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Abstract—A model for root growth of crops through a free boundary problem is studied.

The resultant effects from differences in nutrient availability and transport between the root surface
and the rhizosphere produced by the an active absorption type Michaelis—Menten for low concentra-
tions are studied. The model equations are solved by the mass balance integral method and the
numerical solution is used to compute growth of root radius.

Examples of concentration at the root-soil interface curves as a function of root radius and root
radius as a function of time are plotted. The parameters which are varied are the root absorption
power, flux velocity at the root surface, efflux, rhizosphere soil solution concentration, diffusion
coefficient, and buffer power.

INTRODUCTION

One of the methods for studying the nutrient uptake by plant roots, which can be a satisfactory
method of modelling the plant-root system is by use of the partial differential equation for
convective and diffusive flow to a root [1-4].

In two recent papers [5, 6] a method for computing the root growth through a free boundary
problem has been proposed. In these papers, the root soil interface s(¢) (the root radius) as a
function of time and the interface concentration C(s) as a function of the interface position s(¢)
are computed by the quasi-stationnary method [7]. The goal of the present paper is to compute
the interface position s(f) as a function of ¢ and the interface concentration C(s(¢), t) as a
function of s(¢) and ¢ by application of the mass balance integral method (similar to the heat
balance integral method [8, 9]).

PHYSICAL MODEL AND GOVERNING EQUATIONS

Because of the rather complicated scenario of the plant—root system, as a first step toward
achieving some understanding of the physical and chemical processes involved, an idealized
one-dimensional diffusion—convection model was chosen for this study. It is based on the
following assumptions (3, 5, 6]:

—A vertical cylindrical root summersed in a porous homogeneous and isotropic medium
(the soil).

—DMoisture conditions maintained at a steady state.

—Nutrient uptake occurs at the root surface of the absorption zone.

—The rate of uptake can be described by a Michaelis—Menten type equation.

—The nutrient transport occurs via convection and diffusion in the radial direction only
(the latter takes place in soil solution phase only). Vertical flow in the soil is not
considered.

—The rate of influx at infinite concentration (J/,,) and the Michaelis—Menten constant (X,,)

are independent of the velocity of soil water at the root (v).
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—The coefficient diffusion (D) is independent of the flux.
—D and the buffer power b (b = dC/dC,, where C is the total diffusable ion concentration
and C, is the ion concentration in soil solution) are independent of concentration.
—The root system parameters are not changed by root age (the root absorption power
k =1,/K,, = constant).
—The convective velocity of water at root surface is not affected by nutrient
concentration.
—Production or depletion of nutrient by microbial or other activity is null.
—All parameters D, b, k are independent of temperature, in the temperature range
normally encountered in root growth.
—The net uptake of nutrient is totally available for growth.
—Root hairs do not affect the nutrient uptake.
—No vertical flow within the root is considered.
The governing equations for mass and diffuse transport of nutrient to the root [3] as well as
the governing equations for root growth in the root—soil interface are given in the following
free boundary problem [10-12] (in cylindrical coordinates) by:

(i) DC,,,+D(1+€)CT"=C,,, s()<r<R, 0<t<T,
(i) Ci(r, 0) = ®(r), So=r=R,
(iii) C(R,t)=C.>0, 0<t<T,
) kCi(s(2), t)

» + 3 = . - - L, )

(@iv) DbC,,(s(1), t) + voC(s(¢), t) KCs(@), 1) E, 0<t<T
1+—-
I
) DbC,,(s(t), t) + voC(s(t), t) =aCi(s(t), )s(¢), 0<t<T,
(vi) s(0)=s9, 0<so<R, )
where:
_9G _ 3C, 3G,
Clr - or ’ lrr — arz ’ Clt - ot ’

r is the position coordinate, ¢ the time, T is the time for which there exists solution, (i) is the
Cushman equation, which is a simple application of the principle of conservation of mass (in
soil) under steady moisture conditions with the nutrient flux consisting of two components
(diffusive and convective) [3], (ii) and (iii) are the initial and boundary conditions respectively,
(iv) and (v) are the interface conditions representing the mass nutrient balance, (iv) expresses
the equality of the rate of net mass absorption of the unique ion considered in the active
kinetics (right hand side) and the incoming total mass and diffusive flux (left hand side), (v)
states the same balance in terms of the free boundary velocity, since a C,(s(t), £)s(¢) is again the
rate of the mass absorption of the ion [11, 13} and (vi) is the initial condition for the free
boundary s(¢) (interface root—soil or root radius). §(¢) = ds(¢)/dt is the interface velocity, a is a
stoichiometric coefficient, E is a constant efflux, R is the rhizosphere radius, C.. is the soil
solution concentration on the rhizosphere radius, and s, is the initial radius. The parameter € is
given by
VoSo
€= Db >0.

d(r) is the initial concentration profile (given by the equation (15) below).

From now on, we shall denote C, by C for convenience in the notation.
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The two free boundary conditions (1iv) can be written by:

C(s(1), ) =g(C(s(1), 1)), t>0 (2
$()=f(C@s(0), ), t>0 3)
where functions g and f are given by:
8= | —F—~E-uc @
1+—C
I
1 +J_ C

which satisfy the following properties:

8*(J,—E)—J,—d
2k

where d = V[6*(J,, — E) — J,,J} — 46%J,,E, with the hypothesis

2
62=_k_>1, £<(1_l),

Un—E)—J,+
<C<C,‘,‘,=6(1’” 2,)( Imtd (6)

g(0O)>0&eC=

Yo Jm 62
and
E
f(C)>0©C>C,,=—E, )
f1-7]

with the hypothesis E/J,, <1.

To solve (1) (that is, to compute C = C(r, ¢) (in particular, C = C(s(¢), t)) and the free
boundary interface r = s(t) a priori unknown) we apply the mass balance integral method (8, 9]
to the present case for root growth. The solution is found by integrating the partial differential
equation (1i) in r on the domain (s(t), R). Thus:

R

R R
CAr,dr=D f C.(rydr+ D1+ &) &8y, ®)
s(¢)

s(1) s(t) r

and we propose:

C(r, )=2(n[1 + B()(R — 1)) )

which depends on the parameters of the system and satisfies initial and boundary conditions
(1ii) and (1iii), that is:

C(r,0)=d(r)p(0)=0, (10)
CR,t)=C.oP(R)=C.. (11)

We denote o = a(t) by: »
a(t) = C(s(2), 1) | (12)

which depends on the parameters of the system through s(¢), ®(s(¢)) and B(¢).
Replacing (11) and (12) in equation (8), after some elementary manipulations, the problem
(1) reduces to:

R

- _ Co a@® (FCro
o C/(r,t)dr=D[C/R, t) —g(a(s))]+ D(1 + e)[ R 30 + o 7 dr], t>0
s@=f(a(®), t>0, 5(0) = s,. (13)

ES 31:1-E
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Using the approximation kC/(1 + k/J,,C) =~ kC (valid for low concentration), and replacing
(9) in equation (13), after some elementary manipulations we obtain the following system of
two coupled ordinary differential equations (see Appendix) (valid for the cases € # 1, 2):

PO R+ B+ E+E+E+E),  B(0)=0
ds(e) 11, E -
“dt a4 [ O(s())[1+ B()(R - s(t))]]’ s(0) =0 (14
and
®(r) = C. + A[l - (’—:) ] (15)
where
. D
1 ARSY9() — AR C.+A AR@™)(t) - AR’
R{(Cm + AR —s@)+ = } - { 3 (R =) + T }
(16)
B=25 - C.B0) - o[BGO+ BER —sO)I(k — vo) — E], (a7
Rm (14 0S4 B BOR =) )
—(1+€)(Cot+A)1+ ﬁ(t)R)[ & ;] (19)
E=—(1+€)B(t)(C. +A)ln( > )) (20)
R=CEp0r 5 7c) @y
= ~ART+ BOR] sz~ 7 | @)
A= E — (k — vy)C., . 23)

1= () ]

ReMARK 1. The initial profile concentration ®(r), given by the equation (15) above, has been
computed by the quasi-stationary method [4] and it is determinated by the system, similarly to
the Cushman’s prediction [4].

REeMARK 2. For the particular cases € =1 and 2, we can obtain a system similar to (14) of two
ordinary differential equations.

ReMARK 3. For the general rank of concentration C we can obtain a similar system to (14) of
two ordinary differential equations.

The solution of system (14) is computed numerically by the Runge—Kutta method for a
system of ordinary differential equations. Figures 1-12 represent results for the interface
concentration C(s(t), t) vs s and the interface position s(¢) vs ¢ respectively as a function of
the dimensionless parameter 6% = k/v,.

CONCLUSIONS

We conclude from the model presented above that the free boundary s = s(¢) increases when
absorption power k increases (Fig.2) (i.e. the dimensionless parameter k/v, increases with
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Fig. 3. Interface concentration C(s) vs s as a function of flux velocity at root surface v,.
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67



radius (cm)

Root

(x10 ~7 mot/cm’)

Interface concentration

radius (cm)

Root

A K/V,=1.5 (D=1E ~7 cm¥s) K =1.2E ~7cm/s, V,=0.BE-T7cm/s
0.40 4 K/V,=1.5 (D=10E—7 cm¥s) Ca= 1E—7 mol/cm®, b = 0.2

O K/V, =15 (D= 100E —7cm¥s) S, = 0.05 cm, R= 0.4 cm
03| g % KVe=10 (D=10E—7cm%s) E = 1E—14 mol/s cm?

0 K/V, =10 (D=100E —7cm¥s) =8E—7cm/s

V,=0.8E—7 cm/s

0.30

0.25

0.20

20 40 60 80 100
Time (days)
Fig. 10. Root radius s(f) vs ¢ as a function of diffusion coefficient D.

1.50

1.25‘kg

0.75

0.50 - A K/V,=15(b=0.2) K =1.2E —7 cm/s, V,= 0.BE —7cm/s
s K/V,=15(b=1) Co=1E =7 moi/cm?
O K/V,=10 (b=0.2) E =1E—14 mai/s cm?, R=0.4cm
0.25 & K/V=10(b=1) D =1E—7 cm¥s, S,=0.05 cm
K = 8E—-7 cm/s, V,=O0.BE—7 cm/s
0o 1 1 i 1 | 1 ]
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Interface position (cm)
Fig. 11. Interface concentration C(s) vs s as a function of buffer power b.

0.50 - A K/V,=15(b=0.2) K =1.2E—7cm/s, V,= O.BE—7cm/s
4 K/V=15(b=1) Ce=1E =7 mol/cm®

0.45 - O K/V=10 (b=0.2) E =1E-14 mol/s cm?, R=0.4cm
- K/Vo=10(b=1) D =1E—7 cm%s, S°=0.05 cm

0.40 |- K =8E-7cm/s, V,=0.8E—7 cm/s

0.35 -
0.30 [~

[
f
.25 | f —
f

A/
o'zo — /‘/
A/
0.15 ‘/
A/
0.05 1 ] 1 1 1
[o] 20 40 60 80 100
Time (days)

Fig. 12. Root radius s(¢) vs ¢ as a function of buffer power b.
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vo=const.) or when the soil solution concentration C.. increases (Fig. 6). Moreover, s =s(t)
decreases when the efflux E increases (Fig. 8). Likewise, s =s(t) decreases when the buffer
power b (Fig. 12) or the diffusion coefficient D (Fig. 10) increases, although this effect is
meaningless for high values (e.g. 10) of the dimensionless parameter k/v,. Moreover, s = s(¢)
increases when the flux velocity at the root surface v, increases (Fig. 4) (i.e. the parameter k/uv,
decreases with k = const.).

The behavior of interface concentration C(s(¢f), t) as a function of k, vy, C,, E, D, and b
(Figs 1, 3, 5, 7, 9, 11) is quite similar to results obtained by the quasi-stationary method applied
to the same model [5]. For example, in Fig. 5, for 6*>=k/ve= 1.5 the interface soil solution
concentration increases when the rhizosphere soil solution concentration C.. increases. Instead,
for 62 = k/vo = 10 (with vo=const., i.e. k is greater than before) a greater depletion occurs for
the interface soil solution concentration which implies a faster growth for the root radius (see
Fig. 6).

On the other hand, by comparison of the results obtained in [5] by the quasi-stationary
method and in this paper by the balance integral method we can conclude that: first, the
qualitative behavior of the results is quite similar for both methods, and secondly the balance
integral method give us a more detailed theoretical information, for example the variation of
s(¢) vs t with respect to the parameter v, is negligible for the quasi-stationary method [5] (see
Fig. 4).

Thus, we can remark that the present model gives us a qualitative approach to root growth
under the absorption of only one nutrient, with natural limitations in the real situation.
Moreover, these conclusions are useful to outline more complex models for nutrient transport
and root growth.

Finally, we remark that the present formulation is also valid for the any rank of
concentrations with appropriate functions g and f.

REFERENCES

CLAASEN and S. A. BARBER, Agron. J. 68, 961-964 (1966).
P. H. NYE and F. C. MARRIOT, Plant Soil 33, 359-472 (1969).
. H. CUSHMANN, Soil Sci. Soc. Am. J. 46 (4), 704-709 (1982).
. H. CUSHMANN, Plant Soil §3, 303-317 (1979).
. C. REGINATO, D. A. TARZIA and A. CANTERO, Soil Sci. 150, 722-729 (1990).
. C. REGINATO, D. A. TARZIA and A. CANTERO, Soil Sci. 152 (2) 63-71 (1991).
. CRANK, Free and Moving Boundary Problems. Clarendon Press, Oxford (1984).
R. GOODMAN, Trans. ASME 80, 335-342 (1958).
R. GOODMAN, Advances in Heat Transfer, Vol. 1, pp. 51-122. Academic Press, New York (1964).
[10] D. A. TARZIA, Progetto Nazionale M.P.1. Equazione di Evoluzione e applicazioni fisica-matematiche, Firenze
(1988) (with 2528 references).
[11] D. A
C

N
J
J
J
J
J
T
T

(== e NN N

. A. TARZIA and L. T. VILLA, Meccanica 24, 86-92 (1989).
[12] V. J. LUNARDINI, Heat Transfer in Cold Climates. Van Nostrand, New York (1981).
[13] C. Y. WEN, Ind. Eng. Chem. 60 (9), 33-54 (1968).

(Revision received 21 November 1991; accepted 26 March 1992)
APPENDIX
Replacing (9) in equation (13), after some manipulations, we obtain:

R R . . R . R
C(r,t)dr= f D(r)BOR~r)dr= Rﬂ(t)J- d(r)ydr - ﬂ(t)f rd(r)dr
5(1) 0} ()

5(¢)
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and, taking into account (15) and (23), we obtain:

R R R R
®(r)dr=C.|] dr+A dr—AR‘I r-cdr
2(t) (1) s(1) $(1)

= (€t AR -5 - G + 2

R
rdr— AR‘I ri=9 gr
(1)

sU()  (with € #1),

R R

R
j rd(r)dr=C.. rdr+Af
s(1) 's(1) ()
C.+A R®> = AR . .
( )[R2 ()] - (2 S5 oo g 0, Gith c%2),
then:

_ _ AR AR*< (-e
‘[(’) C(r,t)dr= Rﬂ(l)[(C + A)[R - 5(1)] a-9 + a- G)s )(t)]

. 2 €
- 80| (32w -5 N-Go st ong

se-o)] (A1)

Similarly, we obtain~

"0 [ St a[i- (B JJu+sorm-mer

sy T 0’

~[(C. +A)[1+ﬁ(r)R11j ——[AR‘[Hﬂ(r)Ruj

R ar R dr
o7 HAPOR| o
s(r)

=[(C. +A)[1+ﬂ(t)R]][ 0 %] [AR‘[Hﬂ(‘)RH[ ! ! ]

= [B()(C. + A)]

1+e s<+l(‘) _R<+l
LABOR® 1
— B(1)(C. + A)in X ot e [ o —R—E]. (A2)

Finally, replacing (A1) and (A2) in equation (13), after elementary manipulations, we obtain the system (14).
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NOMENCLATURE
r Position (radius) coordinate (cm). interface (mol/cm’).
t Time (s). o(r) Initial concentration profile (mol/cm®).
J., Rate of influx at infinite concentration C, Constant rhizosphere soil solution
{(mol/s-cm?). concentration (mol/cm?).
K, Michaelis—Menten constant (mol/cm’®). E Constant efflux (mol/s-cm?).
k Absorption power of root (cm/s). R Rhizosphere radius (cm).
Yo Velocity of flux solution at root surface 5 Initial radius (cm).
(cm/s). s(0) Instantaneous root radius (cm).
D Effective diffusion coefficient (cm?/s). $(¢) Instantaneous velocity of root—soil
C Total diffusable ion concentration interface (cm/s).
(mol/cm®). b Buffer power (dimensionless).
(o Soil solution concentration (mol/cm?). a Stoichiometric coefficient (dimensionless).
Ci (s(t) t) Soil solution concentration at root—soil € Parameter (dimensionless).



