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1. INTRODUCTION

LET p < 1 and consider the equation
u, — u, + A%uf = 0. ' (1.1)

This equation originates from the study of a class of models for the reaction-diffusion pro-
cesses of a gas inside a chemical reactor [2, 8].

From the mathematical point of view the major interest of equation (1.1) lies in the competi-
tion of the linear diffusion and the nonlinear ‘‘fast’’ (p < 1) reaction term.

To illustrate this phenomenon let us consider a model problem, i.e. equation (1.1) in the first
quadrant x > 0, ¢ > 0, with initial and boundary conditions

u(x,0) =0, x>0; (1.2)
u0,) =1, t>0. (1.3)

It is easy to construct a stationary solution of (1.1), satisfying (1.3), which is the unique
bounded C! solution [1]. This is given by (we take A > 0):

Ax|¥a-» V2
u*(x):[l-fx] , O<ux, L=T(+‘T”), (1.4)
. —

where [s], = max{0, sj.

The stationary solution has compact support, contrary to what happens in the linear absorp-
tion case (p = 1), where the stationary solution is u*(x) = e™™.

As a consequence of the comparison principle for equation (1.1), see for instance [3], the
solution u(x, t) of (1.1)-(1.3) satisfies

0 = u(x, t) < u*x), x>0,t>0. (1.5)

This means that u(-, t) has compact support for any ¢ > 0. In fact the supremum of the
support of u(-, t) is a free boundary s(¢), moving with finite speed (except for ¢ = 0) and its
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behavior for small ¢ has been analyzed in [5], where a lower bound and an aéymptotic - 0"
expansion of s(t) are given. An explicit and sharp upper bound for small ¢ can also be obtained
by means of the comparison principle [6], namely, for A = 1,

tlog(1/)|"% 20 +p)V2 ] 1-p (4P
0= + t , 0<u
0= 2[ 1 - ] 1-p 7 log(1/1) d

This estimate is of course ineffective for large £ when we know that s(z) = L/A.
~ The first motivation for this paper was to give an estimate of how fast the free boundary s(¢)
tends to its limit L/A as ¢ = +0. The estimate we get implies that this convergence is exponen-
tially fast in time.

The proof is based on the construction of a subsolution for (1.1), which converges to the
stationary solution. The same construction gives also supersolutions for (1.1). This makes it
possible to obtain an exponential estimate for the decay of the solution of the Dirichlet problem
for equation (1.1) in 0 < x < @, with @ > 2L/A, boundary data u(0,¢) = u(a, t) = 1, and
initial datum u(x, 0) = 1, which is the one dimensional version of the so-called ‘‘dead-core”’
problem.

The next two sections are devoted to the construction of these sub- and supersolutions for the
equation in the more general form

(1.6)

u, — (p)),, + f(u) =0, x>0,t>0 a.mn
with conditions
(0, 1)) = 1, t>0; (1.8)
u(x, 0) = uy(x), - x> 0, 1.9)
Concerning the functions ¢ and f we assume that they satisfy the following assumptions:

¢ € CO%R) N CAR\{0)), ¢(0) = 0, ¢'(s) > 0 for s > 0; D)

(a typical ¢ is (1) = u™, m > 0)
f e C%R) N CHIR\{0)), f(0) = O, f'(s) > 0 for s > 0; )]

(a typical fis f(u) = u?, 0 < p < 1).

2. REMARKS ON THE STATIONARY SOLUTIONS

In this section we deduce some properties of the solutions of the following family (S,) of
stationary problems:

(@) — Af@) =0, x>0 (2.1

éu(0)) = 1. ' 2.2

For A = 1 this is the stationary problem for equation (1.7). Letting g(v) = f(¢~'(v)), prob-
lems (S,) transform into the problems (Sy):

Uy — Ag0) =0, x>0 @.1)

v(0) = 1; 2.2")
with v(x) = ¢(u(x)).
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As it is well known, see for instance [4], (S)) has a solution with compact support iff the func-
tion g satisfies the following hypothesis (H,): '

v d ¢
So* \/55(5 < 4, v >0, with G(¢) = So g(s) ds. H)

Remark. If ¢(u) = u™ and f(u) = u”, hypothesis (H,) simply means that m > p.
We assume that hypothesis (I—i,) holds in the following.
We indicate by u}(x) the solution of (S,) and by L > 0 the length of the support of u}(x), i.e.
L = supfx: u¥(x) > 0}, (L <.+, because of (H,)). 2.3)

The functions «}(x) are related by the following scaling property:

ur(x) = ut(Ax). 2.9
Setting U(x/L) = u}(x) then the solution of (S,) is given by
ur () = U(iL’f) | @.5)

In the next section we will make use of the following estimate.

LemMMA 2.1. Let F(u) = (§%+ f(5)¢'(s) ds)'/2, and assume the following hypothesis holds:
dd—uF(u) =c(p,f)>0 for u e (0, 1), (H,)

where c(¢, f) is a pbsitive constant depending on the functions ¢ and f.

Then the function H(y) = — U'(»)/f(U(»)) is bounded from above by a constant K(¢, f) for
ye(@,1).

Remark. H(y) bounded implies that the derivative u}, is uniformly bounded in [0, + ) by
some constant depending on ¢ and f.

Remark. If ¢(u) = u™ and f(u) = u”, assumption (H,) is equivalent to
m+p<2, | (H))
in particular if m = 1, then (Hj) is implied by (H,). V

Proof. We have just to compute H(y). From the definition of U(y) we have H(y) =

— 6'(x)L/f(0(x)) where, for the sake of simplicity, 8(x) = u¥(x), and x = Ly.
@' can be expressed in closed form in terms of f and ¢. In fact, since @ solves (¢(u)),, —
f@u) = 0, the function n7([L — x],) = $(8(x)) solves 7, — f(¢~'(n)) = 0, n(0) = 0, and then
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n(s) = w~'(s) where

s d
W(S)=§ 3 ,

o+ V2G(&)

n'(L - x1,) _ —V2G(m)
$'(6(x)) 0

G as in (H;). Then
0'(x) =

and finally

2G($~(60) e )"2 ,
HO) = L= S T = V2 LQ f@7 M ds) /(8 OONSOCN

o+

1

@)’ 0x)e©,1). W

0() 12
= \[iL(S S($)p'(s) dS) /(9'(6(x))S(6(x))) = 7‘—' 3 F

ot

3. CONSTRUCTION OF SUB- AND SUPERSOLUTIONS

Let r(¢) be a positive function defined for any ¢ = 0, and let A(x, t) be defined by

h(x, t) = U<i), t>0, 0<x<nr(t)
r(t)

h(x,t) =0, t>0, x> r(t).

3.1)

Then for any fixed ¢, the function h(-, ¢) is a solution of problem (S,) with A = L/r(¢).
We want to prove that, with an appropriate choice of the function r(¢), h(x, ¢) turns out to

~ be cither a subsolution or a supersolution for equation (1.7).

ToHEOREM 3.1. Let r(t) be given by

rit) = I? — (I* — r¥{0))e” 2k, (3.2)
where K = K(¢, f) is the constant in lemma 2.1.
Then A(x, t) is either a subsolution or a supersolution if /0) < L or r(0) > L respectively.

Proof. Let us compute

L) = b — (@M + f(H).

Because of the définition of h, (d(h(x, 1)), = L2/(r¥(t))f(h), so that
2

L =hxt)+ (1 L >f(h(x, )]

=0
SO (U sy - ]
- L5 ey o + o - & G-3)

for any x € (0, r(¢)), and

e =0, >0, x>r(). (3.4)
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Now if F(t) > 0 and (H,) holds, we have
£(h) = POSx, ) K@ NNOKD) + P - 1), t>0,0<x<rt). (3.5)
Taking r(f) as in (3.2) we have '

S, 1)) <0, >0,x>0 (3.6)

and the condition F(¢) > 0 is satisfied if r(0) < L.
 This means that A(x, ¢) is a subsolution of (1.7), with boundary datum h(0,¢) = 1, ¢t > 0.

On the contrary, if 7(0) > L, then A(¢) < 0 and inequalities (3.5) and (3.6) are both reversed,
i.e. h(x, t) is a supersolution.

Remark. If ¢(u) = u™ and f(u) = u”, one can be more precise about the value of the constant
K(#, f), namely [7]

1K(¢,/) = (m - p)B
where

_ @+t _2—(m+p)

, y=s———-", if y > 0; B=1ify=0.

A yY m-—p

(remember that (H,) implies 2 = m + p).
As a major consequence of theorem 3.1 we have the following.

COROELARY 3.2. Let u(x, ¢) be the solution of (1.7)-(1.9), and suppose that A, < I,and 4, = 1
exist such that

ur (x) < up(x) < ut(x) 3.7
then there exist two constants C,, C,, depending on ¢, f and on 4,, 4,, such that
lutx, 1) — ub@)| ~ Cye=C*  as £ — + oo
The free boundary s(¢) of u(x, t) satisfies

ls(¢) = L| ~ C,e"%*  ast— +oo.

Proof. Apply the comparison principle using the subsolution such that 4,(x, 0) = u3,(x), and

the supersolution such that h,(x, 0) = uf,(x), then
- Lx Lx
u* — y*
‘ (n(t)) ‘ <’2(t)>

lux, 1) — ut ()] < |hyx, 1) = By, )] =

1
rn(®) n)
But from hypothesis (H,), u}, is bounded by some constant depending on ¢ and f, times the

function f (u?). The estimate then follows from the expression of the r’s.. The statement about
the free boundary is a consequence of the form of the sub- and supersolutions.

< sup|ut|Lx
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4. APPLICATION TO THE DEAD-CORE PROBLEM -

The sub- and supersolutions A’s can be used to describe the asymptotic behavior of the
solution of the parabolic problem.

U — (P + fW) =0, 0<x<a,t>0, @.1)
with boundary and initial data
¢, 1)) = ¢(u(a, 1)) =1, >0 4.2)
(' u(x, 0) = uy(x), 0<x<a, “4.3)
where
a> 2L, (L is defined in (2.3)) 4.4)
0 < ¢(up(x) < 1. (4.5)

Because of (4.4), equation (4.1) has a stationary solution u*(x) corresponding to boundary
~-conditions (4.2), which has a nonvoid dead core, i.e. which vanishes in the interval
D = [L,a — L}, given by

u*(x) = U({-), x<1L, u*(x) = U<a — x>’ x>a-1, and

L
u*(x) =0, L<x<a-1L.
Here we assume that the function f satisfies also the condition (H,):

u df
O(u) = — < + 0, u>0. H,)
) L 7® (H;
Notice that if ¢(x) = ©™ and f(u) = u”, then (H,) and (H,) imply (H,).
Under assumption (H,) equation (4.1) has a family of nontrivial spatially homogeneous solu-
tions which vanish in finite time, given by

W, 1) = o7 - 1), 0<t<i, w(; 1) = 0, t>f. (4.6)

We denote simply by P(¢) the solution corresponding to f = t, = j3+ dé/f(£), i.e. the
spatially homogeneous solution with initial datum uy(x) = 1.
If f = u”, then

t, = L, and Y@ =[1-(1 - pyuj/u-»,
1-p

Now we can proceed as in [8], to construct a supersolution of (4.1), greater than the solution
- of (4.1)-(4.3), which vanishes in finite time in some subinterval of D (in fact it is enough to take
the one which vanishes at a/2 only).

Using the notation of Section 2, we define #(x) = u},,,(x) for 0 < x < a/2, and by reflection
ina/2 < x < a.

This is the ‘‘single point dead-core’’ solution, i.e. &#i(x) = 0 for x = a/2 only. Moreover it
solves equation (2.1) with A = a/2L < 1.
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| Finally, let « = 1 — (a/2L)?, and define z(x, ¢) = i#(x) + ¥(a, t). We claim that z is a super-
solution, greater than u(x, ).

Z is trivially bigger than u for ¢ = 0 and on x = 0, x = 4, so it remains only to prove that
£(2) = 0. Let us compute

£(2)

Z = (3D + (@) = a¥'(at) — ($(H(X))sx + f(2)
2
—af(¥(ar)) — <§> Sy + f(2).

Recall that f is monotone increasing, so we have max{ f(s), f(¢)} = f(max{s, t}) < f(s + ¢)
(sand ¢ positivg), and then

L) = (a + ( ))f(Z) +f@) =0.

At this point we know that after a finite time f < t,/«, the solution u(x, ¢) is below the
stationary solution @ corresponding to A = a/2L.

To conclude we can apply corollary 3.1 to get an estimate of the convergence of u to u*. This
convergence is exponentially fast in time as in the case of linear diffusion and linear absorption
(f() = u). In our case there is also a time-dependent dead-core whose boundary converges
exponentially to the boundary of the dead-core of u*(x).
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