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ABSTRACT

A model for root growth through a free boundary problems is studied. The effects .
resulting from differences in nutrient availability and transport of one only mobile or
one only relatively inmobile ion between the root surface and the rhizosphere produced
by a absorption Michaelis-Menten for low and high concentrations are studied. The
model equations are solved by two methods: the quasi-stationary method and the
balance integral method. The numerical solutions are used to compute radial root
growth. Curves of nutrient concentration at the root-soil interface vs. root radius as
well as curves representing root radius vs. time as a function of some relevant
parameters of system soil-plant are plotted. Theoretical results for radial root growth
in the range of low and high concentrations are showed by the two methods, providing

a more detailed information the balance integral method.

INTRODUCTION
One of the methods for studying the nutrient uptake by plant roots, which can be
a satisfactory method of modelling the plant-root system is by use of the partial

differential equation for convective and diffusive flow to a root, and simulation models
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for nutrient uptake have frequently been used in the evaluation of the effect of soil and
root characteristics on nutrient uptake‘ (Nye and Marriott [1}; Claasen and Barber [2];
Cushman [3,4,5)). These models have ‘only considered nutrient uptake and have
supposed an exponential root growth, no taking into account effects of coupling
between nutrient transport and root growth. The goal of the present comunication is to
compute the root radius s(t) as a function of t and the interface concentration C(s(t),t)
as a function of s(t) through the quasi-stationary and the balance integral methods
Qvit.h a constant nutrient concentration condition on rhizosphere border for relatively
inmobile ions and a null flux condition on rhizosphere border valid for mobile ions, in
order to estimate the effects of different parameters on root growth for low and high
* concentrations (not saline conditions).

Because of the rather complicated scenario of the plant-root system, as a first
step toward achieving some understanding of the physical and chemical processes
involved, and idealized one-dimension diffusion-convection ion transport and radial
root growth model was chosen for this study. As described for us (Reginato, Tarzia
and Cantero [6,7]) is assumed a vertical cylindrical root emersed in a porous
homogeneous and isotropic medium (the soil). Moisture, temperature, and light
conditions are assumed maintained at a steady state. Nutrient uptake is assumed
occurs at the root absorption zone, and the root hairs are not considered in the present
model. The rate of uptake can be described by a Michaelis Menten equation, and the
rate of influx at infinite concentration (Jm) and the Michaelis Menten constant (Km)
are independent of the flux velocity of soil solution at the root (v,). The nutrient
transport occurs via convection and diffusion in the radial direction only (the latter
takes place in soil solution phase only). The diffusion coefficient (D) and the buffer
power (b) are assumed independent of nutrient concentration which implies that there
is a linear relation between C and Cl’ where C is the total diffusible ion concentration
and G; is the ion concentration in soil solution. No allowance for a change in Jm, Km,
or E (efflux) with age is made. Also is assumed that the coefficient diffusion is
independent of the flux, and the convective velocity of water at root surface is not

affected by nutrient concentration. Production or depletion of nutrient by microbial or
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other activity is considered null, and owing to the proposed model not takes into
account the energy balance implicit in the root metaboIis:m, we dég\lmed that the
nutrient taken up is totally available for root growth. Actually, only a fraction is
available for root growth and the remaining nutrient is available for shoot growth. So,

we arrive to only qualitative conclusions.
FREE BOUNDARY MODELS AND GOVERNING EQUATIONS

From now on, we shall denote G by C for convenience in the notation. Taking
into account the idea of the model used for the shrinking core problem for noncatalytic
gas-solid reactions (Wen [8], Tarzia and Villa [9]), we propose to coupler the nutrient
transport and the root growth through a free boundary problem (An extensive
bibliography for moving and free boundary problems for the heat-diffusion equation is
given in Tarzia [10]). The governing equations for couvective and diffusive transport of
nutrient to the root (Cushman [4]) as well as the governing equations for root growth
at the root-soil interface are given in the following free boundary problem to one phase
(the soil) (Stefan [11}; Lame and Clayperon [12]; Carslaw and Jaeger [13]; Crank
[14,15); Tarzia [16]) (In order to simplify the model, without loss of generality, radial

growth in cylindrical coordinates is considered) by:

i) DCn.-}-D(l—l-c)%:Ct, s(t)<r<R,0<t<T
ii) C(r,0) = ¢(r), so<r<R

(1) iii) C(R,t)=C,, or iv) —DbC(R,t)4v,C(rt)=0, 0<t<T

V) DGO = — ks ~E =aCt.)i(1), 0 < t <T
I+

m

vi)  8(0) =s,, 0<s, <R



is the time for which the solution exists. Equation 1) represents a simple application of
the principle of conservation of mass (in soil) under steady moisture conditions with
the nutrient flux consisting of two components (diffusive and convective) (Cushman,
[4]); Equation ii) is the initial concentration profile; Equation iii) is the boundary
condition on the rhizosphere radius taking into constant concentration for relatively
inmobile ions; Equation iv) is the boundary condition of total flux nul which take into
account inter-root competition, which is a more realistic condition when the more
mobile nutrients are considered (can input ions but no water); Equation v)
representing the mass nutrient balance conditions at the soil-root interface, where
DbC,(s(t),t)+v,C(s(t),t) is the total flux arriving to root,
kC(s(t),t)/(1+k C(s(t),t)/I,y,) is the influx owing to absorption kinetics and E is a
constant eflux; Equation vi) is the initial condition for the free boundary s(t);
8(t) = ds(t)/dt is the rate of radial root growth; a is a stoichiometric coefficient; R is
the rhizosphere radius, and s, is the initial root radius. The parameter € is given by
€ =vg8,/Db and ¢(r) is the initial concentration profile.

A schematic diagram of model is shown by the Figure 1

Pt T
~" rhizosphere Figure 1.
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/’ \ The free boundary model
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| \ The boundary condition
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N C(®,t)=C. ; ; ile
, %%{E %JV," (R, 1) X relatively inmobile ions.
Se ”fr r’
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The two free boundary conditions (1-iv) can be written by:

(2  Gs(t),t) = &(Cls(t)t)) » | t>0
3 8(t) = f(C(s(t).t)) , t>0
where functions g and f are given by:

@ O =—,§T,[(-1—+‘;E—vo) C—E]

Im

) f(C)=%;[ ‘;C—%]

which satisfy the following properties:

—3 482 y—E)+d
2k

— 23 _
6) g(C)>0 & Cp= Im+o g{m E)_d<C< Ch=

where d = J [—Jm+62(1m-—E)]2—4621mE

' is: 62 = & E (1-1
with the hypothesis: §“ = o >1, 1. < (l 62)2 , and

() flC)>0 < C>Cp=—FL—
Koo
m
with the hypothesis Jl <1
m

In order to solve the problem (1) are applied the quasistationary (Stefan [11};
Crank [14,15); Reginato, Tarzia and Cantero [6,7]) and balance integral (Goodman
[17,18]; Reginato and Tarzia [19]) methods.



QUASISTATIONARY METHOD

Firstly is applied the quasistationary method for RELATIVELY INMOBILE IONS
FOR LOW CONCENTRATIONS (K, potassium, phosphorum) (the absorption kinetics
is approximated by kC/(14+kC/J,) ~ kC which is a normal situation found at field
for these type of ions).

Now, functions g and f can be approximate by:

8) &(C) = P [(k—vo) C-E]
®  1O=4k-§

and verifies the following properties:

(10) gC) >0 <« C>Cm=(i—_]'3v—o), (Cm > Cp)

(11) fC)>0 & C>Cp=§
i.e, Cp is the threshold ion concentration above which root growth is possible.

The quasistationary method assumes that the soil solution concentration is that
corresponding to the stationary case in the interval (8(t),R). Thus is solved the
equation DC, + D (14¢)C,/r =0, s(t) <r<R, 0<t<T with the conditions (1-ii,iit,vi,
and v with the aproximation J ~ kC).

For this case, the solution of problem (1) is given by:
a(t)
(12) C(r,t) = A(t) — —¢- st)<r<R,t >0

where:

ot =[ gy Lo
o P [y
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and s(t) is the unique solution of the following Cauchy problem:
(13) a(t) = F(s(t)), 8(0) =s, € (O,R), t >0

with:
F(s) = £[1 - a3 H(s)|

B [l + oy G(s)]

Hs) =— 2 G(s) =s[1 — (&
®) [1 + oy G(s)] ®) s[ R ]
__E _ (k- vg) _E _%

Therefore, we obtain, after some elementary manipulations, that the interface

concentration is given by the following expression:

(1) OO = R (=CEO) 6> 0

that is, the interface concentration does not depend explicitely on variable t.

The solution of Cauchy problem is computed numerically by the Runge-Kutta
method for ordinary differential equations. Figures 2 and 3 represents some results for
the interface concentration C(s(t),t) vs. s and the interface position s(t) vs.

respectively as a function of the absorption power k.
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Figure 2.
Interface concentration ((s)
vs. root radius s as a

function of absorption

power k through the

quasistationary method for
relatively inmobile ions for

low concentrations.

Figure 3.

Root radius s(t) vs. time as
a function of absorption
power k through the
quasistationary method for
relatively inmobile ions for

low concentrations.

From the results of figures 2 and 3 we deduce that if the ratio k/vg is small (e.g.:

parameters.

Let ¢ be the parameter defined by ¥ = E/[(k — vg) Codl (=a1/a2 ) , can be

8

1.5,2) accumulation of nutrient is produced in the interface root-soil, then there is
counterdiffusion and the root growth is low. On the other hand, for large values of
k/vg (e.g.: 10) the root growth is fast and the counterdiffusion is null. The limit value

of k/v, which produces the counterdiffusion effect depends on the remaining



demonstrated that:

i) v = Ef[(k — vo) Cool <1 implies that C(s(t),t) has a minimun value because the
absorption power k is large with respect to v, and there is no counterdiffusion;

il) ¥ =E/[(k — vo) Cool < 1 implies that C(s(t),t) is constant;

iii) v = E/[(k — vg) Cool > 1 implies that C(s(t),t) has a maximun value because k is
small and the root can not absorb all the arriving nutrient and there is a
counterdiffusion effect. These results agree with Cushmann’ conclusions [5).

Moreover, it can be demonstrated that:

14+a9gR
1 -2
(15) ag 2 l+a1R

= 8(t) >0

A more detailed information can be found in Reginato, Tarzia and Cantero [6].

For RELATIVELY INMOBILE IONS FOR HIGH CONCENTRATIONS (3 ~J, )

functions g and f are given by:

(16) 8(C) = pplm—E—voC]

J,—E
a  fo="mg=[l]
which satisfy the following properties:

J,—E
(18) g(C)>0 & C<Cy= g

(19) f{C) > 0, vVC>0
and, solution of problem (1) is given by Eq. (12) with:

L[ (- )
9

. Rc[Jm—E_Coo]
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p(t)=coo+gl§;_)'

o

I — E
o(r)=coo+[-2§,——— —cm][l —(—%H.
and s(t) is the unique solution of the following Cauchy problem:
(20) 8(t) = F(s(t)), 8(0) =s, € (O,R), 0<t<T

with:

where:" In —E _
C(s) = Coo + ;2%—_0:)] [1-@)‘], 0<t<T

After some elementary manipulations, we obtain that the interface concentration

is given by the following expression:

@)  Ce(t)Y) = C(s()

that is, the interface concentration does not depend explicitly on variable t.

The solution of Cauchy problem is computed numerically by the Runge-Kutta
method for ordinary differential equations. Figures 4 and 5 represent theoretical results
for the interface concentration C(s) vs. the root radius s and the root radius s(t) vs. the
time t as a function of diffusion coefficient D, respectively. The values of parameters

used are given for each.
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Figure 4.

Interface concentration C(s)
vs. the root radius s as a
function of diffusion
coefficient D through the
quasistationary method for
relatively inmobile ions for

high concentrations.

Figure 5.

Root radius s(t) vx. time as
a function of diffusion
coefficient D through the
quasistationary method for
relatively inmobile ions for

high concentrations.

A more detailed information can be found in Reginato, Tarzia and Cantero (7).

From the comparison between the results of present model for root growth for

high concentrations and the corresponding model for low concentrations, we obtain

that the absorption for low concentrations is more efficient than the mechanism for

high concentrations owing to the range of values for C(s) and s(t) for each. This result

is valid in the concentration range for the highly specific mechanisms I (Epstein

[20,21]), although total growth can be higher when both mechanisms I and II (not

specific) operate in parallel (Welch and Epstein [22,23]).

For MOBILE IONS FOR LOW CONCENTRATIONS (NO3_, nitrate, i.e., for
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example, ions which can be the result of mineralization process of organic matter) the

solution of problem (1) is given by Eq. (12) with:

a(t) = [ ](k—vo 1 1 . . B(t)ﬂ-l
_DT{R‘ ® S(t)‘] s(t)chl ﬂlI(B(R

a(t) aft) _ o2 R C
ﬂ(t) [1+ 'ﬁ] ol Y3 RE ﬂll ))

=ofit- =

and s(t) is the unique solution of the following Cauchy problem:

(22) 5(t) = "01("(‘)), 8(0) = 8, € (0, R), t>0
where: _
a2=.v_.fs_‘_)’. ﬂl—R(k ("’o) >0, ﬂz_‘gzlo 0, a0=1+§R2’
I(x)=x(a, x*~1), L(x)=1+¢ L) withx € (0, 1)

‘Moreover, the interface concentration is given by the following expression:

(23) C(s(t),t) = (s(t)) t>0
BT

that is, the interface concentration does not depend explicitely on variable t.
We can remark that the solution, given above, for the problem (1) there exists

and has a physical meaning if the conditions
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(24) xg(w) <€<1, £=2€(0,1),

@) %> He0)= ) _ (o e=0¢, 0=pe>0

-1 (e o

among parameters vk 'R 0 are satisfied, and xg = x3(0) > 0 is the unique solution of

the equa,tlon.

(26) p(x) =1, x€(0, 1)
with:
p(x)y = (14x) xfx with x € (0, 1),
Y(x) = )_ti_l with x € (1, 2).

The solution of the Cauchy problem (22) is computed numerically by the Runge-
Kutta method for ordinary differential equations. Figures 6 and 7 represent some
theoretical results for the interface concentration C(s(t),t) vs. s and the root radius s(t)

vs. t as a function of absorption power k for low concentrations and parameters which

satisfy the condition (25).

©(s(t),1) (x10-1 MOL/M ~3) F 1gure 6.
0.14 . .
Vo = 0.8x10-10 W/$ The interface concentration
£ = Ixi0-0 uous -2
012 D = 0.8x10-0 M~2/8 .
K¥o = 300 (k = 202108 WS i ol ((s) vs. root radius s as a
0.1 b=10,0=1 . .
function of absorption power
0.08 _
k through the
0.08 Wo = 580 (k = Mx10-0 W& /v, = 1000 (h = 80x10-0 W/S) &
J / quasistationary method for
O.M\J /
' — mobile ios for low

0.02 ' ' ' !
T\—x—-x % .
concentrations.

8(5 056 105 155 205 255 3056 355 4.05
ROOT RADIUS (x10-2 M)

13



Vo = 0.0u10-10 WO | Figure 7.
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A more detailed information can be found in Reginato, Tarzia and Dzioba [24].

A similar solutions for MOBILE IONS FOR HICH CONCENTRATIONS are given
by Eq (12) with:

a(t).—.[i'-g%lf] | 1 _IlnE

—E
i;l% [Elé(l*'-l‘i’)— .(:)f] + e(t)i"'l WQ"
a0 = X143 = 229,

&) =SB (B L.

and s(t) is the unique solution of the following Cauchy problem:

(27 5(t) = —i)) 8(0) = s, € (0, R) , t>0

where I and L are defined before. Function ® = &(r) satisfies the following conditions

#0H) = -0, ®R,) = (J““,:E) T-El-_f >0, % >0 in (0, R).
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8¢
Moreover, the coefficent £ = R 2 must verifies the condition:

¥(eo) =(—“E[l g) >

which is equivalent to the condition x4(6) < f—- <1, where x3 = x4(f) and function
p are defined before. Therefore, we obtain, that the interface concentration is given by

the following expression:

(28) C(s(t).t) = 1__Om-F) 1 t>0

(s(t) Yo (Y’

Moreover, we see that 8(t) > 0, Vt > 0 because § = is obviously

>Xg =

=S

-1
a+6)%

verified.

The solution of Cauchy problem (27) is computed numerically by the Runge-
Kutta method for ordinary differential equations. Figures 8 and 9 represent some
theoretical results for the interface concentration C(s) vs. s and the root radius s(t) vs.

t as a function of rhizosphere radius R for high concentrations.

(%) (61041 MOL/M~3) Figure 8.

Vo = 0.8x10-11 /8 The interface concentration
J = i1x10-¢ MOL/B M~ 2
D=08x%00 M"2/8 .
E ~ 1x18-10 MOUS M~2 C(s) vs. root radius s as a
O = Sx10-4 M

b1, a=1

R=081

function of rhizosphere

radius R through the

quasistationary method for

mobile ions for high

0.06 0.1 0.16 0.2
ROOT RADIUS (xi0-2 M)
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- A more detailed information can be found in Reginato, Tarzia and Dzioba [24].
BALANCE INTEGRAL METHOD

To solve (1) (that is, to compute C = C(r,t) (in particular, C = C(s(t),t) ) and
the free boundary interface r = s(t) a priori unknown) we apply the mass balance
integral method (Goodman [17,18]) to the present case for root growth. The solution is
found integring the partial differential equation (1-i) in r on the domain (s(t),R).
Thus:

R R R
(29) [ Cy(xt) dr = D I Co(et) dr + D (1 + € I & 4
o{t) s(t) o{t)
and we propose:

(30) C(r,t) = ®(r) [1 + B(t)(R — )]

which depend on the parameters of the systemn and satisfy the initial and boundary

conditions 1-ii) and 1-iii), that is:
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(31) C(r,0) = ¥(r) & B(0) =0,
(32) C(R,t) = Cy & ®(R) = C,,

We denote a = aft) by at) = C(s(t),t) which depends on the parameters of the
system through s(t), ®(s(t)) and B(t).

Replacing (31) and (32) in Eq. (29), after some elementary manipulations, the
problem (1) reduces to:

R
I Cy(r,t) dr=D [Cy(R,t) —g(a(t)) ]+ D (1+¢) °° a((:)) + I C(r’t)dr t>0
s(t) s(t)
(33) S
8(t) = f(a(t)) , t>0, 8(0) = s, -

Using the approximation k C/[1+ (k/J,) C] = kC (valid for low concentration),
and replacing (30) in Eq. (33), after some elementary manipulations we obtain the

following system of two coupled ordinary differential equations (valid for the cases

e#£1,2):

W) _ By Py tF 4B g+ F5+FHFy), B(0) =0
(34)

ds(t) _ iy E 8(0) =s

a4t —a [“ ) [1+ A0 (® =) 1]' (0) =5,
where:

(35) B(r) = Cop + A [1 - (%)‘] ,

— D
Fi=

6S(l_‘s) - € (2—6) 9

17



Fy =4 — Coo, A(t) — o [#E®) [ 1+ B() (R — s(t)) ] (k — v,) — E}

Fy=(1+9 52— (14 9 2L AO @ — o)),

F4=(1+€)(Coo+A)(l+ﬂ(t)R)[J1€)-_%]v

Fg=—(1+¢) A(t) (C°°+A)h(;(%

re="F9 a5 R‘[ 0" ,—;z]
F,=— ARS[1+ ()R] [ Zam Rel-i-l}

A__:E,_(k""o)coo

k[lf-(%)‘]—vo.

Remark 1: The initial profile concentration ®(r) given by the Eq. (35) above has been
computed by the quasi-stationary method [6] and it is determinated by the system,

similarly to the Cushmanss prediction [4].

Remark 2: For the particular cases ¢ = 1 and 2, we can obtain a similar system to (34)

of two ordinary differential equations.

Remark 3: For the general rank of concentration C we can obtain a similar system to
(34) of two ordinary differential equations.

The solution of system (34) is computed numerically by the Runge-Kutta method
for a system of ordinary differential equations. The figures 10 and 11 represent some
results for the interface concentration C(s(t),t) vs. s and the interface position s(t) vs. t
respectively as a function of absorption power k for relatively inmobile ions for low

concentrations.
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A more detailed information can be found in Reginato and Tarzia [19]

For MOBILE IONS FOR LOW CONCENTRATIONS the balance integral method

give us a similar solution with:
(36) C(r,t) = ¥(x) [1+ n(t)(R—r)?]

which depend on the parameters of the system and satisfy the initial and boundary
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conditions 1-ii) and 1-iii), that is:

(37)

(38)

C(r,0) = &(r) < 1(0)=0,

—DbC(R,t)+v,C(R,t)=0 & —Db®'(R)+v,®(R) = 0.

Figures 12 and 13 represent some results for the interface concentration C(s(t),t) vs.

s(t) and the interface position s(t) vs. t respectively as a function of absorption power

k mobile ions for low concentrations.
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Figure 12.

Interface concentration
C(s(t).t) vs. root radius s(t)
as a function of absorption
power k through the balnnce
integral method for mobile

ions for low concentrationsl

I'igure 13.

Root radius s(t) vs. time as
a function of absorption
power k through the balance
integral method for mobile

ions for low concentrations.



A more detailed information can be found in Reginato, Tarzia and Dzioba [24]
CONCLUSIONS

I'rom the analisis of lotal results of cases presented above we conclude that for
ions relatively inmobile for low concentrations s=s(t) increases when parameter k
(Figure 3) or Coy increases; s =s(t) decreases when parameter E increases; s =s(t)
increases when parameter (k/v,) increases and, k and v, are large. s=s(t) does not
vary in function of the parameters Vo, b and D because we did not have variations in
the corresponding diagrams in a wide range of order of magnitude (1 to 10° for each).
§ =5(t) decreases when parameter v increases, because from (13) we have for §(t) the

following representation in function of the parameter =:

g SO0+

1
k 1 |’
G(s(t) -
(s(t) |‘7a2

ol

t > 0.

This conclusion agrees with the first three conclusions.

Some of the above theoretical results have been observed from an experimental point
of view (Barley, [25], Nye and Tinker, [26]).

Moreover, for ions relatively inmobile for high concentrations we conclude that no
limit conditions for root growth in opposition to the case for low concentrations exists
(for low concentrations there exist a minimun concentration above which the growth
take place, i.e., the growth stop when C(s) = E/k; instead, for high concentrations the
interface velocity 8(t) is positive for all value of C(s)). One important difference is that
there exists counterdiffusion for EE and C_, for high concentrations. Instead, for low
concentrations counterdiffusion is possible for all paramecters. Morcover, we assuine
that both mechanisms (low and high concentrations) could be found in a radical

systemn.
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From the analisis of total results given by the quasi-stationary method, we
conclude that for mobile ions for low concentrations that predicted s(t) increases rapidly
with increases in v, and R. Values for k (IFigure 7), b, D, E, and s, were without effect
because the mathematical aproximation of method is poor. For mobile ions for high
concentrations we conclude that predicted s(t) increases in v, and R. Values for b, D,
E and J,, were whithout effect or had little effect. The predicted s(t) decreases with
respecto to s,

From the analisis of result obtined by the BALANCE INTEGRAL method for ions
relatively inmobile for low concentrations we conclude that the free boundary s = s(t)
increases when absorption power k increases (Figure 11) (i.e., the dimensionless
parameter k/v, increases with v, = const.) or when the soil solution concentration C
" increases. Moreover s =3s(t) decreases when efflux E increases. Likewise, s=s(t)
decreases when the buffer power b or the diffusion coefficient D increases, although this
effect is meaningless for high values (e.g. 10) of the dimensionless parameter k/v,,.
Moreover, s = s(t) increases when the flux velocity at the root surface v, increases (i.e,
the parameter k/v, decreases with k=Const.).

The behavior of interface concentration C(s(t),t) as a function of k, v,, C,, E,
D, and b is quite similar to results obtained by the quasi-stationary method applied to
the same model.

On the other hand, for mobile ions for low concentrations the results balance
integral indicate that predicted s(t) increases rapidly with v, and R. The increase in v
represent an increase in total nutrient available for the plant, since if the remaining
parameters are held constants, increasing v, increases the convective flux to root.
Increasing R increases the rhizosphere volume and so a greater ion quantity is
available. Also, we obtain that the predicted s(t) increases moderately with J,. Values
of b and D were without effect or had little effect, whilst increasing k, E, and s; the
predicted s(t) decreases. In case of k decrease occurs because the gradient at root-soil
interfase (given by the Eq. (4)) as a function of k and C(s) decreases (the expression
g(C(s(t),t) = (1/Db) [(k-—vo)C(s(t),t)—E] takes into account the combined effects of

increase in k and the decrease of C(s(t),t) as a function of k). The decrease with sg
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occurs because, although the root surface increases as 302, the rhizosphere volume

available decreases as L(R2 —302) where L, is the length root and taking into account
that R > s, then (R? —302) > 802 . (No allowance for a change in L with time is made
because we have only considered radial growth).

From the analysis of the results obtained by the quasi-stationary method, the
interface concentration become nearly constant after a week clapsed (Figure 6), whilst
from the results obtained by the balance integral method the interface concentration is
constant throughout the period simulated (Figure 12) in agreement with the De
Willigen’s results (De Willigen [27]) on N uptake.

By comparing the results obtained by the quasi-stationary method and the
balance integral method we can conclude that: firstly, the mathematics of the quasi-
stationary method allow analytical expressions which must be satisfied by the system
parameters, such as the inequality (25) and, secondly the general qualitative behavior
of the results is similar for both methods, although the balance integral method gives
us a more detailed theoretical information with respect to dependence on system
parameters, for example, for mobile ions for low concentrations, the variation of s(t)
vs. t with respect to the parameter k is negligible for the quasi-stationary method
(Figure 7) whilst the balance integral method gives us a apreciable change (Figure 13).

In conclusion, this paper represents a qualitative approach for the effects on root
growth due to absorption of only one mobile nutrient or only one relatively inmobile
ion. Moreover, these models are useful as a basis for developing more complex models
for transport of nutrients and their effect on root growth, as for example, these same
models taking into account the root lengh (the effects of some parameters could be
change) and simultaneous absorption of one or more inmobile and mobile ions. Finally,
these conclusions can be perfectible taking into account the dependence of v, with the
nutrient concentration C_, and the water content #. Thus, this method can to provide
a very useful qualitative criterion for the crops technology through the adequate choice
seed (k), a precise soil management and irrigation (v,) as soon as fertilization (Cg)
between some parameters of system soil-plant (A more detailed information of effects

of parameters on uptake nutrient and root growth can be found in Barber [28].
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NOMENCLATURE
I: Position (radius) coordinate [cm ]
t: Time | [Sec
It Rate of influx at infinite concentration M‘i]
| Sec-Cm
K- Michaelis Menten constant Mo; ]
| Cm
k: Absorption power of root _ Cgm ]
A Flux velocity of soil solution at root surface C§m ]
’ 3
D: Effective diffusion coefficient %I::—
C: Total diffusible ion concentration Mo;
Cm" |
Cl: Ion concentration in soil solution Mol
_Cm3 i
C(s(t),t): Ion concentration in soil solution at root-soil interface] MQ—%
| Cm
®(r): Initial soil solution concentration profile —M-Q—%
| Cm

25



o Initial radius [Cm]

E: Constant efflux [—M(’l—i]

Sec-Cm
s(t): Instantencous root radius [Cm ]
8(t): Rate of radial root growth [ % ]
L: Root lenght [ cm]
R: Rhizosphere radius [Cm]
b: Buffer power Dimensionless
a: Stoichiometric coefficient Dimensionless
€ Parameter Dimensionless

[ 1
ay Parameter _C—m]

[ Mol |
a Parameter

2 _Cm4q

a(t) Coefficient M_og

| Cm”
A(t) Coefficient M°fo)

| Cm®” |

. 1

n(t) Coefhicient

{Cm2_
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