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1. Introduction 

The theory related to heat diffusion has been extensively devel-

oped in the last century. Modelling classical heat diffusion comes

hand in hand with Fourier Law. Nevertheless, we shall not forget

that this famous law is an experimental phenomenological princi-

ple. 

In the past 40 years, many generalized flux models of the clas-

sical one (i.e. the one derived from Fourier Law) were proposed in

the literature and accepted by the scientific community. See e.g.

[8,16–18,37] . 

In this paper a phase change problem for heat diffusion under

the hypothesis that the heat flux is a flux with memory is anal-
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sed. This kind of problems are known in the literature as Stefan

roblems [41,42] . 

The model obtained under the memory assumption is known

s an anomalous diffusion model, and it is governed by fractional

iffusion equations. There is a vast literature in the subject of frac-

ional diffusion equations. We refer the reader to [24,30,31] and

eferences therein. 

The study of anomalous diffusion has its origins in the investi-

ation of non-Brownian motions (Random walks). In that context it

as observed that “the mean square displacement” of the particles

s proportional to a power of the time, instead of being propor-

ional just to time. An exhaustive work in this direction has been

one by Metzler and Klafter [26] . Other articles in this direction

re [19,25,27,28] . It is worth mentioning that many works (see e.g.

3,12,40] ) suggest that the anomalous diffusion is caused by het-

rogeneities in the domain. 

Before presenting the problem, let us establish some usual no-

ation related to heat conduction with the corresponding physical

https://doi.org/10.1016/j.chaos.2018.09.023
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f (t) , α = n. 
imensions. Let us write T for temperature, t for time, m for mass

nd X for position. 

u temperature [ T ] 

k thermal conductivity 

[
m X 

Tt 3 

]
ρ mass density 

[ 
m 

X 

3 

] 
c specific heat 

[
X 

2 

T t 2 

]

 = 

k 

ρc 
diffusion coefficient 

[
X 

2 

t 

]

l latent heat per unit mass 

[
X 

2 

t 2 

]

(1) 

Consider a temperature function u = u (x, t) and its correspond-

ng flux J ( x, t ), both defined for a semi-infinite unidimensional ma-

erial. From the First Principle of Thermodynamics, we deduce the

ontinuity equation 

c 
∂u 

∂t 
(x, t) = − ∂ J 

∂x 
(x, t) . (2)

he aim of this work is to derive a model by considering a special

on-local memory flux. For example, Gurtin and Pipkin [15] (ex-

erts in continuum mechanics and heat transfer) proposed in 1968

 general theory of heat conduction with finite velocity waves

hrough the following non local flux law: 

(x, t) = K(t) ∗
(

−k 
∂ 

∂x 
u (x, t) 

)
= −k 

∫ t 

−∞ 

K(t − τ ) 
∂ 

∂x 
u (x, τ )d τ, 

(3) 

here K is a positive decreasing kernel which verifies K ( s ) → 0

hen s → ∞ . 

Let us comment on some different explicit and implicit defini-

ions of fluxes, and their effects on the resulting governing equa-

ions: 

• Explicit forms for the flux: J(x, t) = F (x, t) 

The classical law for the flux is the Fourier Law , which states

that the flux J is proportional to the temperature gradient, that

is: 

J(x, t) = −k 
∂ 

∂x 
u (x, t) . (4)

If alternatively suppose that the flux at the point ( x, t ) is pro-

portional to the total flux, then the given law is the following:

J(x, t) = 

1 

˜ τ

∫ t 

−∞ 

−k 
∂ 

∂x 
u (x, τ )d τ. (5)

In (5) , ˜ τ is a constant whose physical dimension is time. An-

other interesting thing is that (5) can be interpreted as a gen-

eralized sum of backward fluxes, where every local flux has the

same “relevance”. 

The following expression for the flux is a generalized sum of

weighted backward fluxes. There is now a kernel which assigns

more weight (“importance”) to the nearest temperature gradi-

ents, that is: 

J(x, t) = − ηα

�(α) 

∫ t 

−∞ 

(t − τ ) α−1 k 
∂ 

∂x 
u (x, τ )d τ. (6)

Here, α is a constant in the interval (0,1) that plays an impor-

tant role, and ηα is a constant imposed to equate units of mea-

sures. Both will be specified later. 

Note that (4) and (6) result from considering the kernels

K 1 ( t ) ≡ δ( t ) and K 2 (t) = ηα
t α−1 

�(α) 
, respectively, in the generalized

flux equation (3). 
• Implicit forms for the flux: F (x, t, J(x, t)) = G (x, t) . 

One of the most famous formulations for the flux, is given by

the Cattaneo’s equation [6] 

J(x, t) + ˜ τ
∂ 

∂t 
J(x, t) = −k 

∂ 

∂x 
u (x, t) , (7)

which was proposed with the aim of introducing an alternative

to the “unphysical” property of the diffusion equation known as

infinite speed of propagation . Eq. (7) can be seen as a first order

Taylor approximation of (8) in which the flux is allowed to ad-

just to the gradient of the temperature according to a relaxation

time ˜ τ , 

J(x, t + ˜ τ ) = −k 
∂ 

∂x 
u (x, t) . (8)

Another approach assumes that the integral of the back fluxes,

at the current time, is proportional to the gradient of the tem-

perature: 

1 

˜ τ

∫ t 

−∞ 

J(x, τ )d τ = −k 
∂ 

∂x 
u (x, τ ) . 

Yet another formulation considers that the integral of the

weighted backward fluxes at the current time, is proportional to

the gradient of the temperature : 

να

�(1 − α) 

∫ t 

−∞ 

(t − τ ) −α J(x, τ )d τ = −k 
∂ 

∂x 
u (x, τ ) . (9)

Note 1. Although when we talk about backward fluxes it is log-

ical to consider the lower limit of the integral at −∞ , we can

suppose that the function u has remained constant (for some

reason) for all t < 0, where with 0 we refer to a certain initial

time. Moreover, under this condition, that is u ( x, t ) ≡ u 0 , for ev-

ery t < 0, the expressions (6) and (9) become 

J(x, t) = − ηα

�(α) 

∫ t 

0 

(t − τ ) α−1 k 
∂ 

∂x 
u (x, τ )d τ, (10)

and 

να

�(1 − α) 

∫ t 

0 

(t − τ ) −α J(x, τ )d τ = −k 
∂ 

∂x 
u (x, τ ) , (11)

respectively. 

Expressions (10) and (11) are closely linked to fractional calcu-

lus. Let us present the basic definitions that will be employed

throughout the article. 

efinition 1. Let [ a, b ] ⊂ R and α ∈ R 

+ be such that n − 1 < α ≤ n .

1. For f ∈ L 1 [ a, b ], we define the fractional Riemann–Liouville inte-

gral of order α as 

a I 
α f (t) = 

1 

�(α) 

∫ t 

a 

(t − τ ) α−1 f (τ )d τ. 

2. For f ∈ AC n [ a, b] = 

{
f | f (n −1) is absolutely continuous on [a,b] 

}
,

we define the fractional Riemann–Liouville derivative of order α
as 

RL 
a D 

α f (t) = 

[
D 

n 
a I 

n −α f 
]
(t) = 

1 

�(n − α) 

d n 

dt n 

∫ t 

a 

(t − τ ) n −α−1 f (τ )d τ.

3. For f ∈ W 

n (a, b) = 

{
f | f (n ) ∈ L 1 [ a, b] 

}
, we define the fractional

Caputo derivative of order α as 

C 
a D 

α f (t) = 

[
a I 

n −α(D 

n f ) 
]
(t) 

= 

{ 

1 

�(n − α) 

∫ t 

a 

(t − τ ) n −α−1 f (n ) (τ )d τ, n − 1 < α < n

(n ) 
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Table 1 

Flux and diffusion equations. 

Equation for the flux Resulting diffusion Eq. Observations 

J = −k ∂u 
∂x 

∂u 
∂t 

= d ∂ 
2 u 

∂x 2 
Heat equation 

J = − 1 
˜ τ

∫ t 
0 k 

∂u 
∂x 

dτ ∂ 2 u 
∂t 2 

= 

d 
˜ τ

∂ 2 u 
∂x 2 

Wave equation 

J = −kηα 0 I 
α
t 

∂u 
∂x 

C 
0 D 

1+ α
t u = ηαd ∂ 

2 u 
∂x 2 

Superdiffusion equation 

J + ̃  τ ∂ 
∂t 

J = −k ∂u 
∂x 

∂u 
∂t 

+ ̃  τ ∂ 2 u 
∂t 2 

= 

∂ 2 u 
∂x 2 

Telegraph equation 
1 
τ ∗

∫ t 
0 Jd τ = −k ∂u 

∂x 
∂ 
∂t 

(
u − d 

τ ∗
∂ 2 u 
∂x 2 

)
= 0 Elliptic equation with 

parameter t 

να 0 I 
1 −α
t J = −k ∂u 

∂x 
C 
0 D 

αu (x, t) = 

d 
να

∂ 2 

∂x 2 
u (x, t) Subdiffusion equation 

xx0

t

P (x0, t)

t = h(x)

h(x0)

Fig. 1. The free boundary h ( x ) vs x . 
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Note 2. With these definitions, Eqs. (10) and (11) can be rewritten

as 

J(x, t) = −ηαk 0 I 
α
t 

∂ 

∂x 
u (x, t) 

and 

να 0 I 
1 −α
t J(x, τ ) = −k 

∂ 

∂x 
u (x, t) . 

Table 1 exhibits the governing equations derived from (2) for

the different choices of the flux J . 

There are many references about these different fluxes and their

corresponding governing equations [5,6,10,24,30,31] . Specially, the

subdiffusion equation is one of the most studied in the last

10 years: The Cauchy problem [11,14,23,29] , initial and boundary

value problems [13,38] , maximum principles [1,21,22,32] . Never-

theless, fractional phase change problems have been very poorly

studied [2,43] . Some of these articles propose a physical ap-

proach [4,7,44–46] and others do a purely mathematical treatment

[20,33,34] . 

The goal of this paper is to present a new mathematical model

for a one phase change problem with a memory flux, which de-

rives in a fractional free boundary problem, such that the gov-

erning equations of this model are consistent both mathematically

and physically speaking. We will pay special attention to the in-

terchange of limits and integrals, which is a sensitive issue when

working with fractional derivatives (see [36] ). 

In Section 2 , some properties of fractional calculus which will

be useful later are provided. 

In Section 3 , a mathematical formulation for an instantaneous

phase-change problem for a material with memory is presented.

In this model, an implicit equation for the flux involving fractional

integrals is used. 

Finally, in Section 4 , an equivalent formulation is presented,

which allows us to give an integral relation for the free boundary,
 a
hich we consider important in future research on existence and

niqueness of solutions, or properties of the free boundary. 

. Preliminaries of fractional calculus 

roposition 1. [9] The following properties involving the fractional

ntegrals and derivatives hold: 

1. The fractional Riemann–Liouville derivative is a left inverse oper-

ator of the fractional Riemann–Liouville integral of the same order

α ∈ R 

+ . If f ∈ L 1 [ a, b ], then 

RL 
a D 

α
a I 

α f (t) = f (t) a.e. 

2. The fractional Riemann–Liouville integral is not, in general, a left

inverse operator of the fractional derivative of Riemann–Liouville. 

In particular, if 0 < α < 1, then a I 
α( RL 

a D 

α f )(t) = f (t) −
a I 

1 −α f (a + ) 
�(α)(t − a ) 1 −α

. 

3. If there exists some φ ∈ L 1 ( a, b ) such that f = a I 
αφ, then 

a I 
α RL 

a D 

α f (t) = f (t) a.e. 

4. If n − 1 < α ≤ n and f ∈ AC n [ a, b ], then 

RL 
a D 

α f (t) = 

n −1 ∑ 

k =0 

f (k ) (a ) 

�(1 + k − α) 
(t − a ) k −α + 

C 
a D 

α f (t) . 

In particular, for 0 < α < 1, we have 

RL 
a D 

α f (t) = 

f (a ) 

�(1 − α) 
(t − a ) −α + 

C 
a D 

α f (t) . 

roposition 2. [39] The following limits hold: 

1. If we set a I 
0 = Id, the identity operator, then for every f ∈ L 1 [ a, b ], 

lim 

α↘ 0 
a I 

α f (t) = a I 
0 f (t) = f (t) . 

2. For every f ∈ C 1 ( a, b ), 

lim 

α↗ 1 

C 
a D 

α f (t) = f ′ (t) and lim 

α↘ 1 

C 
a D 

α f (t) = f ′ (t) − f ′ (0 

+ ) , 

∀ t ∈ [ a, b] . 

3. For every f ∈ AC 1 [ a, b ], 

lim 

α↗ 1 

RL 
a D 

α f (t) = f ′ (t) and lim 

α↘ 1 

RL 
a D 

α f (t) = f ′ (t) , a.e. t ∈ (a, b) .

emark 1. If we consider a function f supported in [0, ∞ ) and χα

s the locally integrable function defined by 

α(t) = 

{ 

t α−1 

�(α) 
if t > 0 , 

0 if t ≤ 0 , 

hen we have the following properties for 0 < α < 1: 

 

I α f (t) = ( χα ∗ f ) (t) , 

L 
 

D 

α f (t) = 

d 

dt 
( χ1 −α ∗ f ) (t) , 

 

 

D 

α f (t) = (χ1 −α) ∗ d 

dt 
f (t) . 

. Modelling a phase change problem with a flux with 

emory: a fractional stefan problem 

The aim of this section is to formulate mathematical models

ssociated to a one–dimensional fractional phase change problem. 
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The classical phase change problems for the heat equation ob-

ained by considering the Fourier Law for the flux are known in

he mathematical literature as free boundary problems, and under

ertain conditions as Stefan problems. 

The fundamental equations involved in Stefan problems are: the

eat equation and the Stefan condition (derived from the connec-

ion between the velocity of the free boundary and the heat fluxes

f the two temperatures corresponding to the different phases). 

We will focus on deriving the fractional diffusion equation and

making an abuse of language) the “fractional Stefan condition”. 

Physical problem: Melting of a semi–infinite slab (0 ≤ x < ∞ ) of

 material with memory, which is at the melt temperature T m 

, by

mposing a constant temperature T 0 > T m 

on the fixed face x = 0 .

ll the thermophysical parameters are constants. 

Mathematical problem Let u = u (x, t) be the temperature and

et J ( x, t ) be the memory flux of the material at position x and

ime t . Let x = s (t) be the function representing the (unknown) po-

ition of the free boundary at time t such that s (0) = 0 . We will

ssume that s is an increasing function and consequently, an in-

ertible function. 

The flux modelling the material with memory is considered un-

er the assumption that the generalized sum of the weighted back-

ard fluxes at the current time is proportional to the gradient of the

emperature , that is 

α h (x ) I 
1 −α
t J(x, t) = −k 

∂u 

∂x 
(x, t) , (12)

here the initial time in the fractional integral is given by the

unction h which gives us the time when the phase change occurs.

hat is 

 (x ) = s −1 (x ) ( i.e. x = s (t)) . 

The parameter να is a parameter with physical dimension such

hat 

lim 

↗ 1 
να = 1 . (13) 

This parameter has been added to preserve the consistency

ith respect to the units of measure in equation (12) . In fact, con-

idering the units of measure given in (1) , we have 

 

J ] = [ ku x ] = 

m 

t 3 
, (14) 

h (x ) I 
1 −α
t J(x, t) 

]
= 

[
1 

�(1 − α) 

∫ t 

h (x ) 

J(x, τ ) 

(t − τ ) α
d τ

]
= 

m 

t 3 
1 

t α
t = 

m 

t 2+ α .

(15) 

Then, by (14), (15) and (12) one gets 

 

να] = 

[
k ∂u 

∂x 

][
h (x ) I 

1 −α
t J 

]
) 

= 

1 

t 1 −α
. (16) 

emark 2. Due to the properties of the Riemann–Liouville integral,

he limit expression for α = 1 in (12) yields the classical Fourier

aw. 

emark 3. Notice that, since we are assuming that the tempera-

ure is constant for x > s ( t ), then the gradient of the temperature is

ull in the region x > s ( t ), t > 0, which implies that 

α 0 I 
1 −α
t J(x, t) = 0 , ∀ x > s (t) , t > 0 . (17)

pplying the inverse operator RL 
0 D 

1 −α
t to both sides of equation

17) leads to 
α J(x, t) = 

RL 
0 D 

1 −α
t 0 = 0 , ∀ x > s (t) , t > 0 . 

hen, for every ( x, t ) such that 0 < x < s ( t ), t > 0 it results that 

α 0 I 
1 −α
t J(x, t) = 

να

�(1 − α) 

∫ t 

0 

J(x, τ ) 

(t − τ ) α
d τ

= 

να

�(1 − α) 

∫ h (x ) 

0 

0 

(t − τ ) α
d τ

+ 

να

�(1 − α) 

∫ t 

h (x ) 

J(x, τ ) 

(t − τ ) α
d τ

= να h (x ) I 
1 −α
t J(x, t) . 

o, assuming that u ( x, t ) ≡ T m 

in the region x > s ( t ), t > 0, condition

12) is equivalent to 

α 0 I 
1 −α
t J(x, t) = −k 

∂u 

∂x 
(x, t) ∀ 0 < x < s (t) , t > 0 . (18)

However, in the following, expression (12) will be chosen since

he dependence on starting time (linked to the free boundary) may

e overlooked if we consider (18) . 

Now, being the Riemann–Liouville fractional derivative of order

 − α a left inverse operator of the fractional Riemann–Liouville in-

egral (Proposition 1 − 1) , an explicit expression for the memory

ux at position x and time t can be derived, and it is given by 

(x, t) = − k 

να

RL 
h (x ) D 

1 −α
t 

∂u 

∂x 
(x, t) , (19)

r 

(x, t) = − k 

να

1 

�(α) 

∂ 

∂t 

∫ t 

h (x ) 
(t − τ ) α−1 ∂u 

∂x 
(x, τ )d τ. (20)

Putting 

α = 

1 

να
, (21) 

rom (16) and (13) it results that 

 μα] = t 1 −α

nd 

lim 

↗ 1 
μα = 1 . (22) 

hen, equation (20) becomes 

(x, t) = −kμα
RL 
h (x ) D 

1 −α
t 

∂u 

∂x 
(x, t) . (23)

emark 4. Fractional explicit expressions for the flux such as the

iven in (23) were considered in many publications (see for in-

tance [30,35] ). Although it is a direct consequence of the formula-

ion (12) , up to now, the physical meaning of the partial derivative

ith respect to time in (23) was not clear. 

Let us derive the governing equations of our problem. Note that

he starting time being a function of x in the fractional derivative,

he governing equation will not coincide exactly with the subdif-

usion equation given in Table 1 . 

Let 0 < x < s ( t ), t > 0 be. Differentiating equation (12) respect to

 yields that 

∂ 

∂x 

(
να h (x ) I 

1 −α
t J(x, t) 

)
= −k 

∂ 2 u 

∂x 2 
(x, t) . 

r equivalently, 

∂ 

∂x 

[
να

�(1 − α) 

∫ t 

h (x ) 
(t − τ ) −α J(x, τ ) dτ

]
= −k 

∂ 2 u 

∂x 2 
(x, t) . 
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Differentiating the left-hand side of latter equation and using the

continuity equation (2) we have 

να

�(1 − α) 

∫ t 

h (x ) 
(t − τ ) −αρc 

∂ 

∂t 
u (x, τ ) dτ

+ να lim 

τ↘ h (x ) 

(t − τ ) −α

�(1 − α) 
J(x, τ ) h 

′ (x ) = k 
∂ 2 u 

∂x 2 
(x, t) . (24)

Then the governing equation is 

ρc C h (x ) D 

α
t u (x, t) + lim 

τ↘ h (x ) 

(t − τ ) −α

�(1 − α) 
J(x, τ ) h 

′ (x ) = 

k 

να

∂ 2 u 

∂x 2 
(x, t) . 

(25)

Remark 5. In case we use the alternative flux definition (18) ,

which is equivalent to (12) , in the derivation steps of the governing

equation, we get 

∂ 

∂x 

[
να

�(1 − α) 

∫ t 

0 

(t − τ ) −α J(x, τ ) dτ

]
= −k 

∂ 2 u 

∂x 2 
(x, t) . 

It must be pointed out that the flux J is not differentiable at

τ = h (x ) ∈ (0 , t) . Then, we can not differentiate under integral in

the left-hand side of the latter equation. This fact is the main rea-

son why we will not arrive to a single Caputo derivative over [0,

t ] for u in the left-hand side of equation (25) , as has already been

suggested in literature. 

Now, we turn to study the moving interface. The interface is a

curve where a discontinuity of the flux occurs. So, the energy bal-

ance between the latent heat and the difference of fluxes is given

by the Rankine–Hugoniot conditions at the interface 

� J � s l = −ρl ̇ s (t) . (26)

Here, the double brackets represents the difference between the

limits of the fluxes from the solid phase and the liquid phase. Re-

call that the explicit flux is given by (23) in the liquid phase, and

the temperature is constant in the solid phase (which implies that

the flux is null in this region as we have seen in Remark 3 ). Then

condition (26) becomes 

lim 

x ↗ s (t) 
J(x, t) = ρls ′ (t) , 

or equivalently (by using (23) ) 

−kμα lim 

x ↗ s (t) 

RL 
h (x ) D 

1 −α
t 

∂u 

∂x 
(x, t) = ρls ′ (t) . (27)

Making an abuse of language, we will call equation (27) the “frac-

tional Stefan condition”. 

Assuming the continuity of the flux in the liquid region, the fol-

lowing equality holds 

lim 

x ↗ s (t) 
J(x, t) = lim 

t↘ h (x ) 
J(x, t) . (28)

Combining (25) and (28) we get the following governing equation

for the liquid phase 

ρc C h (x ) D 

α
t u (x, t) + 

ρl 

�(1 − α) 

s ′ (h (x )) h 

′ (x ) 

(t − h (x )) α
= 

k 

να

∂ 2 u 

∂x 2 
(x, t) . (29)

Being h the inverse function of s , it results that 

h 

′ (x ) = 

1 

s ′ (s −1 (t)) 
= 

1 

s ′ (h (x )) 
. (30)

Finally, using (30) in (29) leads to 

ρc C h (x ) D 

α
t u (x, t) + ρl 

(t − h (x )) −α

�(1 − α) 
= 

k 

να

∂ 2 u 

∂x 2 
(x, t) . (31)

If we consider the Stefan number defined by 

Ste = 

c(T 0 − T m 

) 
, ([ Ste ] = 1) (32)
l 
nd we use it in (31) , we get 

 

 (x ) D 

α
t u (x, t) + 

( T 0 − T m 

) 

Ste 

(t − h (x )) −α

�(1 − α) 
= μαd 

∂ 2 u 

∂x 2 
(x, t) , (33)

here d is the diffusion coefficient defined in (1) and μα was

iven in (21) . 

ote 3. It is easy to check that 

C 
h D 

α
t u + 

( T 0 − T m 

) 

Ste 

(t − h (x )) −α

�(1 − α) 

]
= 

[
μαd 

∂ 2 u 

∂x 2 

]
= 

T 

t α
. 

ote 4. We would like to highlight the difference between the

ractional Stefan condition obtained in (27) and the fractional Ste-

an condition considered in [33] which was given by 

l C 0 D 

αs (t) = −k 
∂u 

∂x 
(s (t ) , t ) , 

nd was derived by replacing the classical derivative by the Caputo

erivative in the classical Stefan condition. 

Finally, using equations (27) and (33) , and adding appropriate

nitial conditions, the system representing the physical problem

roposed at the beginning of the current section is given by 

(i ) C 
h (x ) 

D 

α
t u (x, t) + 

( T 0 − T m 

) 

Ste 

(t − h (x )) −α

�(1 − α) 

= μαd 
∂ 2 u 

∂x 2 
(x, t) , 0 < x < s (t) , 

0 < t < T , 

(ii ) s (0) = 0 , 

(iii ) u (0 , t) = T 0 , 0 < t ≤ T , 

(i v ) u (s (t ) , t ) = T m 

, 0 < t ≤ T , 

(v ) ρls ′ (t) = −μαk lim 

x ↗ s (t) 

RL 
h (x ) D 

1 −α
t 

∂ 

∂x 
u (x, t) , 0 < t ≤ T , 

(34)

here h (x ) = s −1 (x ) for every x > 0. 

efinition 2. A pair { u, s } is a solution of problem (34) if the fol-

owing conditions are satisfied 

1. u is continuous in the region R T =
{ (x, t) : 0 ≤ x ≤ s (t) , 0 < t ≤ T } and at the point (0, 0), u

verifies that 

0 ≤ lim inf 
(x,t) → (0 , 0) 

u (x, t) ≤ lim sup 

(x,t) → (0 , 0) 

u (x, t) < + ∞ . 

2. u ∈ C( R T ) ∩ C 2 x ( R T ) , such that u ∈ W 

1 
t ((h (x ) , T )) where

W 

1 
t ((h (x ) , T )) := { f (x, ·) : f ∈ W 

1 (h (x ) , T ) for every fixed x ∈ 

[0 , s (T )] } . 
3. s ∈ C 1 (0, T ). 

4. There exists RL 
h (x ) 

D 

1 −α
t 

∂ 
∂x 

u (x, t) | (s (t ) −,t ) for all t ∈ (0, T ]. 

5. u and s satisfy (34) . 

. Integral condition 

It is interesting to note that, from the definition (12) for the flux

nd Proposition 1 − 3 , it results that expression (12) is equivalent

o expression (19) for the flux. Then, if we replace (19) in the con-

inuity equation (2) we obtain the following governing equation,

hich is a fractional diffusion equation for the Riemann–Liouville

erivative: 

∂u 

∂t 
(x, t) = μαd 

∂ 

∂x 

(
RL 
h (x ) D 

1 −α
t 

∂ 

∂x 
u (x, t) 

)
, 0 < x < s (t) , t > 0 . 
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emma 1. The following jumping formulas hold: 

1. If w ( x , · ) and w x ( x , · ) ∈ L 1 (0, T ) then 

h (x ) I 
1 −α
t 

[
∂ 

∂x 
w (x, t) 

]
− ∂ 

∂x 

[
h (x ) I 

1 −α
t w (x, t) 

]
= lim 

τ↘ h (x ) 
w (x, τ ) 

(t − τ ) −α

�(1 − α) 
h 

′ ( x ) . (35) 

2. If w ( x , · ) ∈ AC 1 (0, T ) and RL 
h (x ) 

D 

1 −α
t 

[
∂ 
∂x 

w (x, t) 
]

is a continuous

function then 

∂ 

∂x 

[
RL 
h (x ) D 

1 −α
t w (x, t) 

]
− RL 

h (x ) D 

1 −α
t 

[
∂ 

∂x 
w (x, t) 

]

= − ∂ 

∂t 

(
lim 

τ↘ h (x ) 
w (x, τ ) 

(t − τ ) α−1 

�(1 − α) 
h 

′ ( x ) 
)

. 

roof. 1. Applying first the definition of fractional integral and dif-

erentiating with respect to x we get 

∂ 

∂x 

[
h (x ) I 

1 −α
t w (x, t) 

]
= 

∂ 

∂x 

[
1 

�(1 − α) 

∫ t 

h (x ) 
w (x, τ )(t − τ ) −αd τ

]

= 

1 

�(1 − α) 

[∫ t 

h (x ) 

∂ 

∂x 
w (x, τ )(t − τ ) −αd τ

− lim 

τ↘ h (x ) 
w (x, τ )(t − τ ) −αh 

′ (x ) 

]
. (36) 

quation (35) can be derived directly from (36) . 

. Analogously, 

∂ 

∂x 

[
RL 
h (x ) D 

1 −α
t w (x, t) 

]
= 

∂ 

∂x 

∂ 

∂t 

[
h (x ) I 

α
t w (x, t) 

]
= 

∂ 

∂t 

∂ 

∂x 

[
h (x ) I 

α
t w (x, t) 

]
= 

∂ 

∂t 

∂ 

∂x 

[
1 

�(α) 

∫ t 

h (x ) 
w (x, τ )(t − τ ) α−1 d τ

]

= 

RL 
h (x ) D 

1 −α
t 

[
∂ 

∂x 
w (x, t) 

]

− ∂ 

∂t 

(
lim 

τ↘ h (x ) 

w (x, τ )(t − τ ) α−1 

�(α) 
h 

′ (x ) 

)
. 

�

roposition 3. Consider the following fractional Stefan problem 

(i ) 
∂u 

∂t 
(x, t) = μαd 

∂ 

∂x 

(
RL 
h (x ) 

D 

1 −α
t 

∂ 

∂x 
u (x, t) 

)
, 0 < x < s (t) , 

0 < t < T , 

(ii ) s (0) = 0 , 

(iii ) u (0 , t) = T 0 > T m 

, 0 < t ≤ T , 

(i v ) u (s (t ) , t ) = T m 

, 0 < t ≤ T , 

(v ) ρls ′ (t) = −μαk lim 

x ↗ s (t) 

RL 
h (x ) D 

1 −α
t 

∂ 

∂x 
u (x, t) , 0 < t ≤ T . 

(37) 

here h is the function defined by h (x ) = s −1 (x ) . Then problems

34) and (37) are equivalent. 

roof. Being equations ( ii ) to ( v ) the same in both problems we

ave to check only that equations (34 − i ) and (37 − i ) are equiva-

ent. 

Applying h (x ) I 
1 −α
t to both sides of (37 − i ) we get 

 

 (x ) D 

α
t u (x, t) = μαd h (x ) I 

1 −α
t 

[
∂ 

∂x 

(
RL 
h (x ) D 

1 −α
t 

∂ 

∂x 
u (x, t) 

)]
. (38)
Proposition 1 –1 implies that if we apply RL 
h (x ) 

D 

1 −α
t to both

ides of (38) we recover equation ( 37 − i ) . Ther efor e ( 37 − i ) and

38) are equivalent. 

On one hand, taking w (x, t) = 

RL 
h (x ) 

D 

1 −α
t 

(
∂ 
∂x 

u (x, t) 
)

in Lemma 1 -

 we get 

∂ 

∂x 

(
h (x ) I 

1 −α
t 

RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

))

= 

∂ 

∂x 

[
1 

�(1 − α) 

∫ t 

h (x ) 
(t − τ ) −α RL 

h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, τ ) 

)
d τ

]

= h (x ) I 
1 −α
t 

[
∂ 

∂x 

(
RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

))]

− lim 

τ↘ h (x ) 

RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)
(t − τ ) −α

�(1 − α) 
h 

′ (x ) . (39) 

On the other hand, from (12) and Proposition 1 − 3 , it holds

hat 

 (x ) I 
1 −α
t 

(
RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

))
= 

∂ 

∂x 
u (x, t) . (40)

hen (39) together with (40) yield 

αd h (x ) I 
1 −α
t 

[
∂ 

∂x 

(
RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

))]

= μαd 
∂ 2 

∂x 2 
u (x, t) − d 

�(1 − α) 

ρl 

k 

s ′ (h (x )) h 

′ (x ) 

(t − h (x )) α
. 

So, we can rewrite equation (38) as 

 

 (x ) D 

α
t u (x, t) = μαd 

∂ 2 

∂x 2 
u (x, t) − d 

�(1 − α) 

ρl 

k 

s ′ (h (x )) h 

′ (x ) 

(t − h (x )) α
. 

(41) 

Taking into account (30) and (32) , we conclude that (41) is

quivalent to (34 − i ) and then the thesis holds. 

�

efinition 3. A pair { u, s } is a solution of problem (37) if the fol-

owing conditions are satisfied 

1. u is continuous in the region R T =
{ (x, t) : 0 ≤ x ≤ s (t) , 0 < t ≤ T } and at the point (0, 0), u

verifies that 

0 ≤ lim inf 
(x,t) → (0 , 0) 

u (x, t) ≤ lim sup 

(x,t) → (0 , 0) 

u (x, t) < + ∞ . 

2. u ∈ C( R T ◦) ∩ C 2 x ( R T ◦) , such that u x ∈ AC 1 t ((h (x ) , T )) where

AC 1 t ((h (x ) , T )) := { f (x, ·) : f ∈ AC 1 (h (x ) , T ) for every fixed x ∈ 

[0 , s (T )] } . 
3. s ∈ C 1 (0, T ). 

4. There exists RL 
0 

D 

1 −α
t 

∂ 
∂x 

u (x, t) 
∣∣
(s (t ) ,t ) 

for all t ∈ (0, T ]. 

5. u and s satisfy (37) . 

emma 2. If the pair { u, s } is a solution to problem (37) and

∂ 
∂x 

[ 
RL 
h (x ) 

D 

1 −α
t u (x, t) 

] 
is a continuous function, then 

∂ 

∂x 
C 
h (x ) D 

1 −α
t u (x, t) = 

RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)
. 
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Proof. Since ∂ 
∂x 

[ 
RL 
h (x ) 

D 

1 −α
t u (x, t) 

] 
is a continuous function, the par-

tial derivatives commutes and 

∂ 
∂x 

[
RL 
h (x ) 

D 

1 −α
t u (x, t) 

]
= 

∂ 
∂t 

1 
�(α) 

∂ 
∂x 

∫ t 
h (x ) u (x, τ )(t − τ ) α−1 dτ

= 

∂ 
∂t 

1 
�(α) 

[∫ t 
h (x ) 

(
∂ 
∂x 

u (x, τ ) 
)
(t − τ ) α−1 dτ

−u (x, h (x ))(t − h (x )) α−1 h 

′ (x ) 
]

= 

RL 
h (x ) 

D 

1 −α
t 

(
∂ 
∂x 

u (x, t) 
)

− ∂ 
∂t 

T m 
�(α) 

(t − h (x )) α−1 h 

′ (x ) 

= 

RL 
h (x ) 

D 

1 −α
t 

(
∂ 
∂x 

u (x, t) 
)

+ 

T m (1 −α) 
�(α) 

h ′ (x ) 
(t−h (x )) 2 −α

= 

RL 
h (x ) 

D 

1 −α
t 

(
∂ 
∂x 

u (x, t) 
)

+ 

∂ 
∂x 

[
T m 

�(α)(t−h (x )) 1 −α

]
Then 

∂ 

∂x 

[ 
RL 
h (x ) D 

1 −α
t u (x, t)− T m 

�(α)(t − h (x )) 1 −α

] 
= 

RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)
.

(42)

Applying Proposition 1 − 4 in (42) leads to 

∂ 

∂x 
C 
h (x ) D 

1 −α
t u (x, t) = 

RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)
. 

This concludes the proof. 

�

Theorem 1. Let { u, s } be a solution of problem (37) with u such that
RL 
h (x ) 

D 

1 −α
t u (x, t) and RL 

h (x ) 
D 

1 −α
t 

(
∂ 
∂x 

u (x, t) 
)

are in C 1 ( R T − { (0 , 0) } ) .
Then the following integral relation for the free boundary s ( t ) and the

function u ( x, t ) holds for every t < T: (
l 

c 
− T m 

)
s 2 (t) = 2 μαd 

T 0 − T m 

�(α + 1) 
t α − 2 

∫ s (t) 

0 

xu (x, t) dx 

−2 μαd 

∫ t 

0 

C 
h (x ) D 

1 −α
t u (x, t) 

∣∣
(s (τ ) ,τ ) 

dτ. (43)

Proof. Recall the Green identity: ∫ 
∂�

P d t + Qd x = 

∫ ∫ 
�

(
∂ 

∂t 
Q − ∂ 

∂x 
P 

)
dA, 

where � is an open simply connected region, ∂� is a positively

oriented, piecewise smooth, simple closed curve, and the field F =
(P, Q ) is defined by 

P (x, t) = −μαd x RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)
+ μαd RL 

h (x ) D 

1 −α
t (u (x, t) −T m 

)

= −μαd x RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)
+ μαd C 

h (x ) D 

1 −α
t u (x, t) 

Q(x, t) = −x u (x, t) . 

Consider the region R t 
ε = 

{
(x, τ ) ∈ R 

2 / ε < τ < t, 0 < x < s (τ ) 
}

for ε > 0 sufficiently small. Note that in this region, F is C 1 . Now,

taking into account that u verifies (37 − i ) and using Lemma 2 we

get 

∂ 

∂t 
Q(x, t) − ∂ 

∂x 
P (x, t) 

= −x 
∂ 

∂t 
u (x, t) + μαd RL 

h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)

+ μαd x 
∂ 

∂x 

[
RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)]

− μαd 
∂ 

∂x 

[
C 
h (x ) D 

1 −α
t u (x, t) 

]

= −x 

[
∂ 

∂t 
u (x, t) − μαd 

∂ 

∂x 

(
RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

))]

+ μαd RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)
− μαd 

∂ 

∂x 

[
C 
h (x ) D 

1 −α
t u (x, t) 

]
= 0 for all (x, t) ∈ R ε . 

Then, by Green’s theorem one obtains 
 

∂R ε

P d τ + Qd x = 0 . 

Let ∂ R ε = ∂ R 1 ∪ ∂ R 2 ∪ ∂ R 3 ∪ ∂ R 4 be, where ∂ R 1 =
 

(x, ε) : 0 ≤ x ≤ s (ε) } , ∂ R 2 = { (s (τ ) , τ ) : ε < τ < t } , −∂ R 3 =
 

(x, t) : 0 ≤ x ≤ s (t) } and −∂R 4 = { (0 , τ ) : ε ≤ τ ≤ t } . 
Integrating the field ( P, Q ) over ∂R ε we get 

−
∫ s (ε) 

0 

x u (x, ε)d x −
∫ t 

ε

[ 

μαd RL 
h (x ) D 

1 −α
t 

(
∂ 

∂x 
u (x, t) 

)∣∣∣∣
(s (τ ) ,τ ) 

+ μαd C h (x ) D 

1 −α
t u (x, t) 

∣∣
(s (τ ) ,τ ) 

] 
d τ

−
∫ t 

ε
s (τ ) T m 

s ′ (τ )d τ + 

∫ s (t) 

0 

xu (x, t)d x 

−
∫ t 

ε
μαd C h (x ) D 

1 −α
t T 0 d τ = 0 . (44)

pplying the fractional Stefan condition (37) yields 

−
∫ s (ε) 

0 

xu (x, ε) dx + 

(
l 

c 
− T m 

)[
s (t) 2 

2 

− s (ε) 2 

2 

]

+ μαd 

∫ t 

ε

C 
h (x ) D 

1 −α
t u (x, t) 

∣∣
(s (τ ) ,τ ) 

+ 

∫ s (t) 

0 

xu (x, t) dx − μαd 
( T 0 − T m 

) 

�(α + 1) 
(t α − εα) = 0 . (45)

Taking the limit when ε↘ 0 in (45) it results that the integral

elation (43) holds as we wanted to prove. 

�

emark 6. It is worth noting the difference between 

C 
h (x ) D 

1 −α
t u (x, t) 

∣∣
(s (τ ) ,τ ) 

, (46)

nd 

 

 (x ) D 

1 −α
t u (s (t ) , t ) = 

C 
h (x ) D 

1 −α
t T m 

= 0 . (47)

n (46) we first apply Caputo derivative and then evaluate at ( s ( t ),

 ). Instead, in (47) we first evaluate function u in ( s ( t ), t ) and then

he Caputo derivative is taken. 

emark 7. If we take α = 1 , T m 

= 0 and all the physical constants

qual to 1 in the integral relation (43) we get 

 

2 (t) = −2 

∫ s (t) 

0 

xu (x, t) dx + 2 T 0 t, 

hich is the classical integral relation for the free boundary when

he classical Stefan problem is considered (see [5] –Lemma 17.1.1). 

It was also proved in [5] that (7) is equivalent to the Stefan

ondition 

 

′ (t) = − ∂ 

∂x 
u (s (t ) , t ) , ∀ t > 0 . (48)

ence, it is natural to wonder if the “fractional Stefan condition”

27) and the “fractional integral relation” (43) are equivalent as

ell. 

heorem 2. Let { u, s } be a solution of problem

 

(37 − i ) , (37 − ii ) , (37 − iii ) , (37 − i v ) , (43) } such that ∂ 2 

∂ t∂ x 
u (x, t) ∈
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1 (R T ) , 
C 
h (x ) 

D 

1 −α
t u (x, t) | (s (t ) ,t ) ∈ L 1 ( 0 , T ) . Then the functions s = s (t)

nd u = u (x, t) verify the fractional Stefan condition (27) . 

roof. Reasoning as in Theorem 1 , we can state that again

44) holds. 

Taking the limit when ε↘ 0 and using the integral relation

43) it holds that 

l 

c 
s 2 (t) = −2 μαd 

∫ t 

0 

s (τ ) RL D 

1 −α
t 

∂ 

∂x 
u (x, t) 

∣∣∣∣
(s (τ ) ,τ ) 

dτ. (49)

ifferentiating both sides of equation (49) whith respect to the

−variable and being s ( t ) > 0 for all t > 0, the thesis holds. �

. Conclusions 

We have presented a physical phase change problem involving

 material with memory. In the mathematical model, a fractional

iemann–Liouville integral is used for an implicit definition of the

ux. Then, the governing equations were obtained. As a result of

his analysis two equivalent fractional Stefan problems (34) and

37) involving the Caputo and the Riemann–Liouville derivative, re-

pectively, were formulated. The comparison with the classical Ste-

an problem was given in each case. Moreover, the classical Stefan

roblem was recovered by making α↗ 1. Finally, an integral rela-

ion which is equivalent to the fractional Stefan condition was ob-

ained. 
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