 

(t − τ ) α−1 u (x, τ )d τ

for every u ∈ AC t [0 , T ] = { u | u (x, ·) is absolutely continuous on [0 , T ] for every x ∈ R 

+ } . 
Nevertheless, when discussing about FDE associated to fractional time derivatives, the reader may retract on the FDE for

the Caputo derivative, that is 

C 
0 D 

α
t u (x, t) = u xx (x, t) . (4) 
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In Eq. (4) , the partial time derivative has been replaced by a fractional derivative in the sense of Caputo respect on time.

The Caputo derivative C 
0 
D 

α
t is defined for every α ∈ (0, 1) as 

C 
0 D 

α
t u (x, t) = 

[
0 I 

1 −α
t ( u t ) 

]
(x, t) = 

1 

�(1 − α) 

∫ t 

0 

(t − τ ) −αu t (x, τ )d τ

for every u ∈ AC t [0, T ]. 

As we said before, in this paper, problems like (1) governed by equations like (3) or (4) will be studied. The literature on

time fractional phase-change problems is rather scant: In [17] a fractional two-phase moving-boundary problem is approx-

imated by a scale Brownian motion model for subdiffusion. In [18] sharp and diffuse interface models of fractional Stefan

problems are discussed. In [19] a formulation of a one-phase fractional phase-change problem is given leading to a time de-

pendence on the initial extreme of the fractional derivative. When the starting time considered in the fractional derivative

of the governing equation is equal to 0, the mathematical point of view becomes interesting because the problem admit

self-similar solutions in terms of the Wright functions (see [20–25] ). It is worth noting that in the problems deduced as in

[19] and [26] the starting time is not constant, in fact, it depends on the location of the interface due to the assumption

that u ≡ 0 when x > s ( t ). See [27] for more details. For a numerical approach we refer to [28] and [29] . 

It is worth noting the presence of recent publications related to space-fractional Stefan problems modeled by a fractional

Laplacian [30,31] or modeled by fractional diffusive fluxes which take the form of Caputo or Riemann-Liouville derivatives

[32] . 

This paper is a continuation of a previous work [33] , related to fractional one-phase change problems. In Section 2 some

properties of fractional calculus which will be useful later are given. In Section 3 , two fractional two-phase Stefan-like prob-

lems are considered, both problems admit exact self-similar solutions. Although the two governing equations are equivalent

under certain assumptions for boundary-value-problems, when different “fractional Stefan conditions” are considered, the

solutions obtained seem to be different. The uniqueness of the self-similar solution for one of the problems is obtained

while it is an open problem for the other (see [25] ). Finally, numerical examples and plots of the solutions obtained before

are presented in Section 4 by considering a dimensionless model. 

2. Basic definitions and properties 

Proposition 1. [14] The following properties involving the fractional integrals and derivatives hold: 

1. The fractional derivative of Riemann–Liouville is a left inverse operator of the fractional integral of Riemann–Liouville of the

same order α ∈ R 

+ . If f ∈ AC [ a, b ], then 

RL 
a D 

α
a I 

α f (t) = f (t) for every t ∈ (a, b) 

2. The fractional integral of Riemann–Liouville is not, in general, a left inverse operator of the fractional derivative of Riemann–

Liouville. 

In particular, if 0 < α < 1 then a I 
α( RL 

a D 

α f )(t) = f (t) − a I 
1 −α f (a + ) 

�(α)(t − a ) 1 −α
. 

3. If there exist some φ ∈ L 1 ( a, b ) such that f = a I 
αφ, then 

a I 
α RL 

a D 

α f (t) = f (t) for every t ∈ (a, b) . 

4. If f ∈ AC [ a, b ], then 

RL 
a D 

α f (t) = 

f (a ) 

�(1 − α) 
(t − a ) −α + 

C 
a D 

α f (t) . 

The fractional integral and derivatives of power functions can be easy calculated (see e.g. [11] ). In fact, for every t ≥ a we

have 

a I 
α
(
(t − a ) β

)
= 

�(β + 1) 

�(β + α + 1) 
(t − a ) β+ α, for every β > −1 , (5)

and 

RL 
a D 

α
(
(t − a ) β

)
= 

{
�(β+1) 

�(β−α+1) 
(t − a ) β−α if β � = α − 1 , 

0 if β = α − 1 . 
(6)

Note that if β > 0 then 

RL 
a D 

α
(
(t − a ) β

)
= 

C 
a D 

α
(
(t − a ) β

)
due to Proposition 1 item 4 and that the Caputo derivative of (t − a ) β

is not defined for −1 < β < 0 . 

Proposition 2. [34] The following limits hold: 

1. If we set a I 
0 = Id for the identity operator, then for every f ∈ L 1 ( a, b ), 

lim a I 
α f (t) = a I 

0 f (t) = f (t) , a.e. in (a, b) . 

α↘ 0 
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2. For every f ∈ AC [ a, b ], we have 

lim 

α↗ 1 

C 
a D 

α f (t) = f ′ (t) and lim 

α↘ 1 

C 
a D 

α f (t) = f ′ (t) − f ′ (a + ) for all t ∈ (a, b) . 

3. For every f ∈ AC [ a, b ], 

lim 

α↗ 1 

RL 
a D 

α f (t) = f ′ (t) and lim 

α↘ 1 

RL 
a D 

α f (t) = f ′ (t) a.e. in (a, b) . 

Definition 1. For every x ∈ R , the Wright function is defined as 

W (x ;ρ;β) = 

∞ ∑ 

k =0 

x k 

k !�(ρk + β) 
, ρ > −1 and β ∈ R . (7) 

An important particular case of the Wright function is the Mainardi function defined by 

M ρ (x ) = W (−x, −ρ, 1 − ρ) = 

∞ ∑ 

n =0 

(−x ) n 

n !�( −ρn + 1 − ρ) 
, 0 < ρ < 1 . 

Proposition 3. [12 , 35] Let α > 0, ρ ∈ (0, 1) and β ∈ R . Then the next assertions follow: 

1. For every x ∈ R we have 

∂ 

∂x 
W (x, ρ, β) = W (x, ρ, ρ + β) . 

2. For every x > 0 and c > 0, 

0 I 
α
[
x β−1 W (−cx −ρ, −ρ, β) 

]
= x β+ α−1 W (−cx −ρ, −ρ, β + α) . (8) 

Proposition 4. [33 , 35] For every β ≥ 0, ρ ∈ (0, 1) : 

1. The Wright function W ( −·, −ρ, β) is positive and strictly decreasing in R 

+ . 
2. For every x ≥ 0 the following equality holds 

ρxW ( −x, −ρ, β − ρ) = W ( −x, −ρ, β − 1 ) + (1 − β) W ( −x, −ρ, β) . 

3. If, in addition 0 < ρ ≤μ< δ, then for every x > 0 the following inequality holds 

�(δ) W (−x, −ρ, δ) < �(μ) W (−x, −ρ, μ) . (9) 

Proposition 5. [36] For every β ≥ 0 and ρ ∈ (0, 1) the following limit holds 

lim 

x →∞ 

W (−x, −ρ, β) = 0 . 

Proposition 6. [24 , 33] Let x ∈ R 

+ 
0 

be. Then 

lim 

α↗ 1 
M α/ 2 ( 2 x ) = lim 

α↗ 1 
W 

(
−2 x, −α

2 

, 1 − α

2 

)
= M 1 / 2 (2 x ) = 

e −x 2 

√ 

π
, (10) 

lim 

α↗ 1 
W 

(
−2 x, −α

2 

, 
α

2 

)
= 

e −x 2 

√ 

π
, (11) 

lim 

α↗ 1 

[ 
1 − W 

(
−2 x, −α

2 

, 1 

)] 
= erf (x ) , (12) 

and 

lim 

α↗ 1 

[ 
W 

(
−2 x, −α

2 

, 1 

)] 
= erfc (x ) , (13) 

where erf ( · ) is the error function defined by erf (x ) = 

2 √ 

π

∫ x 

0 
e −z 2 dz and erfc( · ) is the complementary error function defined by

erfc (x ) = 1 − erf (x ) . Moreover, the convergence is uniform over compact sets. 

Proposition 7. The fractional initial-boundary-value problems for the quarter plane 

(i ) C 
0 D 

α
t u (x, t) = 

∂ 2 

∂x 2 
u (x, t) , 0 < x, 0 < t, 

(ii ) u (x, 0) = u 0 (x ) , 0 ≤ x, 

(iii ) u (0 , t) = g(t) , 0 < t 

(14) 
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(

and 

(i ) ∂ 
∂t 

u (x, t) = 

RL 
0 D 

1 −α
t 

(
∂ 2 

∂x 2 
u (x, t) 

)
, 0 < x, 0 < t, 

(ii ) u (x, 0) = u 0 (x ) , 0 ≤ x, 

(iii ) u (0 , t) = g(t) , 0 < t, 

(15)

are equivalent, if there exists β > 0 such that β < α < 1 and u xx ( x , · ) is an O (t −β ) when t → 0 + . 

Proof. Let u = u (x, t) be a function satisfying equation ( 14 −i ) . Applying RL 
0 

D 

1 −α
t to both sides and using Proposition 1 item

1 we get ( 15 −i ) . 

Let now, for the inverse suppose that u satisfies equation ( 15 -i). Applying 0 I 
1 −α
t to both sides and using Proposition 1 item

2 yields that 

C 
0 D 

α
t u (x, t) = 

∂ 2 

∂x 2 
u (x, t) −

lim 

t↘ 0 
0 I 

α

(
∂ 2 

∂x 2 
u (x, t) 

)

�(1 − α) t α
, 0 < x, 0 < t. (16)

Now, for every x fixed we have that u xx ( x , · ) is an O (t −β ) when t → 0 + , then there exists δ > 0 such that 

−Cτ−β ≤ u xx (x, τ ) ≤ Cτ−β, 0 < τ ≤ t < δ. (17)

Multiplying by (t−τ ) α−1 

�(α) 
in (17) , integrating between 0 and t and applying formula (5) yields that 

−C 
�(1 − β) t α−β

�(α − β + 1) 
≤ 0 I 

α
t u xx (x, t) ≤ C 

�(1 − β) t α−β

�(α − β + 1) 
, t < δ. (18)

Taking the limit when t tends to zero in (18) and being β < α we conclude that equation ( 14 −i ) holds as we wanted to

see. �

Remark 1. Equations ( 14 -i) and ( 15 -i) have been treated as equivalent in literature, as it can be seeing at [6,10,15] , but the

condition 

lim 

t↘ 0 
0 I 

α

(
∂ 2 

∂x 2 
u (x, t) 

)
= 0 (19)

must be considered and should not be forget it. 

Remark 2. It is easy to check that the following functions verify equation ( 14 -i) and ( 15 -i) (we have taken λ = 1 without

loss of generality) 

w 1 (x, t) = x 2 + 

2 

�(α + 1) 
t α. (20)

w 2 (x, t) = E α(t α) exp { −x } (21)

and 

w 3 (x, t) = W 

(
− x 

t α/ 2 
, −α

2 

, 1 

)
. (22)

The condition (19) trivially holds for function w 1 and w 2 and it is no difficult to check it for w 3 (at first differentiating and

then using Preposition 3 ). 

3. The fractional Stefan-like problems 

In this section, two fractional Stefan-like problems, which have explicit self-similar solutions, will be treated. Before that,

some clarifications about the used terminology is presented. 

We refer to fractional Stefan Problems when the governing equations are derived from physical assumptions, like consid-

ering memory fluxes. 

For example, suppose that a process of melting of a semi–infinite slab (0 ≤ x < ∞ ) of some material is taking place, and

the flux involved is a flux with memory. The melt temperature is U m 

, and a constant temperature U 0 > U m 

is imposed on

the fixed face x = 0 . Let u 1 = u 1 (x, t) and u 2 = u 2 (x, t) be the temperatures at the solid and liquid phases respectively. Let

J 1 = J 1 (x, t) and J 2 = J 2 (x, t) be the respective functions for the fluxes at position x and time t and let x = s (t) be the function

representing the (unknown) position of the free boundary at time t . Suppose further that: 

(i) All the thermophysical parameters are constants. 

ii) The function s is an increasing function and consequently, an invertible function. 
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ii) J 1 and J 2 are fluxes modeling the material with memory which verifies that “the weighted sum of the fluxes back in time

at the current time, is proportional to the gradient of temperature ”, that is, the following equations hold 

να 0 I 
1 −α
t J 1 (x, t) = −k 1 

∂u 1 

∂x 
(x, t) (23) 

and 

να h (x ) I 
1 −α
t J 2 (x, t) = −k 2 

∂u 2 

∂x 
(x, t) (24) 

where the initial time in the fractional integral (24) is given by function h which gives us the time when the phase

change occurs. That is, 

t = h (x ) = s −1 (x ) ( i.e. x = s (t)) 

The number να is a parameter with physical dimension (see (70) ) such that 

lim 

α↗ 1 
να = 1 , (25) 

which has been added in order to preserve the consistency with respect to the units of measurement in equations (23) and

(24) . Also, the parameter 

μα = 

1 

να
(26) 

will be used in the following equations. More details about these parameters are given in Section 4 . 

Making an analogous reasoning for the two-phase free-boundary problem, in a similar way it was done for one-phase

free-boundary problems in [19] , the mathematical model for the problem described above is given by 

(i ) ∂ 
∂t 

u 2 (x, t) = λ2 
2 μα2 

∂ 
∂x 

(
RL 
h (x ) 

D 

1 −α
t 

(
∂ 
∂x 

u 2 (x, t) 
))

, 0 < x < s (t) , 0 < t < T , 

(ii ) ∂ 
∂t 

u 1 (x, t) = λ2 
1 μα1 

∂ 
∂x 

(
RL 
0 D 

1 −α
t 

(
∂ 
∂x 

u 1 (x, t) 
))

, x > s (t) , 0 < t < T , 

(iii ) u 1 (x, 0) = U i , 0 ≤ x, 

(i v ) u 2 (0 , t) = U 0 , 0 < t ≤ T , 

(v ) u 1 (s (t ) , t ) = u 2 (s (t ) , t ) = U m 

, 0 < t ≤ T , 

(v i ) ρl d 
dt 

s (t) = k 1 μα1 

RL 
0 D 

1 −α
t 

∂ 
∂x 

u 1 (x, t) 
∣∣
(s (t ) + ,t ) 

− k 2 μα2 

RL 
h (x ) 

D 

1 −α
t 

∂ 
∂x 

u 2 (x, t) 
∣∣
(s (t ) −,t ) 

, 0 < t ≤ T . 

(v ii ) s (0) = 0 

(27) 

where U i < U m 

< U 0 and μα j 
= 

1 
να j 

j = 1 , 2 , (note that the parameters μα j 
can be the same in Eqs. (27) −i and (27) −ii, then

from now on we will take μα2 
= μα1 

without loss of generality). 

Note that self-similar solutions to problem (27) had not been yet founded, due to the difficulty imposed by the variable

bottom limit in the fractional derivative for the liquid phase. 

Now, as noted at the beginning of this section, this paper deals with Stefan-like problems admitting explicit self-similar

solutions. These problems come from the assumption of consider the botton limit t 0 = 0 in the fractional time derivatives

in the Caputo or Riemann–Liouville sense. 

The Stefan-Like Problem for the Caputo derivative. The next problem was treated in [25] and can be obtained by

replacing all the time derivatives in (1) by fractional derivatives in the Caputo sense of order α ∈ (0, 1), i.e. 

(i ) C 
0 D 

α
t u 2 (x, t) = λ2 

α2 

∂ 2 

∂x 2 
u 2 (x, t) , 0 < x < s (t) , 0 < t < T , 

(ii ) C 
0 D 

α
t u 1 (x, t) = λ2 

α1 

∂ 2 

∂x 2 
u 1 (x, t) , x > s (t) , 0 < t < T , 

(iii ) u 1 (x, 0) = U i , 0 ≤ x, 

(i v ) u 2 (0 , t) = U 0 , 0 < t ≤ T , 

(v ) u 1 (s (t ) , t ) = u 2 (s (t ) , t ) = U m 

, 0 < t ≤ T , 

(v i ) ρl C 0 D 

α
t s (t) = k α1 

∂ 
∂x 

u 1 (s (t ) + , t ) − k α2 

∂ 
∂x 

u 2 (s (t ) −, t ) , 0 < t ≤ T , 

(v ii ) s (0) = 0 . 

(28) 

where U i < U m 

< U 0 , λαi 
are positive parameters named as “subdiffusion coefficients” given by λαi 

= λi 
√ 

μα for i = 1 , 2 , and

k αi 
are positive parameters named as “subdiffusion thermal conductivities” given by k αi 

= k i μα, i = 1 , 2 . 

Definition 2. The triple { u 1 , u 2 , s } is a solution to problem (28) if the following conditions are satisfied 

1. u 1 is continuous in the region R T = { (x, t) : 0 ≤ x ≤ s (t) , 0 < t ≤ T } and at the point (0, 0), u 1 verifies that 

0 ≤ lim inf u 1 (x, t) ≤ lim sup u 1 (x, t) < + ∞ . 

(x,t) → (0 , 0) (x,t) → (0 , 0) 
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2. u 2 is continuous in the region {( x, t ): x > s ( t ), 0 < t ≤ T } and at the point (0, 0), u 2 verifies that 

0 ≤ lim inf 
(x,t) → (0 , 0) 

u 2 (x, t) ≤ lim sup 

(x,t) → (0 , 0) 

u 2 (x, t) < + ∞ . 

3. u 1 ∈ C((0 , ∞ ) × (0 , T )) ∩ C 2 x ((0 , ∞ ) × (0 , T )) , such that u 1 ∈ AC t [0, T ] 

4. u 2 ∈ C((0 , ∞ ) × (0 , T )) ∩ C 2 x ((0 , ∞ ) × (0 , T )) , such that u 2 ∈ AC t [0, T ]. 

5. s ∈ AC [0, T ]. 

6. u 1 , u 2 and s satisfy (28) . 

Theorem 1. [25] A self-similar solution to poblem (28) is given by ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

u 2 (x, t) = U 0 − U 0 −U m 
1 −W ( −2 ξαλ, − α

2 , 1 ) 

[ 
1 − W 

(
− x 

λα2 
t α/ 2 , −α

2 
, 1 

)] 

u 1 (x, t) = U i + 

U m −U i 
W ( −2 ξα, − α

2 , 1 ) 
W 

(
− x 

λα1 
t α/ 2 , −α

2 
, 1 

)
s (t) = 2 ξαλα1 

t α/ 2 

(29)

where ξα is a solution to the equation 

k α2 
(U 0 − U m 

)�(1 − α
2 
) 

λα2 

F 2 (2 λx ) − k α1 
(U m 

− U i )�(1 − α
2 
) 

λα1 

F 1 (2 x ) = �
(

1 + 

α

2 

)
λα1 

ρl2 x, x > 0 (30)

where λ = 

λα1 
λα2 

= 

λ1 
√ 

μα

λ2 
√ 

μα
= 

α1 
α2 

> 0 , and F 1 : R 

+ 
0 

→ R and F 2 : R 

+ 
0 

→ R are the functions defined by 

F 1 (x ) = 

M α/ 2 (x ) 

W 

(
−x, −α

2 
, 1 

) and F 2 ( x ) = 

M α/ 2 ( x ) 

1 − W 

(
−x, −α

2 
, 1 

) . (31)

Note 1. The uniqueness of solution to Eq. (30) is still an open problem. However, the uniqueness of similarity solution will

be achived for the Riemann–Liouville Stefan–like problem. 

The Stefan-Like Problem for the Riemann–Liouville derivative. Consider now the following problem: 

(i ) ∂ 
∂t 

w 2 (x, t) = λ2 
α2 

∂ 
∂x 

(
RL 
0 D 

1 −α
t 

(
∂ 
∂x 

w 2 (x, t) 
))

, 0 < x < r(t) , 0 < t < T , 

(ii ) ∂ 
∂t 

w 1 (x, t) = λ2 
α1 

∂ 
∂x 

(
RL 
0 D 

1 −α
t 

(
∂ 
∂x 

w 1 (x, t) 
))

, x > r(t) , 0 < t < T , 

(iii ) w 1 (x, 0) = U i , 0 ≤ x, 

(i v ) w 2 (0 , t) = U 0 , 0 < t ≤ T , 

(v ) w 1 (r(t ) , t ) = w 2 (r(t ) , t ) = U m 

, 0 < t ≤ T , 

(v i ) ρl d 
dt 

r(t) = k α1 

RL 
0 D 

1 −α
t 

∂ 
∂x 

w 1 (x, t) 
∣∣
(r(t ) + ,t ) 

− k α2 

RL 
0 D 

1 −α
t 

∂ 
∂x 

w 2 ( x, t) 
∣∣
(r(t ) −,t ) 

, 0 < t ≤ T , 

(v ii ) r(0) = 0 . 

(32)

where, as before, U i < U m 

< U 0 , λαi 
= λi 

√ 

μα for i = 1 , 2 , and k αi 
= k i μα, i = 1 , 2 . 

Remark 3. The expression k α1 
RL 
0 D 

1 −α
t 

∂ 
∂x 

w 1 (x, t) 
∣∣
(r(t ) + ,t ) is equivalent to 

lim 

x → r(t) + 
k α1 

RL 
0 D 

1 −α
t 

∂ 

∂x 
w 1 (x, t) , (33)

which should not coincide with 

k α1 

RL 
0 D 

1 −α
t 

(
lim 

x → r(t) + 

∂ 

∂x 
w 1 (x, t) 

)
. (34)

Definition 3. The triple { w 1 , w 2 , r } is a solution to problem (32) if the following conditions are satisfied 

1. w 1 is continuous in the region R T = { (x, t) : 0 ≤ x ≤ s (t) , 0 < t ≤ T } and at the point (0, 0), u 1 verifies that 

0 ≤ lim inf 
(x,t) → (0 , 0) 

w 1 (x, t) ≤ lim sup 

(x,t) → (0 , 0) 

w 1 (x, t) < + ∞ . 

2. w 2 is continuous in the region {( x, t ): x > r ( t ), 0 < t ≤ T } and at the point (0, 0), w 2 verifies that 

0 ≤ lim inf 
(x,t) → (0 , 0) 

w 2 (x, t) ≤ lim sup 

(x,t) → (0 , 0) 

w 2 (x, t) < + ∞ . 

3. w 1 ∈ C((0 , ∞ ) × (0 , T )) ∩ C 2 x ((0 , ∞ ) × (0 , T )) , such that w 1 x ∈ AC t (0, T )). 

4. w 2 ∈ C((0 , ∞ ) × (0 , T )) ∩ C 2 x ((0 , ∞ ) × (0 , T )) , such that w 2 x ∈ AC t [0, T ]. 

5. r ∈ C 1 (0, T ). 
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6. There exist RL 
0 D 

1 −α
t 

∂ 
∂x 

w 2 (x, t) ∣
(s (t ) + ,t ) and 

RL 
0 D 

1 −α
t 

∂ 
∂x 

w 1 (x, t) ∣
(r(t ) −,t ) 

for all t ∈ (0, T ]. 

7. w 1 , w 2 and s satisfy (32) . 

Theorem 2. An explicit solution for the two-phase fractional Stefan-like problem (32) is given by ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

w 2 (x, t) = U 0 − U 0 −U m 
1 −W ( −2 ηαλ, − α

2 , 1 ) 

[ 
1 − W 

(
− x 

λα2 
t α/ 2 , −α

2 
, 1 

)] 

w 1 (x, t) = U i + 

U m −U i 
W ( −2 ηα, − α

2 , 1 ) 
W 

(
− x 

λα1 
t α/ 2 , −α

2 
, 1 

)
r(t) = 2 ηαλα1 

t α/ 2 

(35) 

where ηα is the unique positive solution to the equation 

k α2 
(U 0 − U m 

) 

λα1 
λα2 

G 2 (2 λx ) − k α1 
(U m 

− U i ) 

λ2 
α1 

G 1 (2 x ) = 

(
ρl + 

k α1 
(U m 

− U i ) 

λ2 
α1 

)
2 x, (36) 

where λ = 

λα1 
√ 

μα

λα2 

√ 

μα
= 

λ1 
λ2 

> 0 , U i < U m 

< U 0 and G 1 : R 

+ 
0 

→ R and G 2 : R 

+ 
0 

→ R are the functions defined by 

G 1 (x ) = 

W 

(
−x, −α

2 
, 1 + 

α
2 

)
W 

(
−x, −α

2 
, 1 

) and G 2 (x ) = 

2 /αW 

(
−x, −α

2 
, α

2 

)
1 − W 

(
−x, −α

2 
, 1 

) . (37) 

Proof. Let the functions 

w i : R 

+ 
0 

× (0 , T ) → R 

(x, t) → w i (x, t) = A i + B i 

[ 
1 − W 

(
− x 

λαi 
t α/ 2 , −α

2 
, 1 

)] 
(38) 

be the proposed solutions for i = 1 , 2 . Rewriting expression (8) for the variable t and taking c = 

x 
λαi 

gives 

0 I 
α
t t β−1 W 

(
− x 

λαi 

t −ρ, −ρ, β

)
= t β+ α−1 W 

(
− x 

λαi 

t −ρ, −ρ, β + α

)
. (39) 

Then, by using (39) for β = 1 − α
2 and Proposition 3 it is easy to check that w i verifies equations ( 32 -i) and ( 32 -ii)

respectively for i = 1 , 2 . 

From condition ( 32 -v) we deduce that r ( t ) must be proportional to t α/2 . Therefore we set 

r(t) = 2 ηαλα1 
t α/ 2 , t ≥ 0 (40) 

where ηα is a constant to be determined and λα1 
was added for simplicity in the next calculations. Now, from conditions

( 32 −iii ) , ( 32 −i v ) and ( 32 −v ) it holds that 

A 1 = U i + 

U m −U i 
W ( −2 ηα, − α

2 , 1 ) 
, B 1 = − U m −U i 

W ( −2 ηα, − α
2 , 1 ) 

A 2 = U 0 , B 2 = − U 0 −U m 
1 −W ( −2 ηαλ, − α

2 , 1 ) 

As before, by considering (39) for β = 1 − α
2 and Proposition 3 , it holds that 

B i α/ 2 

λα1 
λαi 

t 1 −α/ 2 
W 

(
− x 

λαi 
t α/ 2 

, −α

2 

, 1 + 

α

2 

)
+ 

B i α/ 2 

λα1 
λαi 

x 

t 
W 

(
− x 

λαi 
t α/ 2 

, −α

2 

, 1 

)
, i = 1 , 2 . (41) 

Then replacing (41) and (40) in equation ( 32 -vii), and evaluating the limits following (33) it yields that ηα must verify

the next equality 

ρl2 ηαλα1 
= − k α1 

(U m −U i ) 

λ2 
α1 

W ( −2 ηα, − α
2 , 1+ α2 ) 

W ( −2 ηα, − α
2 , 1 ) 

− k α1 
(U m −U i ) 

λ2 
α1 

2 ηα−

+ 

k α2 
(U 0 −U m ) 

λα1 
λα2 

W ( −2 ληα, − α
2 , 1+ α2 ) 

1 −W ( −λ2 ηα, − α
2 , 1 ) 

+ 

k α2 
(U 0 −U m ) 

λα1 
λα2 

2 ληαW ( −λ2 ηα, − α
2 , 1 ) 

1 −W ( −λα2 ηα, − α
2 , 1 ) 

. 

(42) 

which leads to conclude that { w 1 , w 2 , r } is a solution to (32) if and only if ηα is a solution to the equation 

k α2 
(U 0 −U m ) 

λα1 
λα2 

W ( −λ2 x, − α
2 , 1+ α2 ) +2 λxW ( −λ2 x, − α

2 , 1 ) 
1 −W ( −λ2 x, − α

2 , 1 ) 
− −k α1 

U m −U i 
λ2 

α1 

W ( −2 x, − α
2 , 1+ α2 ) 

W ( −2 x, − α
2 , 1 ) 

= 

(
ρl + 

k α1 
(U m −U i ) 

λ2 
α1 

)
2 x, x > 0 . (43) 

which, by using Proposition 4 -2 leads to Eq. (36) . 

The next step is to prove that Eq. (36) has unique solution. For that purpose we define the function G in R 

+ as 

G (x ) = 

k α2 
(U 0 − U m 

) 

λα1 
λα2 

G 2 (2 λx ) − k α1 
(U m 

− U i ) 

λ2 
α1 

G 1 (2 x ) −
(

ρl + 

k α1 
(U m 

− U i ) 

λ2 
α1 

)
2 x. 
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Note that G is a continuous function such that 

G (0 

+ ) = + ∞ . (44)

From Proposition 4 -3 for every x > 0 we have that 

0 < 

W 

(
−2 x, −α

2 
, 1 + 

α
2 

)
W 

(
−2 x, −α

2 
, 1 

) < 

1 

�
(

α
2 

+ 1 

) , (45)

then G 1 is bounded. Also, from (45) it holds that 

− k α1 
(U i −U m ) 

λ2 
α1 

1 

�( α2 +1 ) 
+ 

k α2 
(U 0 −U m ) 

λα1 
λα2 

G 2 (2 λx ) −
(
ρl + 

k α1 
(U m −U i ) 

λ2 
α1 

)
2 x < G (x ) < 

k α2 
(U 0 −U m ) 

λα1 
λα2 

G 2 (2 λx ) −
(
ρl + 

k α1 
(U m −U i ) 

λ2 
α1 

)
2 x, 

(46)

and taking the limit when x → ∞ in (46) , by using Proposition 5 we obtain that 

G (+ ∞ ) = −∞ . (47)

Finally, consider the function K : R 

+ → R defined as 

K(x ) = −k α1 
(U m 

− U i ) 

λ2 
α1 

[ G 1 (2 x ) + 2 x ] − ρl2 x. (48)

Applying Proposition 3 item 1 and being 
(U m −U i ) 

λ2 
α1 

> 0 it results that K is a strictly decreasing function. On the other hand,

from Proposition 4 item 1 we have that G 2 is a strictly decreasing function. Then it can be concluded that G is a strictly

decreasing function. Therefore Eq. (36) has a unique positive solution. �

Remark 4. The limits described in Remark 3 are different if we compute them for the functions w 1 and r . In fact, by using

the computation made in the previous theorem, we get 

lim 

x → r(t) + 
RL 
0 D 

1 −α
t 

∂ 
∂x 

w 1 (x, t ) = 

B 1 
λα1 

[
α
2 

t α/ 2 −1 W 

(
−2 ηα, −α

2 
, 1 + 

α
2 

)
+ 

α
2 

2 ηαt α/ 2 −1 W 

(
−2 ηα, −α

2 
, 1 

)]
. (49)

and from Proposition 4 -2, we have: 

W 

(
−2 ηα, −α

2 

, 1 + 

α

2 

)
+ 2 ηαW 

(
−2 ηα, −α

2 

, 1 

)
= 

2 

α
W 

(
−ηα, −α

2 

, 
α

2 

)
. (50)

Then 

lim 

x → r(t) + 
RL 
0 D 

1 −α
t 

∂ 

∂x 
w 1 (x, t ) = 

B 1 

λα1 

t α/ 2 −1 W 

(
−ηα, −α

2 

, 
α

2 

)
(51)

whereas 

RL 
0 D 

1 −α
t 

(
lim 

x → r(t) + 

∂ 

∂x 
w 1 (x, t) 

)
= 

B 1 

λα1 

t α/ 2 −1 
�
(
1 − α

2 

)
�
(

α
2 

) M α/ 2 (2 ηα) . (52)

And we know that (51) and (52) are different due to Proposition 4 -3. 

Theorem 3. If λ = 1 , the explicit solution (35) to problem (32) and the explicit solution (29) to problem (28) are different. 

Proof. Take U i = −1 , U m 

= 0 and U 0 = 1 . Let { u 1 , u 2 , s } be the solution to problem (28) . Then s (t) = 2 λα1 
ξαt α/ 2 where ξα is

a positive solution to equation 

k α2 
�(1 − α

2 
) 

λα1 
λα2 

M α/ 2 (2 λx ) 

1 − W 

(
−λ2 x, −α

2 
, 1 

) − k α1 
�(1 − α

2 
) 

λ2 
α1 

M α/ 2 (2 x ) 

W 

(
−2 x, −α

2 
, 1 

) = �(1 + 

α

2 

) ρl2 x. (53)

On the other hand, let { w 1 , w 2 , r } be the solution to problem (32) . Then ηα is the positive solution to equation 

k α2 
2 /α

λα1 
λα2 

W 

(
−2 λx, −α

2 
, α

2 

)
1 − W 

(
−λ2 x, −α

2 
, 1 

) − k α1 

λ2 
α1 

W 

(
−2 x, −α

2 
, 1 + 

α
2 

)
W 

(
−2 x, −α

2 
, 1 

) = 

(
ρl + 

k α1 

λ2 
α1 

)
2 x, (54)

or equivalently, 

k α2 

λα1 
λα2 

�(1 + 

α
2 
)2 /αW 

(
−2 λx, −α

2 
, α

2 

)
1 − W 

(
−2 λx, −α

2 
, 1 

) − −k α1 
�(1 + 

α
2 
) 

λ2 
α1 

W 

(
−2 x, −α

2 
, 1 + 

α
2 

)
+ 2 xW 

(
−2 x, −α

2 
, 1 

)
W 

(
−2 x, −α

2 
, 1 

) = �(1 + 

α

2 

) ρl2 x.

(55)
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Fig. 1. The function h α (x ) = �( α
2 
) W 

(
−x, − α

2 
, α

2 

)
− �(1 − α

2 
) M α/ 2 (x ) for different values of α. 

 

 

From Proposition 4 -2, for every x > 0 we have that 

W 

(
−2 x, −α

2 

, 1 + 

α

2 

)
+ 2 xW 

(
−2 x, −α

2 

, 1 

)
= 

2 

α
W 

(
−2 x, −α

2 

, 
α

2 

)
. (56) 

Then using the fact that the Gamma function verifies that 
�(1+ α

2 
) 

α
2 

= �( α2 ) and replacing (56) in (55) we deduce that ηα

is the unique positive solution to the equation next ( Fig. 1 ) 

k α2 

λα1 
λα2 

�( α
2 
) W 

(
−2 λx, −α

2 
, α

2 

)
1 − W 

(
−2 λx, −α

2 
, 1 

) − k α1 

λ2 
α1 

�( α
2 
) W 

(
−2 x, −α

2 
, α

2 

)
W 

(
−2 x, −α

2 
, 1 

) = �(1 + 

α

2 

) ρl2 x, x > 0 . (57) 

Then, if we suppose then that ξα = ηα, it results that there exist ξα > 0 such that 

k α1 

λ2 
α1 

�( α
2 
) W 

(
−2 ξα, −α

2 
, α

2 

)
W 

(
−2 ξα, −α

2 
, 1 

) − k α1 

λ2 
α1 

�(1 − α
2 
) M α/ 2 (2 ξα) 

W 

(
−2 ξα, −α

2 
, 1 

) = 

k α2 

λα1 
λα2 

�( α
2 
) W 

(
−2 λξα, −α

2 
, α

2 

)
1 − W 

(
−2 λξα, −α

2 
, 1 

)
− k α2 

λα1 
λα2 

�(1 − α
2 
) M α/ 2 (λ2 ξα) 

1 − W 

(
−2 λξα, −α

2 
, 1 

) . (58) 

By hypothesis λ = 1 , then we conclude that 

k α1 

λ2 
α1 

W 

(
−2 ξα, −α

2 
, 1 

) = 

k α2 

λα1 
λα2 

1 − W 

(
−2 λξα, −α

2 
, 1 

) , (59) 

or equivalently, 

W 

(
−2 ξα, −α

2 

, 1 

)
= 

1 

1 + 

k α2 
λα2 

k α1 
λα1 

. (60) 

Replacing (60) in equation (53) yields that ρlλα1 
2 ξα = 0 which leads to ξα = 0 , contradicting the fact that ξα > 0. �

Note 2. It is worth noting that an analogous proof for Theorem 3 but considering λ � = 1 does not holds. In fact, if we define

the function h α : R 

+ → R as 

h α(x ) = �
(
α

2 

)
W 

(
−x, −α

2 

, 
α

2 

)
− �

(
1 − α

2 

)
M α/ 2 (x ) 

then equality (58) can be expressed as 

k α2 

λα1 
λα2 

h α(λ2 ξα) 

1 − W 

(
−λ2 ξα, −α

2 
, 1 

) = 

k α1 

λ2 
α1 

h α(2 ξα) 

W 

(
−2 ξα, −α

2 
, 1 

) . (61) 

If λ � = 1, it is not possible to cancel the espressions h α( λ2 ξα) and h α(2 ξα) in Eq. (61) . Moreover the plots in Fig. 2 lead us

to suppose that there exists a positive solution to equation 

k α2 

λα1 
λα2 

h α(λx ) 

1 − W 

(
−λx, −α

2 
, 1 

) = 

k α1 

λ2 
α1 

h α(x ) 

W 

(
−x, −α

2 
, 1 

) , x > 0 , (62) 

then, it is not possible to get a contradiction like in (60) . 
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Fig. 2. The left and right quotients of Eq. (62) for different values of α. 

 

 

 

 

 

 

 

 

 

However, if we take different values of λ (which are different to 1) and the parameters ξα and ηα are estimated numer-

ically for different values of α, we see that they are different and both converge to the same value when α↗ 1. Numerical

examples will be given in the next section. 

Theorem 4. The explicit solution (35) to problem (32) converges, when α↗ 1, to the unique solution to the classical Stefan prob-

lem given by 

(i ) ∂ 
∂t 

u 2 (x, t) = λ2 
2 

∂ 2 

∂x 2 
u 2 (x, t) , 0 < x < s (t) , 0 < t < T , 

(ii ) ∂ 
∂t 

u 1 (x, t) = λ2 
1 

∂ 2 

∂x 2 
u 1 (x, t) , x > s (t) , 0 < t < T , 

(iii ) u 1 (x, 0) = U i , 0 ≤ x, 

(i v ) u 2 (0 , t) = U 0 , 0 < t ≤ T , 

(v ) u 1 (s (t ) , t ) = u 2 (s (t ) , t ) = U m 

, 0 < t ≤ T , 

(v i ) d 
dt 

s (t) = k 1 
∂ 
∂x 

u 1 (s (t ) , t ) − k 2 
∂ 
∂x 

u 2 (s (t ) , t ) , 0 < t ≤ T , 

(v ii ) s (0) = 0 

(63)

Proof. The unique solution to problem (63) is the Neumann solution given in [37] , ⎧ ⎪ ⎨ 

⎪ ⎩ 

z 2 (x, t) = U 0 − (U 0 − U m 

) 
erf 

(
x 

2 λ2 
√ 

t 

)
erf ( ν1 λ) 

z 1 (x, t) = U i + (U m 

− U i ) 
erfc 

(
x 

2 λ1 
√ 

t 

)
erfc ( ν1 ) 

w (t) = 2 η1 λ1 

√ 

t 

(64)

where η1 is the unique solution to the equation 

k 2 (U 0 − U m 

) 

λ1 λ2 

exp 

{
−λ2 x 2 

}
√ 

πerf ( λx ) 
− k 1 (U m 

− U i ) 

λ2 
1 

exp 

{
−x 2 

}
√ 

πerfc ( x ) 
= ρlx, x > 0 . (65)

Reasoning like in the previous theorem we can state that the solution to problem (32) is given by (35) where ηα is the

unique positive solution to the equation 

k α2 
(U 0 − U m 

) 

λα1 
λα2 

α

W 

(
−2 λx, −α

2 
, α

2 

)
1 − W 

(
−2 λx, −α

2 
, 1 

) − k α1 
(U m 

− U i ) 

λ2 
α1 

α

W 

(
−2 x, −α

2 
, α

2 

)
W 

(
−2 x, −α

2 
, 1 

) = ρlx, x > 0 . (66)

Clearly, if we take α = 1 in Eq. (66) we recover Eq. (65) . Now, let be the sequence { ηα} α , where ηα is the unique positive

solution to Eq. (66) for each 0 < α < 1. 

Defining the function 

f α(x ) = 

k α2 
(U 0 − U m 

) 

ρlλα1 
λα2 

α

W 

(
−2 λx, −α

2 
, α

2 

)
1 − W 

(
−2 λx, −α

2 
, 1 

) − k α1 
( U m 

− U i ) 

ρlλ2 
α1 

α

W 

(
−2 x, −α

2 
, α

2 

)
W 

(
−2 x, −α

2 
, 1 

)
for every x ∈ R 

+ and 0 < α ≤ 1, it holds that f α(ηα) = ηα for every α ∈ (0, 1]. 
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From [38] we know that f 1 is a strictely decreassing function in R 

+ . Taking a close interval [ a, b] ⊂ R 

+ such that η1 ∈ [ a,

b ], using the uniform convergence over compact sets of all the positive functions given in Proposition 6 and proceding like

in [33, Theorem 2] we can state that 

lim 

α↗ 1 
ηα = η1 . (67) 

Finally, by taking the limit when α↗ 1 in solution (35) and applying Proposition 6 , the thesis holds. �

Remark 5. By using the same technique described before, we can improve the result given in [25, Theorem 3.3] by consid-

ering the functions g α defined in R 

+ by 

g α(x ) = 

k α2 
(U 0 − U m 

) 

ρlλα1 
λα2 

�(1 − α/ 2) 

�( 1 + α/ 2) 

M α/ 2 ( −2 λx ) 

1 − W 

(
−2 λx, −α

2 
, 1 

) − k α1 
( U m 

− U i ) 

ρlλ2 
α1 

α

�( 1 − α/ 2) 

�( 1 + α/ 2) 

M α/ 2 ( −2 x ) 

W 

(
−2 x, −α

2 
, 1 

)
and a sequence { ξα} α were ξα is a solution to equation g α(x ) = x, x > 0. 

4. The dimesionless problems and numerical results 

With the aim of giving different plots of the solutions obtained in Section 3 , the problems (28) and (32) will be rewritten

in their dimensionless form. 

First, we give the following table exhibiting the usual heat conduction physical dimensions related to this work. Let us

write T for temperature, t for time, m for mass and X for position. 

u 1 , u 2 , w 1 , w 2 temperatures [ T ] 

k 1 , k 2 thermal conductivities 
[

m X 

Tt 3 

]
ρ mass density 

[
m 

X 3 

]
c 1 , c 2 specific heats 

[ 
X 2 

T t 2 

] 

λ2 
i 

= 

k i 
ρc 

, i = 1 , 2 diffusion coefficients 

[ 
X 2 

t 

] 

l latent heat per unit mass 

[ 
X 2 

t 2 

] 

(68) 

Proposition 8. For every α ∈ (0, 1) it holds that 

1. [ 0 I 
α f ] = [ f ] t α for every f = f (t) ∈ L 1 (0 , T ) . 

2. 
[

RL 
0 D 

α f 
]

= 

[ f ] 

t α
for every f = f (t) ∈ AC[0 , T ] . 

3. 
[

C 
0 
D 

α f 
]

= 

[ f ] 

t α
for every f = f (t) ∈ AC[0 , T ] . 

Recall that the parameters να and μα given in (25) where added to preserve the consistency with respect to the units

of measurements in equations (23) and (24) . That is, being [ J ] = [ ku x ] = 

m 

t 3 
and using Proposition 8 , it holds that 

[
0 I 

1 −α
t J(x, t) 

]
= 

[
1 

�(1 − α) 

∫ t 

0 

J(x, τ ) 

(t − τ ) α
d τ

]
= 

m 

t 2+ α . (69) 

Then, replacing (69) in (23) one gets 

[ να] = 

[
k ∂u 

∂x 

]
[

h (x ) I 
1 −α
t J 

]
) 

= 

1 

t 1 −α
. (70) 

Therefore, 

[ μα] = t 1 −α. (71) 

Proposition 9. Let x 0 be a characteristic position and let U 

∗ be a characteristic temperature. Then, if the following rescaling

variable are considered 

y = 

x 

x 0 
, τ = 

λ2 
1 

x 2 
0 

t and 

˜ w = 

w 

U 

∗ , (72) 

it holds that 

0 I 
α
t (w x (x, t)) = 

U 

∗x 0 

λ2 
1 

(
λ2 

1 

x 2 
0 

)
1 −α

0 I 
α
τ ( ̃  w y (y, τ )) , (73) 
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0 I 
α
t (w xx (x, t)) = 

U 

∗

λ2 
1 

(
λ2 

1 

x 2 
0 

)
1 −α

0 I 
α
τ ( ̃  w yy (y, τ )) (74)

and 

RL 
0 D 

1 −α
t (w xx (x, t)) = 

U 

∗

x 2 
0 

(
λ2 

1 

x 2 
0 

)
1 −α RL 

0 D 

1 −α
τ ( ̃  w yy (y, τ )) . (75)

Proof. We prove here Eq. (73) . By considering the rescaling (72) , we have 

˜ w (y, τ ) = 

w (x (y ) , t(τ )) 

U 

∗ . (76)

Then 

0 I 
α
t (w x (x, t)) = 

1 

�(α) 

∫ t 

0 

w x (x, z) 

(t − z) 1 −α
d z = 

U 

∗

�(α) 

∫ t 

0 

1 
x 0 

˜ w y (y, τ (z)) 

(t − z) 1 −α
dz = 

= 

U 

∗

�(α) 

∫ λ2 
1 

x 2 
0 

t 

0 

˜ w y (y, v ) (
x 2 

0 

λ2 
1 

)
1 −α( 

λ2 
1 

x 2 
0 

t − v ) 1 −α

x 0 

λ2 
1 

dv = 

U 

∗

x 0 

(
x 2 0 

λ2 
1 

)
α

0 I 
α
τ ( ̃  w y (y, τ )) . 

�

Now, let us consider problems (28) and (32) . By using Proposition 9 it is easy to state that the governing equation ( 32 -i)

is equivalent to the following equation 

∂ 

∂τ
˜ w 2 (y, τ ) = λ2 μα

(
λ2 

1 

x 2 
0 

)
1 −α RL 

0 D 

1 −α
τ ˜ w 2 yy (y, τ ) . (77)

Note that μα = 

(
x 2 

0 

λ2 
1 

)
1 −α is an admissible parameter because [ μα] = t 1 −α and that lim 

α↗ 1 
μα = 1 . Then, the parameter

μα

(
λ2 

1 

x 2 
0 

)
1 −α in Eq. (77) can be omitted. 

Analogously, transforming the governing equations, the Stefan conditions, the initial and boundary data, taking U m 

= 0

and U 

∗ = | U i | in problems (28) and (32) , it follows that the dimensionless associated problems are given by 

(i ) C 
0 D 

α
τ ˜ u 2 (y, τ ) = λ2 ˜ u 2 yy (y, τ ) , 0 < y < 

˜ s (τ ) , 0 < τ < 

˜ T , 

(ii ) C 
0 D 

α
τ ˜ u 1 (y, τ ) = 

˜ u 2 yy (y, τ ) , y > 

˜ s (τ ) , 0 < τ < 

˜ T , 

(iii ) ˜ u 1 (y, 0) = −1 , 0 ≤ x, 

(i v ) ˜ u 2 (0 , τ ) = 

U 0 | U i | , 0 < τ ≤ ˜ T , 

(v ) ˜ u 1 ( ̃  s (τ ) , τ ) = 

˜ u 1 ( ̃  s (τ ) , τ ) = 0 , 0 < τ ≤ ˜ T , 

(v i ) C 
0 D 

α
τ ˜ s (τ ) = Ste 

[
˜ u 1 y ( ̃  s (τ ) + , τ ) − k 2 

k 1 
˜ u 2 y ( ̃  s (τ ) −, τ ) 

]
, 0 < τ ≤ ˜ T , 

(v ii ) ˜ s (0) = 0 . 

(78)

and 

(i ) ˜ w 2 τ (y, τ ) = λ2 RL 
0 D 

1 −α
τ w 2 yy (y, τ ) , 0 < y < 

˜ r (τ ) , 0 < 

˜ t < 

˜ T , 

(ii ) ˜ w 1 τ (y, τ ) = 

RL 
0 D 

1 −α
τ w 1 yy (y, τ ) , y > 

˜ r (τ ) , 0 < τ < 

˜ T , 

(iii ) ˜ w 1 (y, 0) = −1 , 0 ≤ y, 

(i v ) ˜ w 2 (0 , t) = 

U 0 | U i | , 0 < τ ≤ ˜ T , 

(v ) ˜ w 1 ( ̃ r (τ ) , τ ) = 

˜ w 2 ( ̃ r (τ ) , τ ) = 0 , 0 < τ ≤ ˜ T , 

(v i ) d 
dt ̃

 r (τ ) = Ste 

[ 
RL 
0 D 

1 −α
τ w 1 y (y, τ ) 

∣∣
( ̃ r (τ ) + ,τ ) 

− k 2 
k 1 

RL 
0 D 

1 −α
τ ˜ w 2 y (y, τ ) 

∣∣
( ̃ r (τ ) −,τ ) 

] 
, 0 < τ ≤ ˜ T , 

(v ii ) ˜ r (0) = 0 . 

(79)

where λ = 

λ2 
λ1 

and Ste = 

| U i | c 1 
l 

is the dimensionless Stefan number. 

In the following table there are different tests, i.e. sets of parameters for λ, 
k 2 
k 1 

, U = 

U 0 | U i | and Ste . For each test in Table 1

a correpondig graphic of the comparison between the ξα and ηα is given in Fig. 3 . 

At the end, we present in Figs. 4 and 5 some color maps of temperature for tests 2 and 3, respectively. Three values of

α are considered and as expected from Theorem 4 , both solutions approach themselves when α↗ 1. 
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Fig. 3. ξα vs. ηα for different values of α. 
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Table 1 

Different set of tests. 

λ k 2 
k 1 

U = 

U 0 | U i | Ste 

Test 1 0.5 0.5 1.0 0.5 

Test 2 2.0 2.0 1.0 0.5 

Test 3 0.5 0.5 1.0 1.2 

Test 4 2.0 2.0 1.0 1.2 

Fig. 4. Caputo’s approach Solutions Vs. Riemann-Liouville’s aproach Solutions for Test 2 
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Fig. 5. Caputo’s approach Solutions Vs. Riemann-Liouville’s aproach Solutions for Test 3. 

 

 

 

 

 

 

 

 

5. Conclusion 

We have presented two different fractional two-phase Stefan-like problems for the Riemann-Liouville and Caputo deriva-

tives of order α ∈ (0, 1) with the particularity that, if the parameter α = 1 is replaced in both problems, we recover the same

classical Stefan problem. In both cases, explicit solutions in terms of self-similar variables where given. It was interesting

to see that, the role of the different “fractional Stefan conditions” associated to each problem was decisive to conclude that

the solutions obtained were different. Also, as expected, we have proved that the two different solutions converge to the

same triple of limits functions when α tends to 1, where this “limit solution” is the classical solution to the classical Stefan

problem mentioned before. 

Finally we would like to comment some open problems related to this research paper: is it possible to find explicit

solutions to problem (27) derived in [19] ? Which is the best numerical approach for this kind or problems? If we could

estimate any solution to problem (27) , how different it would be to the explicit solutions obtained in the present work? 
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