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Abstract

The object of our study is: a model for root growth through a free-boundary problem and the effects
resulting from differences in nutrient availability and transport of only one mobile nutrient between the
root surface and the rhizosphere produced by an absorption Michaelis-Menten for low and high
concentrations. The model equations are solved by two methods: the quasi-stationary method and the
balance integral method. The numerical solutions are used to compute radial root growth. Curves of
nutrient concentration at the root-soil interface, curve as a function of root radius as well as curves
representing root radius as a function of time are plotted. The parameters which are varied are the root
absorption power, flux velocity at the root surface, efflux, rhizosphere radius, diffusion coefficient,
buffer power, and maximum influx. The two methods show the theoretical results for radial root growth
in the range of low and high concentrations. The balance integral method provides more detailed

information.

Introduction

One of the methods for studying the nutrient
uptake by plant roots, which can be a satisfac-
tory method of modelling the plant root system,
is by use of the partial differential equation for
convective and diffusive flow to a root. Simula-
tion models for nutrient uptake have frequently
been used in the evaluation of the effect of soil
and root characteristics on nutrient uptake
(Claassen and Barber, 1976; Cushman, 1982;
Nye and Marriot, 1969). These models have only
considered nutrient uptake and have supposed
an exponential root growth, without taking into

account effects of coupling between nutrient
transport and root growth. Because of the dif-
ficulties in modelling these complex processes, in
recent articles (Reginato et al., 1990, 1991), as a
first approximation to a real, more complete
description, a method for computing the effects
on root growth owing to absorption of one
nearly immobile nutrient by means of a free-
boundary problem has been proposed. In these
article, the root radius s(¢) as a function of time
and the interface concentration C(s) as a func-
tion of the root radius s(¢) are computed by the
quasi-stationary method (Crank, 1984) with a
contour condition representing a fixed rhizo-
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sphere border. Also, the interface concentration
C(s(t), t) as an explicit function of s(¢), and the
time ¢, as the root radius s(¢) vs. ¢ are computed
by the balance integral method (Goodman, 1958;
Reginato and Tarzia, 1993). Both methods are
based on the principle of conservation of mass in
the soil as well as at the root-soil interface. The
goal of the present paper is to compute the root
radius s(f) as a function of ¢, and the interface
concentration C(s(¢),t) as a function of s(f)
through the quasi-stationary and the balance
integral methods with a null flux condition on the
rhizosphere border valid for mobile ions, in
order to estimate the effects of different parame-
ters on root growth for low and high concen-
trations (not saline conditions).

The free boundary model and governing
equations

Because of the rather complicated scenario of
the plant root system, as a first step toward
achieving some understanding of the physical
and chemical processes involved, and idealized
one-dimension diffusion-convection ion transport
and radial root growth model was chosen for this
study. As described in Reginato et al., (1990,
1991) it is assumed that: a vertical cylindrical
root is immersed in a porous homogeneous and
isotropic medium (the soil) while moisture, tem-
perature, and light conditions are assumed main-
tained at a steady state. It is assumed that the
nutrient uptakes occurs at the root absorption
zone, and the root hairs are not considered in
the present model. The rate of uptake can be
described by a Michaelis Menten equation, and
the rate of influx at infinite concentrations (J,,)
and the Michaelis Menten constant (K,,) are
independent of the flux velocity of soil solution
at the root (v,). The nutrient transport occurs via
convection and diffusion in the radial direction
only (the latter takes place in the soil solution
phase only). It is assumed that the diffusion
coefficient (D) and the buffer power (b) are
independent of nutrient concentration, which
implies that there is a linear relation between C
and C,, where C is the total diffusable ion
concentration and C, is the ion concentration in
the soil solution. No allowance for a change in
J.s K, or E (efflux) with age is made. It is also

assumed that the coefficient diffusion is indepen-
dent of the flux, and the convective velocity of
water at the root surface is not affected by
nutrient concentration. Production or depletion
of nutrients by microbial or other activity is
considered null, and owing to the proposed
model not taking into account the energy bal-
ance implicit in the root metabolism, we as-
sumed that the nutrient taken up is totally
available for root growth. At this point, only a
fraction is available for root growth and the
remaining nutrient is available for shoot growth.
So, we arrive at only qualitative conclusions.
From now on, we shall denote C, by C for
notational convenience. The governing equations
for convective and diffusive transport of nutri-
ents to the root (Cushman, 1982) as well as the
governing equations for root growth at the root-
soil interface for low concentrations (J, ~kC)
are given in the following free-boundary problem
for one phase (the soil) (Crank, 1984; Tarzia,
1988; Tarzia and Villa, 1989). In order to sim-
plify the model, without loss of generality, radial
growth in cylindrical coordinates is considered.

C
(i) DC,+D(1+e)-=0, s(t)<r<R,
0<t<T
(i) C(,0)=2(), so<r<R

(iii) —DbC.(R,t) +v,C(R,t)=0, 0<t<T
(iv) DbC,(s(2),t) +v,C(s(t), t)
=kC(s(t),t) — E

= aC(s(t), ), () ,
) s(0)=s,,

where: C, =dC/or, C,,=3Clor’, C,=aClat, r
is the position coordinate, ¢ the time, and T is
the time for which the solution exists. Equation
(i) represents a simple application of the princi-
ple of conservation of mass (in soil) under steady
moisture conditions with the nutrient flux con-
sisting of two components (diffusive and convec-
tive) (Cushman, 1982). Equation (ii) is the initial
condition, and Equation (iii) is the boundary
condition on the rhizosphere radius taking into
account inter-root competition for the nutrient
considered, and a more realistic condition when
the more mobile nutrients are considered. Equa-
tion (iv) represents the mass nutrient balance
conditions at the soil-root interface, and Equa-

0<t<T
0<s,<R



tion (v) is the initial condition for the free
boundary s(¢). v,(t) = ds(¢)/dt is the rate of radial
root growth, a is a stoichiometric coefficient, R is
the rhizosphere radius, and s, is the initial root
radius. The parameter € is given by e =v,s,/
Db >0. ®(r) is the initial concentration profile
(given by Equation (11) below). The two free-
boundary conditions (1.iv) can be written as:

C,6(0), 1) =g(Cls(), 1)), t>0 ()
v, (1) = f(C(s(), 1)), 1>0 (3)
where functions g and f are given by:
§(C) =35 [(k — v,)C ~ E] @)
1 E
70 =+ k£ ©)
which satisfy the following properties:
f(C)>0©c>cp=—f— (6)
E
g(C)>0<3C>Cm=(k—_l“)5, c,>C)
Q)

The solution of problem (1) is given by:

a(?)

C(r,t)=B(@) - e s()<r<R, t>0(8)
where:
E
«= | 75]
1
Xk =vg) [ 1 1 ] e
Db LR s) 1 s
s(t)e+1
e 9)
pu(2) -1
B(t) = “(’) [1 + R] a “Igﬁ)
az s(t)e+1
=a, et (10)
R* 8.1 (s(t)) ]
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(1))
[z 1+ %) -
L( &)] _k
(k UO)[R‘ 1+ 5
_ ﬂ_l]
h a(O)[ R r

=;$:H wiz) an

o(r)=E

and s(¢) is the unique solution of the following
Cauchy problem (Ince, 1956; Kreider et al.,
1968):

vs(t)=%gL<i(-R§-)-) , t>0

5(0)=s5s,€(0,R) (12)
where:
__E _ R(k —vy)
27 sy B = UoSo >0,
RE s
=050, a@=1+% (13)

I(x) = x(aof - )

Lx)=1+=2 with x € (0, 1) (14)

R I( )
Moreover, the interface concentration is given
by the following expression:

5%

C(s(t), ) = ———t—, 5>0 (15)
B (ﬂ> -1

that is, the interface concentration does not
depend explicitly on variable ¢.

We can remark that the solution, given above,
for problem (1) there exists and has a physical
meaning if the conditions

LM <E<1, £=REWOD), (16)

) aeor
> y(p(£)) = - <%§_ - (l(i ;j)i,lf_l ,

By (17)

e=0¢£, 0 Db
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among parameters k/v,, 5,/R, 68 are satisfied (see
Appendix A for more details), and x; =x,(0) >0
is the unique solution to the equation:

px)=1, x€(0,1) (18)
with:

p(x)=(1+x)x* withxe€(0,1), (19)

W) =—=7 withx€(1,2). (20)

The solution of the Cauchy problem (12) is
computed numerically by the Runge-Kutta meth-
od for ordinary differential equations (Conte and
de Boor, 1972). Figures 1 and 2 represent
theoretical results for the interface concentration
C(s(t), t) vs. s and the root radius s(f) vs. f as a
function of absorption power k for low concen-
trations and parameters which satisfy condition
(17). For simplicity we choose parameter a to
equal 1, i.e. we assume that for each ion which
arrives at the root only one carrier is available
for absorption. Results of a sensitivity analysis
using the free-boundary model are shown in
Figure 3; the initial values used for the analysis
are shown in the same figure. Each parameter
has varied between 0.5 and 2.0 of its initial
value, whilst all other parameters were held
constant at initial values following a methodolo-
gy similar to that given in Barber (1984).

A similar set of equations for high concen-
trations is given in the following free-boundary
problem assuming that the maximum influx is
given by J ~J, (J,, — E >0) if we replace condi-
tion (1.iv) with:

DbC,(s(t), t) + v, C(s(t),t)=J, — E
=aC(s(t), (1), 0=st<T (21)

Now, f(C) and g(C) are given by:

g8(C) = 1 5 U = E—0,C] (22)

fey == [%] @)

which satisfy the following properties:

J,—E
g(C)>06C<C, =

(24)

0

flC)y>0, vC=>0 (25)

The solution of the problem for high concen-
trations is given by:

C@r,t)=v() - (e) , s()<r<R, t>0
(26)
where:
oo
1
X
%[;E (1 +%) - s(:)s] +It)€7+—'
_ J,,,U— E - R* @7
" e (i) )
v =221+ 3] = 0,20 28)
L

and s(¢) is the unique solution to the following
Cauchy problem:

dsT(tL%qL(%), 5(0)=5,€ (0, R),

t>0 (30)

where I and L have been defined before. Func-
tion ® = ®(r) satisfies the following conditions

Un—E) ¢
Uy l+§>0

(I)(0+) =—%>, cI)(Rl) =
@ >0in (0, R).

Moreover, the coefficient £ =s,R must verify
the condition:

which is equivalent to the condition x,(8) <¢ =
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Fig. 1. Interface concentration C(s(f), t) vs. s as a function of
absorption power k for low ion concentrations (quasi-station-
ary method).
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Fig. 2. Root radius s(¢) vs. ¢ as a function of absorption
power k for low ion concentrations (quasi-stationary meth-
od).
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Fig. 3. Results of a sensitivity analysis of parameters for s(f)
for low ion concentrations through the quasi-stationary
method.
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Fig. 4. Interface concentrations C(s(t), t) vs. s as a function
of radius R for high ion concentrations (quasi-stationary
method).
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Fig. 5. Root radius s(f) vs. ¢ as a function of radius R for
high ion concentrations (quasi-stationary method).

° 8(t) AT 12 DAYS (x10-2 M)

Jm = 1x10-9 MOL/8 M2 Vo, R
Vo = 0.8x10-11 M/8 )
E * 1x10-10 MOL/S M"2

D » 0.8x10-9 M*2/8

;o . ex1o-4 M

0.15 b= 10 l -1

=b. D, E, Jm, 89

0.06 n L s i
[} 0.6 1 1.6

CHANQE RATIO

N

25

Fig. 6. Results of a sensitivity analysis of parameters for s(r)
for high ion concentrations through quasi-stationary method.
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5o/R <1, where x; =x,(6) and function p have
been defined before. Therefore, we find that the
interface concentration is given by the following
expression:

Cls(t), 1) = (]"'v_ B) 1

_(,-E) 1
B Vg vs(t) ’

t>0 (31)

Moreover, we see that v (¢) >0, V¢ >0 because
£=s5,/R>x,=1/(1+ ¢£)* is obviously verified.

The solution of the Cauchy problem (30) is
computed numerically by the Runge-Kutta meth-
od for ordinary differential equations. Figures 4
and S represent theoretical results for the inter-
face concentration C(s(t),?) vs. s and the inter-
face position s(¢) vs. ¢ for high concentrations as
a function of rhizosphere radius R. Results of a
sensitivity analysis using the quasi-stationary
method for high concentrations are shown in
Figure 6.

In order to compute C(s(t),t) as an explicit
function of s(¢) and ¢, and s(¢) for a more general
of concentrations we propose the following free-
boundary problem with conditions (1.iv) given
by:

DbC,(s(t), t) + v,C(s(2), t)

__kCs®), 0
1+ kC(sJ(t), t)

m

= E=aC(s(t), Hv,() ,

0<t<T (32)

The two free-boundary conditions f(C) and
g(C) can now be written by:

g«n=£g{—ﬁ%—E—%C] (33)
1+]_C
k
f«»=%[——7:——%] (34
1+J—C

which satisfy the following properties:

-J +8%(J —E)—d
gC)>0C, =—" (2;: ) <C

. —J,+8°J,—E)+d
<C!= SE (35)

where d =\/[-],,+8%J, — E)]* — 46%] _E with
the hypothesis: 8°=k/v,>1, E/J, <(1-1/
8%)?, and

E
AC)>0&C>C, =T &1
K1 ‘E]
. . E
with the hypothesis 7-<1 (36)

The interval (C,, C,) represent the range of
concentrations for which g(C)>0 and C, repre-
sent the minimum soil solution concentration
required for root growth.

To solve th problem with (32) (that is, to
compute C = C(r, t), in particular, C = C(s(t), t)
and the free-boundary interface r = s(¢) a priori
unknown) we apply the mass balance integral
method (Goodman, 1958; Reginato and Tarzia,
1993) to the present case for root growth. The
solution is found integrating the partial differen-
tial equation (1.i) in r in the domain (s(¢), R).
Thus:

R R
j C(r,t)dr=D f C.(r,)dr+ D(1+¢)
s(t) s(t)

R
C(r,1)
X — dr 37
s(t)

and we propose
C(r, 1) = 21 + ()R — 1)’] (38)

which depends on the parameters of the system
and satisfies the initial and boundary conditions
(1.ii) and (1.iii), that is:

C(r,0) = d(r) < 1(0)=0, (39)

—DbC,(R,t) +v,C(R,1)=0 &
—Db®'(R) + v, ®(R)=0.
(40)



We denote v = v(¢) by:
v(t) = C(s(t), 1)
= O(s(1))[1 +n(t)(R - 5())’] (41)

which depends on the parameters of the system
through s(¢), ®(s(¢)) and (). Replacing (40) and
(41) in Equation (37), after some elementary
manipulations, the problem reduces to:

| c.0ar=Die,®.0) - g)

s(1)
CR,Y) ) . [ Crt) ]
[ 50t f 2

s(1)

+D(1+e€)

v, (1) = f(v(®)) ,

Replacing (38) in Equation (42), after some
elementary manipulations we obtain the follow-
ing system of two coupled ordinary differential
equations (see Appendix B) (valid for the cases
e#1,2,3):

s(0)=s,, t>0. (42)

dn(r)
dr
_F+F,+D1+e)(F,+F,+F,+F+F,+ F)
(F9+F10+Fll)

n(0)=0

ds(z) _ 1 k
o [1 + 30O+ 1R - SO

E
D)L+ ()R —s(t)y]]—f@(t)) ’

5(0) =5, (43)

and

—pa-A unp=L &]
®(r)=BA e WIthB_R‘[1+R ,

A =———E——k— (44)
(k- v,)B e

0

which verifies conditions (39) and (40).
The initial profile concentration ®(r) given by
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Equation (44) above has been computed by the
quasi-stationary method (Reginato et al., 1990)
for low concentrations and it is determinated by
the system. The functions F; are given by:

_[vo . D(1+¢€)] Asq
Fl - [ b + R ] Re+1 ’
F - 1| k@)1 + ()R - 5()’]
1+ - OO+ 7O — Y]
— E = vo® — v, ®(s(0)[1 + n(t)(R - 5(t))’]
= —Dg(g(v(t))
£ _ 260N +2(OR —s()*
3 s(t)
F,= AB[1+n()R ][ O %] :
=2ABn(t)R ln[ (t)] + ABn(t)[R — s(1)]
Al +n()R? 1 1
Fo=— _(€+1) I:s(e-(-l)(t) _R(e+l):|
_2 1
= 24n0R| 5~ 77
_ An() 1 1
F=t-9 [s“‘”(t) R("”] ’
F, = ABR*[R —s(t)]
BB R - 00 )
o= —ABR[R? — 5(t)]
(3131:) [R(z—e) - 5(2_6)(’:)] )
Fu.= '_3_ [R3 - 33(0]
o LAETL 0]

We can remark that for the particular cases
€e=1, 2 and 3, a similar system to (43) of two
ordinary differential equations can be obtained.
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Fig. 7. Interface concentration C(s(¢), t) vs. s as a function of
absorption power k for low ion concentrations through
integral balance.

The solution of system (43) is computed numeri-
cally by the Runge-Kutta method for a system of
ordinary differential equations. Figures 7 and 8
represent theoretical results for the interface
concentration C(s(¢),t) vs. s and the interface
position s(¢f) vs. ¢t as a function of absorption
power k in the range of low concentrations and
parameters which satisfy condition (17). Results
of a sensitivity analysis using the balance integral
method for low concentrations are shown in
Figure 9.

For high concentrations we obtain quite a
similar system of ordinary differential equations
with the initial profile of concentrations (com-
puted by the quasi-stationary method for high
concentrations) given by:

®(r)=BA — % (45)

where:

s(t) (x10-2 M)

k = 24x10-9 M/S
266

2061 k * 40x10-9 M/8__+

1.66

. -
1.06 k = 80x10-0 M/ Vo » 0.8x10-10 M/8
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D « 0.8x10-9 M*2/8
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Fig. 8. Root radius s(f) vs. ¢ as a function of absorption
power k for low ion concentrations (integral balance).
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Fig. 9. Results of a sensitivity analysis of parameters for s(¢)
through the balance integral method for low ion concen-
trations.
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Fig. 10. Interface concentration C(s(t),t) vs. s as a function
of parameter R for high ion concentrations (integral bal-
ance).

gl (1 i) e Im=E _Jn~E
kR \ITR) _v0<1+ﬁ>— Bu,
R¢ R

Figures 10 and 11 represent theoretical results
for C(s(¢), t) vs. s and s(f) vs. ¢, respectively, as a
function of rhizosphere radius R in the range of
high concentrations, and Figure 12 represents
the results of sensitivity analysis for predicted
root growth through the balance integral method
for high concentrations.

Conclusions

From the analysis of the results given by the
quasi-stationary method, we conclude that for
low concentrations the results of sensitivity anal-
ysis indicate that predicted s(f) increases rapidly
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Fig. 11. Root radius s(t) vs. t as a function of radius R for
high ion concentrations (integral balance).
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Fig. 12. Results of sensitivity analysis of parameters for s(f)
through the balance integral method for high ion concen-
trations.

with increases in v, and R (Fig. 3). Values for k,
b, D, E, and s, had little or no effect because the
mathematical approximation of the method is
poor. On the other hand, for low concentrations
the results of sensitivity analysis obtained for the
balance integral method (Fig. 9) likewise indi-
cate that predicted s(f) increases rapidly with v,
and R. The increase in v, represents an increase
in total nutrient available for the plant, since, if
the remaining parameters are held constant,
increasing v, increases the convective flux to
root. Increasing R increases the rhizosphere
volume and so a greater ion quantity is available.
At the same time we conclude that the predicted
s(t) increases moderately with J,,. Values of b
and D had little or no effect, whilst increasing k,
E, and s, decreases the predicted s(¢r). The
decrease with k (Fig. 8) occurs because the
gradient at root-soil interface (given by Equation
(4)) as a function of k and C(s) decreases. The
expression g(C(s(t), t) = 1/Db[(k —vy)C(s(t), t)
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— E] takes into account the combined effects of
the increase in k and the decrease of C(s(¢), ¢) as
a function of k (Fig. 7). The decrease with s,
occurs because, although the root surface in-
creases as 5., the rhizosphere volume available
decreases as L(R®—s?) where L is the length
root and, taking into account that R>s,, then
(R*—s2)>s2. No allowance for a change in L
with time is made because we have only consid-
ered radial growth.

From the analysis of the results obtained by
the quasi-stationary method, the interface con-
centration becomes nearly constant after a week
elapsed (Compare Figs. 1 and 2), whilst from the
results obtained by the balance integral method
the interface concentration is constant through-
out the period simulated (Fig. 7) in agreement
with De Willigen’s results (1981) on N uptake.
From the analysis of the results obtained by the
quasi-stationary method and the balance integral
method for high concentrations, the results of
sensitivity analysis indicate that predicted s(¢)
increases rapidly with increases in v, and R
(Figures 6 and 12). Values for b, D, E and J,
had little or no effect. The predicted s(¢) de-
creased with respect to s,. ‘

By comparing the results obtained by the
quasi-stationary method and the balance integral
method we can conclude that: firstly, the mathe-
matics of the quasi-stationary method allow
analytical expressions which must be satisfied by
the system parameters, such as inequality (17),
and secondly the general qualitative behaviour of
the results is similar for both methods, although
the balance integral method gives us more de-
tailed theoretical information with respect to
dependence on system parameters. For example,
for low concentrations, the variation of s(¢) vs. ¢
with respect to the parameter k is negligible for
the quasi-stationary method (Fig. 3), whilst the
balance integral method gives us an appreciable
change (Fig. 9).

In conclusion, this paper represents a quali-
tative approach for the effects on root growth
due to absorption of only one mobile nutrient.
From comparison between the results of the
present model and the model for ions that are
relatively immobile for low and high concen-
trations (Reginato et al., 1990, 1991) we con-
clude that the efficiency of absorption kinetics



194  Reginato et al.

(J=kC or J =], respectively) is greater for low
concentrations for both models. Moreover, these
models are useful as a basis for developing more
complex models for transport of nutrients and
their effect on root growth. For example, these
same models take into account the root length
(the effects of some parameters could be
changed) and simultaneous absorption of one or
more immobile and mobile ions.
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Appendix A
Nomenclature
r: Position (radius) coordinate (cm)
t Time (Sec)
J.: Rate of influx at infinite Mol
concentration (——-2—)
Sec-cm
. . Mol
K,.: Michaelis Menten constant (—3)
cm
. cm
k: Absorption power of root (g)
. . . cm
Uyt Flux velocity of soil solution (g)
at root surface
. . . . cm2
D: Effective diffusion coefﬁmen( Sec)
C: Total diffusible ion Mol
concentration < 3)
cm
C: Ion concentration in soil Mol
solution ( 3)
cm
L. . Mol
C(s(2), t): Ion concentration in soil 3
. o cm
solution at root-soil interface
o . Mol
o(r): Initial soil solution 3
concentration profile cm
So! Initial radius (cm)
Mol
E: Constant efflux -
Sec-cm
s(t): Instantaneous root radius  (cm)
: Rate of radial h (ﬂ)
v,(0): ate of radial root growt| Sec



L: Root length (cm)
R: Rhizosphere radius (cm)
b: Buffer power Dimensionless
a: Stoichiometric coefficient ~Dimensionless
€: Parameter Dimensionless
1
a,: Parameter (—-)
cm
( Mol >
a,: Parameter "
cm
. Mol
a(t), 6(r) Coefficients ( 2>
cm
. Mo
B(), ¥(t), v(t) Coefficients ( 3)
T
n(t) Coefficient ( 2)
cm
Appendix B

Part A (quasi-stationary method)

The expression for C(r,t) and s(f) can be obtained by a

method similar to that developed in Reginato et al. (1990).

Function I, given by (14), satisfies the following properties:
So

1(1) - R

I' >0in [x,, 1]

1(0)=0, Ix,)=0
I<0in(0,x,), I>0in(x,,1),
€
I'(x,)=0, I(x1)=—€+1x1
I'<0in(0,x,), I'>0in(x,,1)
s
esl’(x)$y=e+(1+e)io in (x,,1),

where:

X, a, =1+

-1
(ao)”‘ ’

1

I<x,=—m—<
BT+ )"

Xo
Owing to (¢ =s,/R€(0,1)):

Ve>0

condition (17) is a consequence of the following equiva-
lences:

B,I(%) -1>0,Vi>0&

k—u0<p(§)<2

with £ €(0,1)&
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k p(¢)
©U—U>m*_—1= ¥(p(€))

with p(¢£) € (1,2) &

k
S ¥(p(£))
with x,(0) <£ <1

where x,=x,>0 is the unique solution to the equation
p(x) =1 with x € (0, 1).
Moreover, function p = p(x) verifies the following condi-
tions:
p(0")=1, p(1)=2
p'>0in(x,6),1), p'<0in(0,x,(e))
3x,=x,06)€(0,1) suchthatp’'(x,)=0, p"(x,)>0
3!x,=x,(0) € (x,,1) suchthat p(x;)=1

Then the solution to the ordinary differential equation (12) is
well defined, because

k—v,)’
|L'(x)|s(—vzsL)Rp, VX € [x,, 1] .

0°0

Part B (Integral balance)

Replacing (38) in Equation (42), after some manipulations,
we obtain:

f C(r,t)dr= f () 9(@)[R, — r]>dr
s(1) s(0)

=R*q(t) j &(r) dr — 2R%(t) f rd(r) dr
s(t) s(1)

+ () f‘ID(r)r2 dr
s(r)

and, taking into account (44), we obtain:

R R R
j ®(r)dr=AB j dr—A j rcdr
s(t) s(r) s(0)

A (-e) _ [(1-¢e)
= ABIR =)} - =y [R"™ =" ).
< R R (withe #1)
j rd(r)dr=AB f rdr— A j r®dr
s(t) s(1) s(1)
AB
== [R*=5'()]
A (2-¢) (2-¢) .
-9 [R —-s77 (1)), (withe#2)
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R

R R
f r’®(r)dr= AB J rPdr—-A f r® <dr

s(t) s(e) s(2)
AB
=5 [R’-5°0)]
A GB-¢) (3-¢) :
“G-9 [R =577 ()], (withe #3)

then:

J' C(r,t)dr = R*(t)AB[R - 5(t)] - g né(;)
s(r)

X (R —50-0(0)] = 2R 3[R = )
A2R%(1) 2-¢ 2-¢
t—=— (2 _ E) [R( = )(t)]
i AR -0 - (3’1(3) [RE™=s00()].
(B.1)
Similarly, we obtain:

[EEL Iy AP

s(2) s@)

A +no®-rr10r

R R
dr dr
= AB[1 +n()R?] f 7—[2ABn(t)R] f -
HG) s(e)
R

R
d
+ ABn(r) J' dr — A[1 +n(t)R?] J —
r
s(r) s(6)

+2An(t)R J - An(r) f =
s s
C
(r D dr = AB[1 +n(OR ][s(t) %]
s()
—2ABn(R ln% — ABn(t)[R - 5(1)]
AR 11
(1+e€) S(‘“)(t) R
2A1y(t)R[ L]
€ s‘(t) R°
An@) [_1 1
T(1-e [R(f-l) - s('_l)(t)] (B.2)

Finally, replacing (B.1) and (B.2) in Equation (42), after
elementary manipulations, we obtain the system (43).



