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SUMMARY

A model for root growth owing to absorption of mobile and inmobile ions
through a free boundary problem is studied. The resultant effects from
differences in nutrient availability and transport between the root surface
and the rhizosphere produced by a active absorption type Michaelis-Menten
are studied. The model equations are solved by the balance integral method.
The numerical solutions are used to compute growth of root radius.
Examples of concentrations for both ions at the root-soil interface curves
as a function of root radius and root radius as a function of time are
plotted.

1. INTRODUCTION

In recent articles [1,2] a method for compute the root growth owing to
absorption of a unique nutrient through a free boundary problem [6] has
been proposed. In these articles, the root soil interface s(t) (the root radius)
as a function of time and the interface ion concentration C(s) as a function
of the interface position s(t) has been computed [1,2] by the quasi-stationary
method [3]. Also, the interface concentration C(s(t),t) as a explicit function
of s(t) and the time t, as a the root radius s(t) vs. t have been computed [5]
through the balance integral method [4]. The goal of the present
communication is to compute the interface position s(t) as a function of t
and the interface concentration Ci(s(t),t) as a function of s(t) owing to
absorption of mobile and inmobile ions through the balance integral method,
in order to estimate the effect of different soil-plant parameters on root
growth.

2. PHYSICAL MODEL AND GOVERNING EQUATIONS

As described in [1,2,4] it is assumed a vertical cylindrical root
summersed in a porous homogeneous and isotropic medium (the soil).
Moisture, temperature, and light conditions are assumed maintained at a
steady state. Nutrient uptake is assumed occurs at the root surface of the
absorption zone, and the root hairs are not considered in the present model.
The rates of uptake of ions can be described by Michaelis Menten type
equations, and the rates of influx at infinite concentrations (Jp ) and the
Michaelis Menten constants (Ku.) are independent of the veloci{y of soil
water at the root (vg). The nutrient transport occurs via convection and
diffusion in the radial direction only (the latter takes place in soil solution
phase only). The diffusion coefficients (Di) and the buffer powers b, are
assumed independent of concentrations. No allowance for a change en Jpy,, ki
(absorption power ki=Jmi/Kmi), or E; (efflux) with age is made. Alsd is



J. C. Reginato and D. A. Tarzia 1043

assumed that the diffusion coefficients (D;) are independent of the flux,
and the convective velocity of water at root surface is not affected by
nutrient concentrations. Production or depletion of nutrient by microbial or
other activity is considered null, and the net uptake of nutrients is totally
available for root growth.

Although this model can be generalized, for simplicity we consider the
_root growth owing to absorption of a unique inmobile nutrient (i=1) and a
" unique mobile nutrient (i=2) for low concentrations (Jm, ~k;C;). We assume
that R, and R, are the rhizosphere fixed radius for thelinmobile and mobile
ions respectively with R; < R, . The following free boundary problem we
propose below will have a mathematical meaning in the domain s(t) < r < R,,
0 <t < T with s(T) = R, . From a physical point of view we shall replace

the information of C, or the flux on r = R, (which is a priori an unknown)
for 0 < t < T by the information of the null flux on R, . Owing to the
approximate method used for the solution, we can define C, = Cy(r,t) for

s(t) < r < R, ,0 <t < T. Thus, the governing equations for nutrient
fluxes to the root and root growth are given in the following free boundary
problem [6) (in cylindrical coordinates) by:
C
. 1r

ii) Cl(r,O) = Ol(r) . sogrgkl,

iii) Cy(R,t) = Cy . »  O<t<T,

iv) Dy Cy + Dyl + ) ,2' =Cp, »  sU<r<Ry, 0<t<T,
v) C2(r,0) = 02(1') . So < ng,

1)

vii)  DybiCy (s(t),t)+voCy(s(t)t) = k;Cy(s(t)t)— Ey,

viii) DabyCo ((t),t) +voCola(tht) = koCols(t)t) — Ey,

ix)  k,Cy(s(t),t) +k,Co(s(t)) —~E; —E, = [aICI(s(t),t)+a2C2(s(t).t)] s(t),
ix)  s0) = so . 0<mo<Ry<Ry

where: Ci =9C/dr, Ci =9%C/ar?, C, =9C/dt, r is the position coordinate,
t the timé', T is the tiMe for which tfltere exists solution, i) is the Cushman
equation for the inmobile ion 1, which is a simple application of the principle
of conservation of mass (in soil) under steady moisture conditions with the
nutrient flux consisting of two components (diffusive and convective) [7]; ii)
and iii) are the initial condition and the boundary condition on the
rhizosphere radius (constant concentration) for the ion 1, respectively. iv)
is the Cushman equation for the mobile ion 2; v) and vi) are the initial
condition and the boundary condition (null flux) for the ion 2; vii) and viii)
are the interface conditions representing the mass nutrient balance for ions
1 and 2, respectively; which expresses the equality of the rate of net mass
absorption of the ion considered in the active kinetics (right hand side) and
the incoming total mass and diffusive flux (left hand side), ix) states the
same net balance in terms of the free boundary velocity, since a C;(s(t),t) s(t)
is again the rate of the mass absorption of the ion i; x) is the initial
condition for the free boundary s(t) (interface root-soil or root radius).
§(t)=ds(t)/dt is the interface velocity, a; is the stoichiometric coefficient
for the i-ion, and 8g is the initial radius. The parameters €; are given by €
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= Vg8g/D:b. > 0. The ®.(r) are the initial concentrations profiles (given by
the equations (23) and 24} below).

The three free boundary conditions (1-vii-viii-ix) can be written by:

2 € GhY) = g)(Cyst)) . t>0
@) &(t) = 1(C(s(t),t) R t>0

where functions g and f are given by:

(5) g(Cp = %‘,1 [(kl— vo) C; — El] » defined for C; > 0,
6 g)Cy) = #2 [(ky— Vo) C; — Ey], defined for C, > 0,

(M £(C,,Cy) = [k1Cy+kyCy—E;—E,]; defined for C; >0, C; >0,

S S
which satisfy the following properties:

Ey

@) g)(C) >0 e C >Cn pl Pa——

, with the hipothesis kl > Vo

9 g5(Cy) >0 & Cy > Clll2 = k2—E;2v; » with the hipothesis ko > vo,

To solve (1) (that is, to compute C1=C1(r,t) and C2=C (r,t) (in
particular, C1=Cl(s(t),t), C2=C2(s(t),t)), and the free boundary interface
r=g{t) (a priori unknown) we apply the mass balance integral method [4] to
the present case for root growth. The solution is found integring the partial
differential equations (1-i) and (1-iv) in the variable r on the domains (s(t),
Rl) and (s(t), R2) respectively. Thus:

Ry R, Ry
; C;.(r,t)
(11) I Clt(;,t) dr = D, Clrr(r,t)dr + D,(1 +el) I !'r dr
s(t) s(t) s(t)
R2 Rf2 k2 C2r(r,t)
12) l C2t(r,t) dr = D2. Czrr(r,t)dr + Dy(1+e,) I » dr
s(t) s(t) s(t)

and we propose:
(13) Cyr,t) = @) [1 + B(XR; — r)?] with ®, and B to be determinated
(14) Cz(r,t) = ¢2(r) 1+ ‘Y(t)(R2 — r)2] with 02 and Y to be determinated

which depends on the parameters of the system and satisfy the initial and
boundary conditions 1-ii) and 1-iii) for the inmobile ion and the conditions 1-
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v) and 1-vi) for the mobile ion, that is:
(15) Cl(r,O) = OI(r) s V r € I8g, Rll o B(0) = 0,
a7n C2(r,0) = 02(1') » V r € l[8g, R21 © Y(0) = 0,
We denote a; = ay(t) and a, = az(t) by:

(19) o y(8) = CY(s() = @& [1 + BONRy — stv)?]
(20) ay) = Cos(V0 = Sy [1 + VOHR, — ()]
which depends on the parameters of the system through s(t), & (s(t)),
® (s(t)), B(t) and “Y(t). Replacing (19), (20) in Egs. (11), (12) after some
elementary manipulations, the problem (1) reduces to:
Ry Ry

€y (r:Mr =Dy[C; (Ry,) (o) ()] 4Dy (1 +¢

r

R s(t) 2
1
(1) sty |
(21)
"2 ®4(R,) (1) R2C (r,t)
- 20N} X9 2Ty

s(t) s(t)
8(t) = f(oy(t),05(t)), s(0) = s,, t>0.

Replacing (13) and (14) in Eq. (21), after some elementary manipulations
we obtain the following system of three coupled ordinary differential
equations (see Appendix.) (valid for the cases € = 1, 2, 3):

- BO) =0
at (Fg+Fg+F; g
(2 81 _ Fi+Fyp+F 34D, Utey) (F14+F15+F16+F17)’ +©) = 0
(F1g+F1g+F30)
ds(t) 1 ' ,
- ko () +koo() —E; —E,, s0) = 0
dt [alal(t) +82a2(t)] [ 1%1 + 20t 1 2]
where:
R,)e E, — (k;,—vo)C
(23) @4(r) = Cloo+ A [1 _[TI] 1]’ with: A — 1 Rl o loo.
kl [1 —[%rl] — Vo
Q4) @,r) = FB—%, with: B — 162[1+%9], F — —.
r R, (ky—vo)B — -2

€.
8o 2
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The initial profiles concentration ® (r), (r) given by the Egs. (23) and
(24) above has been computed by the quasx— %atxonary method [1,2] for low
concentrations and are determinated by the system, similarly to the
Cushman’s prediction [7]. The functions F; are given by: '

[clm eyt 480 R, —s(t)’] }

D A¢y
Fi=—=% 1 4 Dj+ey) -t
Fp = — gli[ (ky —ve) ®y(a(t)]1 +ﬁ(t)(R1—s(t))2]—El}

F3 = (C;_+ABMR,—s(t)] — 2 (C; _+A) BO R, In [ s(t)],

— d 1
Fy = (C;_+A) [l+ﬁ(t)R1][ %0~ R
+2
. A [Rlel + B R, ! ] : )
57 7 7 (e, +1) (&, 4+1) (4D

e+ 1
s (t) Rl

€
1
Fo — A B(t) Rl 1 _ 1
8 (t) R,
+
1
F9 = -(Clm+A)Rl[R1 —8 (t)] + T'ZIT— Rl —8 (t)
€
C€,_+A[ 3 4 AR, ! [ G—¢) G—¢) ]’
- __Jleo " _ 1 1 _ 1
Fig = s [Rl s3] a—c (R s @
DA +e)l F
_ Yo 2 2 So
Fjp = [b2 TR ] & +7’
R,

1 2
=) 1 + YO Ry—st)?]

Fi3 = — Dyl +¢)

s(t) !
- yRA2II L 1 _
F;, = FB [1 +7(t) Ry ] [ <O Rz] 2FBY(tR, In s(t)] + FB‘Y(t)[R2 s(t)].

F [1 + Y Rf] ) )

L - .
15 (eo+1) (en+1) (e, +1)f
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2 1 1
Fie =2 FYtY)Ry | ——— — ——
16 € 7 2 € R 62}

8 “(t)

P, — E0 1
1 —e,) | (e5—1)
€2 s €2 (t)

_ 1 }
(62 —1)
Ry

2
FR 1l—ey)) A—e,y)
2 : 2 2 2
F18 = FB R2 [Rz—S(t)] — (T——C—z) [R2 —8 (t)].

Fjg = —FB R, [Rzz—sz.(t)] +

2FR Q—e,) (Q—¢,) 1
2 2 2
G _62) [R2 —8 (t)

Fao = EB [Ry3—s%w)] oty R s° 2|

We can remark that for the particular cases ¢ = 1, 2 and 3, can be
obtained a similar system to (22) of three ordinary differential equations.

The solution of system (22) is computed numerically by the Runge-
Kutta method for a system of ordinary differential equations. The figures 1
to 6 represents theoretical results for the interface concentration C(s(t),t)
vs. s and the interface position s(t) vs. t as a function of some
characteristic parameters of system soil-plant such as the absorption powers
kl y k2 respectively, both related with the choice seed.

2 CHa(t)t) (x10-7 MOL/CM"3)

1.8

k1=0.0E-7 CM/8

k1=4E-7 OM/®

ki=8E-7 CM/0®

0 008 o1 01 02 028 03 035 04 045 08

ROOT RADIUS (CM)

0.6 C2(a(t),t) (x10-7 MOL/CM"3)

0.4
0.3
0.2 e “W—-———————
0.1 - — = *
0 " " . )
[ 0.1 02 03 0.4 0.6

Fig.t: Intertaoa conoentration for
inmablle lon 1 ve. root radius as a
tunotion of abaorption power k1

ROOT RADIUS (CM)

Fig.2: intertaca oonoentration ot mobile
lon 2 ve. root radiue as a funotion o
absorption power k1



1048  CONGRESO INT. METODOS NUMERICOS EN INGENIERIA Y CIENCIAS APLICADAS

o ROOT RADIUS (CM)

8 Tka-ge2-7 e
02-0.8E-8 OM"2/0 “"t: owe
0.4 —ﬁi‘nouo oM -t
J2-1E-13 MOL/® OM"2 / ki4E-7 OM/®
0.3
/ k#0.08-7 CWO
0.2 N
j/ prose-r ourese
0.1 REOH O
art
ERE-14 MOL/8 M2
JHIE-13 MOL/® OM"2
o 1 -l 1
0 s 20

0
TIME (DAYS)

Fig.3: Root radius ve. time as &
tunotion of abaorption power k1 -

.2 CHa(t),t) (x10-7 MOL/CM"3)

; KIeg4E-7 CM/® B
\ *4+
08 kg=72E-7 CM/0
06l — KkE=48E-7 CM/8
0.4 //
0.2
o 1 1 L 1 1 - N A 1

0.06 01 0.18 02 025 03 035 04 048 05
ROOT RADIUS (CM)
Fig.4: Interface oonoentration for

Inmoblie lon 1 CKs(t),t) as a tunction
ot absorption power k2

1. C2(s(t)t) (x10-7 MOL/CM"3)

0.12 S
k2=24E-7 CW/B

0.1

0.08

0.06

klﬁl-{ cM/e
k2aY. —_—
0.04 - N HEE 2 OMB
002 % = 4
o A Il i
0 01 o2 03 04

ROOT RADIUS (CM)

Fig.8: Interface conoentration for
moblle ion 2 C2(s(t),t) as a function ot
absorption power k2



J. C. Reginato and D. A. Tarzia 1049

ROOT RADIUS (CM)
0. D2+0.8E-0 CM"2/8

‘. E‘ﬁ k2=40E-7 OM/0 N
) i A
kE=24E-T OM/8
[ ¥ ] <
Kk2<72E-7 OM/O

10,1
o1 o
EwE-14 MOL/S OM"2
JeE-13 MOL/8 CM 2
o L 1 'y 1

[ ] 10

4 e
TIME (DAYS)

Fig.6: Root radius ve. time as &
tunotion of absarption power k2

3. CONCLUSIONS

From the analysis of s(t) and the root absorption (kiCi(s(t),t)—Ei) for
the results shown in the figures above, we conclude that:
— Root growth increases when kl increases and root absorption for ion 1
increases (e.g. Fig. 1 and 3);
— Root growth decreases when k2 increases and root absorption of ion 2
decreases (e.g. Fig. 5 and 6).

A more exhaustive analysis of numerical results for the remaining
parameters, we conclude that:
— Root growth decreases when Cl increases, although root absorption of
ion 1 increases; i
— Root growth do not vary when D, or D, increases, although root.
absorption for ion 1 increases and root absorption for ion 2 do not vary;
— Root growth decreases when b, or b, increases although root absorption
for ion 1 do not vary and root absorption for ion 2 decreases;
— Root growth ‘decreases when E, or E, increases although root
absorption for ion 1 decreases and root absorption for ion 2 do not vary;
— Root growth increases when Jl or 12 increases and root absorption for
ions 1 and 2 increases;
— Root growth increases when Rl' or R, increases, although the root
absorption for ion 1 decreases and the root absorption for ion 2 increases;
— Root growth increases when v, increases and root absorption for ions 1
and 2 increases;

We remark that the qualitative behavior shown for these results above
can vary if other different values of parameters for computing the root
growth are used.

We can remark that this is a work of basic nature, and represent a
qualitative approach for root growth owing to the effect of only one unique
inmobile nutrient and a unique mobile nutrient. Moreover, this model can be,
firstly, generalized whithout difficulty for to take into account more mobile
and inmobile ions, and secondly, approximate to the more realistic situation
of taking into account a variable rhizosphere (Rl,R2 variable) for the root
growth.

Moreover, these conclusions are useful to outline more complex models
for nutrient transport and root growth. Thus, this method can to provide a
very useful qualitative criterion for the crops technology.
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5. APPENDIX

Replacing (13) in the first equation of (21), after some manipulations, we
obtain: :

R, R,
IClt(r,t)dr = l Ol(r)ﬁ(t)[Rl— ]2dr =
s(t) s(t) R, R, R,
= Rf/&(t)f ®,(r)dr —2R; ﬁ(t)l r®(r)dr + B(t)l ® (rrldr
s(t) s(t) s(t)
and, taking into account (23), we obtain:
Ry Ry Ry
“) .74
I tbl(r)dr = (Cl +A)] dr — AR, I r dr =
(o <
s(t) s(t) s(t)
AR, [ (l—ep (—e) ] |
=(C1°°+A)[R1—s(t)]—(1_———gp Ry —s (t)], (with e5£1)
R, - R R
: 61 (1 —€1)
r@l(r)dr = (C1 +A)] rdr — AR1 r dr =
o0
s(t) s(t) s(t)
€
(C, +A) AR, ! [ Q—€) Q—¢y) ]
_ e 2 2.1 AR i 1 ,
= 3 [Rl s (t)] (2_61) R1 s ()], (with e42)
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R, R, R
(2—e¢,)
J r2¢1(r)dr = (Cl +A)I r2dr —_ ARlell r €1 dr =
o o)
s(t) s(t) s(t)
€
(C, +A) AR, I[ (3—¢;) (3—¢y)
=.L-_°3__[R13—-s3(t)]—(3 1—)[121 V" Ty |, with ¢3)
then: -
Ry €1 +2.
2, AR, 6(t)[ (1—€) (1—¢) ]
s(t)
. (Cy +A)
—2R1ﬁ(t)1—°‘5-—[1212—s2(t)]+

AR, Va0l @oey @—cy)
«—€ —
1 [Rl 1 —8 1 (t)]+

(2—61)
. (Cy_+A) ; ‘1[ (B-€;) (3—¢)) ]
3 3 AB(HR 1 1
+a0-L TR 3 s (t)]—f—(?i—_el) R, l—s~ Y| on
Similarly, we obtain:
Ry Ry
C.(r,t) : R, )e R
1\ | 1 [R5 2 _
[ > dr = I 3 {CIOO+A[1 [r] ]} [1+5(t)(R1 r) ] dr
s(t) s(t) Rl Rl
211 d . d
= (C1®+A)[l +B8(t)R; ” r—g — [2(C1®+A)6(1)R1]J T+
Rl s(t) R s(t)
€ +2 d
+ (€ +A)6(t)[ dr— A |1 +B(tR, [ L
s(t)Rl Rls(t)r
‘1“] dr € dr
Rl s(t)f s(t)
C,(r,t) R
1\ 201 1 1
s(t) 5
€+
(C A)BW[R, —s(t) A[Hﬁ(t)R : ] 1 1
(€ H B[R, —sW] ==y CRES e ]
s (t) R1
2AB(R ot AR, 1a(t)
< 1 1 1 1 1 1
T € [6 ’_é] ey |- < —-n | P2
1 s-(t) Rl 1 s € Rl € )

Finally, replacing (D1) and (D2) in the first equation of (21), after
elementary manipulations, we obtain the first equation of system (22).
Similarly, for Cz(r,t) we obtain the second equation of system (22).



