K H Hoffmann and J Sprekels

Free Boundary Problems: Theory and Applications

Volume II

Longman Scientific & Technical,

Longman Group UK Limited, Longman House, Burnt Mill, Harlow Essex CM20 2JE, England and Associated Companies throughout the world.

Copublished in the United States with John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158

© Longman Group UK Limited 1990

All rights reserved; no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without either the prior written permission of the Publishers or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, 33-34 Alfred Place, London, WC1E 7DP.

First published 1990

AMS Subject Classification: (Main) 35J65, 35K60, 35L70 (subsidiary) 47H20, 49A29

ISSN 0269-3674

British Library Cataloguing in Publication Data

Free boundary problems.

 Partial differential equations. Boundary value problems
 Hoffman, K.H. II. Sprekels, J. 515.3'53

ISBN 0-582-01860-9

Library of Congress Cataloging-in-Publication Data

Free boundary problems: theory and applications / K.H. Hoffmann & J. Sprekels, editors. p. cm. -- (Pitman research notes in mathematics series, ISSN 0269-3674 : <185-186>)

"Contributions arising from the international colloquium on Free Boundary Problems: Theory & Applications, held at Irsee / Bavaria, Germany, June 11 to June 20 1987"--

Includes bibiographies.

ISBN 0-470-21199-7 (v. 1). ISSN 0-470-21200-4 (v. 2)

1. Boundary value problems--Congresses. I. Hoffmann, K. -H. (Karl-Heinz) II. Sprekels, J. III Series.

TA347.B69F74 1988 515.3'5--dc19

88-1292 CIP

Printed and bound in Great Britain by Biddles Ltd, Guildford and King's Lynn

R RICCI & D A TARZIA Asymptotic Behaviour of the Solutions of a Class of Diffusion-Reaction Equations

The purpose of this paper is to give an explicit estimate for the asymptotic behaviour of the solution of the problem:

$$\mathcal{L}(u) = u_t - (u^m)_{xx} + u^p = 0, \ x > 0, \ t > 0;$$
(1)

$$u(0,t) = 1, t > 0;$$
 (2)

$$u(x,0) = u_0(x) \ge 0, \ x > 0.$$
 (3)

If $0 , it is well known [1], [3] that equation (1) has a stationary solution corresponding to datum (2), which has compact support in <math>[0, +\infty)$, namely

$$u^{*}(x) = \left[1 - \frac{x}{L}\right]_{+}^{\frac{2}{m-p}},$$
(4)

where the constant L is given by

$$L = L(m, p) = \frac{\sqrt{2m(m+p)}}{m-p}$$
 (5)

The main result we prove here is the existence of super- and sub-solutions for equation (1), which satisfy condition (2) at any time and which exponentially approach the stationary solution $u^*(x)$. The exact statement of this result is the following:

Theorem. If $m + p \leq 2$, then the functions

$$\overline{u}(x,t) = \left[1 - \frac{x}{\overline{s}(t)}\right]_{+}^{\frac{2}{m-p}},\tag{6}$$

$$\underline{u}(x,t) = \left[1 - \frac{x}{\underline{s}(t)}\right]_{+}^{\frac{2}{m-p}},\tag{7}$$

are respectively a super-solution and a sub-solution of (1) when the functions $\overline{s}(t)$, $\underline{s}(t)$ are defined by

$$\overline{s}(t) = r(t) \text{ if } L_0 > L \text{ and } \underline{s}(t) = r(t) \text{ if } 0 \le L_0 < L, \text{ where}$$
$$r(t) = \sqrt{L^2 + (L_0^2 - L^2) \exp[-\beta(m-p)t]},$$
(8)

where the constant β is given by

$$\beta = \frac{(1+\gamma)^{(1+\gamma)}}{\gamma^{\gamma}}, \ \gamma = \frac{2-(m+p)}{m-p}, \ \text{if } \gamma > 0; \ \beta = 1 \ \text{if } \gamma = 0.$$
(9)

719

Proof. We define

$$h(x,t) = \left[1 - \frac{x}{\rho(t)}\right]_{+}^{\frac{2}{m-p}},$$
(10)

and we compute $\mathcal{L}(h)$,

$$\mathcal{L}(h) = \left[1 - \frac{x}{\rho(t)}\right]_{+}^{\frac{2p}{m-p}} \frac{1}{\rho^2(t)} \left\{\frac{2}{m-p} x \left[1 - \frac{x}{\rho(t)}\right]_{+}^{\frac{2-(m+p)}{m-p}} \rho'(t) + \rho^2(t) - L^2\right\}.$$
 (11)

Now we substitute the x-dependent part of (11) by its maximum in the interval $[0, \rho(t)]$, which is given by $\frac{\rho(t)}{\beta}$, with β defined by (9). We thus obtain either a lower bound for $\mathcal{L}(h)$ if ρ' is negative or an upper bound if ρ' is positive. Let us suppose, for instance, that ρ' is negative: then

$$\mathcal{L}(h) \ge \left[1 - \frac{x}{\rho(t)}\right]_{+}^{\frac{2m}{m-p}} \frac{1}{\rho^2(t)} \left\{\frac{2}{m-p} \frac{\rho(t)}{\beta} \rho'(t) + \rho^2(t) - L^2\right\}.$$
 (12)

Finally we equate to zero the expression in brackets and solve the O. D. E. thus obtained with initial condition

$$\rho(0) = L_0 > L. \tag{13}$$

The solution of this O. D. E. is given by (8), and it satisfies the condition r' < 0. Then we can conclude that the function h(x,t) defined by (6) is a super-solution for the operator \mathcal{L} . In the same way, if we take the initial condition L_0 less than L we get a sub-solution.

We can now apply the comparison principle for the operator \mathcal{L} [2] and we obtain the following result:

Corollary. Suppose $m + p \le 2$ and that there exists an A such that the initial datum satisfies

$$0 \le u_0(x) \le \left[1 - \frac{x}{A}\right]_+^{\frac{2}{m-p}}.$$
 (14)

Then the solution to (1) - (3) exponentially converges to the stationary solution $u^*(x)$.

The rate of convergence is faster than $\beta \cdot (m-p)$ since the difference between the upper and lower solution which bounds the actual solution behaves like Const. $\exp[-\beta(m-p)t]$.

Remark 1. The result of the corollary can be used, together with another estimate for the vanishing of the solution inside the dead core [5], to prove that the solution of the problem $u_t - u_{xx} + u^p = 0$, 0 < x < A, t > 0, (A > 2L), with boundary condition u(0,t) = u(A,t) = 1 and initial condition u(x,0) = 1 in 0 < x < A, converges exponentially to the steady state solution [4].

Remark 2. To our knowledge, the condition $m + p \le 2$ has no special interpretation outside of this proof. This leaves open the question of characterizing the asymptotic behaviour of the solution of (1) - (3) when m + p > 2.

Remark 3. Our results generalize to the case $u_t - (\phi(u))_{xx} + f(u) = 0$, with appropriate conditions on the functions ϕ and f [4].

We wish to express our acknowledgements to Profs. Bandle, Kamin, I. Diaz, and Stakgold for their interest in our results and for many stimulating conversations we had during the Irsee Conference.

References

- BANDLE, C., SPERB, R. P. AND STAKGOLD, I. Diffusion and reaction with monotone kinetics, Nonlinear Analysis T. M. A., 8 (1984) 321-333.
- [2] BERTSCH, M. A class of degenerate diffusion equations with a singular nonlinear term, Nonlinear Analysis T. M. A., 7 (1983) 117-127.
- [3] DIAZ, J. I. Nonlinear partial differential equation and free boundaries, I: Elliptic problems, Research Notes in Math., No. 106, Pitman, London, 1985.
- [4] RICCI, R. AND TARZIA, D. A. Asymptotic behaviour of the solution of the dead core problem, to appear.
- [5] STAKGOLD, I. Reaction-diffusion problems in chemical engineering, in: A. Fasano and M. Primicerio (eds.), Nonlinear Diffusion Problems, Lecture Notes in Math., No. 1224, Springer-Verlag, Berlin, 1986, 119-152.

R. Ricci Instituto Matematico "Ulisse Dini" Firenze Italy D. A. Tarzia PROMAR (CONICET-UNR) Instituto de Matemática "Beppo Levi" Rosario Argentina