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ON THE FREE BOUNDARY PROBLEM FOR THE MICHAELIS-MENTEN
ABSORPTION MODEL FOR ROOT GROWTH. II. HIGH CONCENTRATIONS

J. C. REGINATO,' D. A. TARZIA;? anp A. CANTERO?

Root growth is studied, and a growth
absorption model for high concentrations
is proposed, i.e., the free boundary Mi-
chaelis-Menten model. Nutrient availabil-
ity and transport between the root surface
and the rhizosphere are studied through
the Michaelis-Menten type absorption for
high concentrations. The resultant equa-
tions of the present free boundary problem
are used to compute the growth of root
radius. Graphics of interface concentra-
tions versus interface position and inter-
face root-soil position versus time are
shown as a function of parameters such as
the flux velocity, constant efflux, rhizos-
phere soil solution concentration, diffusion
coefficient, and buffer power.

In the literature there exists a great variety of
mechods for modeling the plant-root system.
One of these methods is the one that makes use
of the theory of the partial differential equation
for convective and diffusive flow to a root. In
general, these models have not computed root
growth analytically (Classen and Barber 1966,
Nye and Marriot 1969, and Cushman 1980,
1982), but we have considered the mathematical
problem of free boundary for root growth for low
concentrations (Reginato, Tarzia, and Cantero
1990) in a recent paper, to which the present
paper is a second part of the model for root
growth for high concentrations that we propose;
we compute the root-soil interface position and
the interface concentration through the quasi-
stationary method (Lame and Clayperon 1831,
Stefan 1889, Carslaw and Jaeger 1959, and
Crank 1984).
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ANALYSIS

In the present high concentrations (not saline
conditions) model we make analogous assump-
tions to the model for low concentrations (Re-
ginato, Tarzia, and Cantero 1990), i.e:

The porous medium is homogeneous and
isotropic,

Moisture conditions are maintained at a
steady state,

Nutrient uptake occurs at the root surface
of the absorption zone,

The roots are smooth cylinders,

The rate of uptake can be described by a
‘Michaelis-Menten type equation,

The nutrient transport occurs via convec-
tion and diffusion in the radial direction
only (the latter takes place in soil solution
phase only),

The rate of influx at infinite concentration
(J..) and the Michaelis-Menten constant
(K,,) are independent of the velocity of soil
water at the root (uv,), and the diffusion
coefficient (D) is independent of the flux,
D and the buffer power (b = dC/dC, where
C is the total diffusible ion and C, is the ion
concentration in soil solution) are inde-
pendent of concentration,

The root system parameters are not
changed by root age (the absorption power
k = J./K, = constant),

The velocity of water is not affected by
nutrient concentration,

Production or depletion of nutrient by mi-
crobial or other activity is considered null,
All parameters D, b, k are independent of
temperature, in the temperature range nor-
mally encountered in root growth,

The net uptake of nutrient is totally avail-
able for root growth, and root hairs do not
affect the uptake nutrient.

With the above assumptions, the partial dif-
ferential equation for mass and diffusive trans-
port of nutrient to the root (Cushman 1980,
1892) is given (in cylindrical coordinates) by:

UOSO

DC,, + [D + T] —=0C, (1)
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where

C, is the ion concentration in soil solu-
tion, C,, = 3C,/ar ,C,1,, = 3*C,/ar?, Cy,
= 9C,/dt, r is the position coordinate, ¢t
the time, and s, the initial radius.

Using an analogous method to that used for
root growth for low concentrations (Reginato,
Tarzia, and Cantero 1990), we propose the fol-
lowing free boundary problem for root growth:

i) DC,, + Da,C,/r = C,,,
s(t)<r<R,0<t=T,
ii) Ci(r, 0) = &(r),
Se<r=<R,
iii) Ci(R, t) =C. >0,
0<t=T, (2)
iv) DbC, (s(t), t) + v,Ci(s(t), t)
=dJ, — E=aC(s(t), s(t),
v)s(0) = s,,
0<s,<R,
where 1) is the Cushman equation; ii) is the
initial concentration profile; iii) is the
boundary condition on the rhizosphere
radius R; iv) are the interface conditions
representing the mass nutrient balance
with the assumption of high concen-
tration for the uptake nutrient given
by Michaelis-Menten expression (3),
RC,(s(t), t)/1 + RCi(s(t), t)/Jm ~ Jpn,
and v) is the initial condition for the free
boundary s(t) or root radius, a is a stoi-
chiometric coefficient, E > 0 is a constant
efflux, and a, = 1 + ¢, with ¢ = v,s,/Db
> 0. ®(r) is the initial concentration
profile (given by Eq. (14) below).

A method to solve Eq. (2) (that is, to compute
C,=0Ci(r,t), C,=C,(s(t), t), the free boundary
interface r = s(t) a priori unknown, and the
time T for which a solution exists, i.e., the time
for which the influx is null) is the quasi-station-
ary method (Lame and Clayperon 1831, Stefan
1889, Carslaw and Jaeger 1959, and Crank
1984). This method assumes that the soil solu-
tion concentration is that corresponding to the
stationary case in the interval (s(t), R). We thus
solve the equation:

Clﬁ+ao%‘=0,

s()<r<R,0<t=T, (4)

with the conditions (2-ii, iii, iv, v), which are

called the quasi-stationary method for high con-
centrations (QSMHC).

The two free boundary conditions (2-iv) can
be written by:

Ci (s(t),t) = g(Cy(s(t), t),
s(t) = f(Ci(s(t), t),
where functions g and f are given by:

Jm - E - UOCI
Db

O0<t=T, (5
0<t=T, (6)

g(C,) = (7)

and
J. — FE
aC,

f(C) = (8)

which satisfy the following properties:

g(Cl)>0¢>O<Cl<CIM=JmU_E, (9)

f(C,) >0,V C, >0, (10)

and v, satisfies the following inequality:

Jn — E

Co '’
where v, represents the higher velocity below
which we have a positive function g.

The solution of the QSMHC problem is given
by (see Appendix A):

Uo < Uerit =

Citr, t) = git) = 28

sity<r<R,0<t < T, (11)
where
_ R(,[Jm - E/Uo — C“’]
olt) = 1 — [(R/s(t)(1 — s,/s(t))]’ (12
)
B(t) = Cu + 7, (13)

w=cos[= 22 e (9] a
Vo r

and s(t) is the unique solution of the following
Cauchy problem (see Appendix B):

s(t) = F(s(¢)),
s(0) = s, € (0, R),

0<t=T, (15)
(16)

with

Jn—E| 1
F(s)—'l: a }CI(S)’
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1'_[<§)<1"%>] (17)
[o-gfo<esr

After some elementary manipulations, we find
that the interface concentration is given by the
following expression:

Ci(s(t), t) = Ci(s(2)), (18)

that is, the interface concentration does not
depend explicitly on variable ¢.

Moreover, it can be demonstrated that (see
Appendix C):

Case A. With the hypothesis s, < s, and K, =
Jn— E/v,— Ce > 0:

s(t) >0 Ci(s) >0V s

1
o — > 0,
e C K e SO/R 1+ 6)<1+e/e) — € 0
where
_BR___ R
TR a+ o

Case B. With the hypothesis s, > s, and
K,>0:

Ci(s) >0V s€E (s, R) &

Co — K{(?) - 1] > 0; and

Case C. With the hypothesis K, < 0:
Ci(s) 2Ca>0,Vs.

By analogy, we arrive at similar propositions
for low concentrations (Reginato, Tarzia, and
Cantero 1990). These are given by (see Appendix
D):

1 1+a2R
—_ D —————

> 5(¢) > 0.
[0 &} 1 + alR = S(t)

The solution of the Cauchy problem (Ince
1956, and Kreider, Kuller, and Ostberg 1968) is
computed numerically by the Runge-Kutta
method for ordinary differential equations
(Conte and Boor 1972). Figures 1a, 1b, 1c, 1d,
le, 1f, 2a, 2b, and 2c represent the theoretical
results for the interface concentration C, (s) ver-
sus the root radius s and the root radius s(¢)

versus the time ¢, respectively. The values of
parameters used are given for each of them.

From the results of Figs. 1a, 1d, le, and 1f, we
deduce that for all values of parameters v,, J,,
D, and b, no counterdiffusion is produced in the
interface root-soil in a wide range of order of
magnitude (1 to 10° for each). From Fig. 1b we
deduce that the counterdiffusion is meaningless
as a function of the parameter C... On the other
hand, from Fig. 1c for large values of E, there
exists counterdiffusion, and root growth is low.

From Figs. 2a, 2b, and 2c it follows that if the
nutrient concentration C., the diffusion coeffi-
cient D, or the constant efflux E increases, then
growth is lower, owing to the fact that the effect
of these parameters is to increase the soil solu-
tion concentration at root-soil interface s(¢)
and, as a consequence, that the interface velocity
$(t) is proportional to 1/C,(s(t)) growth de-
creases. Root growth does not vary significantly
as a function of the remaining parameters. From
the comparison between the present model for
root growth for high concentrations and the
corresponding model for low concentrations
(Reginato, Tarzia, and Cantero 1990), we find
that the absorption for low concentrations is
more efficient than the mechanism for high
concentrations owing to the range of values for
C,(s) and s(t) in each case. This result is valid
in the concentration range for the highly specific
mechanisms I (Epstein, Rains, and Elzam and -
Epstein 1963 1972), although total growth can
be higher when both mechanisms [ and II (not
specific) operate in parallel (Welch and Epstein
1968, 1969).

CONCLUSIONS

In the present model no limit conditions for
root growth in opposition to the case for low
concentrations exists. For low concentrations
there exists a minimum concentration above
which the growth takes place, i.e., the growth
stops when C,(s) = E/k; instead, for high con-
centrations the interface velocity s(¢) is positive
for all value of C,(s).

One important difference is that there ex-
ists counterdiffusion for E and C. for high con-
centrations. Instead, for low concentrations
counterdiffusion is possible for all parameters.

We can remark that the model presented
gives us a qualitative approach to root growth
under the action of a unique nutrient. This
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FiG. la. Interface concen-
tration C(s) versus the root
radius s as a function of flux
velocity v,.

Fic. 1b. Interface concen-
tration C(s) versus root radius
s e3 a function of the rhizo-
sphere solution concentration

Co.

Fic. lc. Interface concen-
tration C(s) versus root radius
s as a function of the efflux E.
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FiGc. 1d. Interface concen-
tration C(s) the root radius s
as a function of the maximum
influx J.

F1c. le. Interface concen-
tration C(s) versus root radius
s as a function of diffusion
coefficient D.

Fi1c. 1f. Intercase concen-
tration C(s) root radius s as a
function of the buffer power b.
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FiGc. 2a. Root radius s(¢)
Alrsus ¢ as a function of rhizo-
sphere soil solution concentra-
tion C.,.

Fic. 2b. Root radius s(t)
versus ¢ as a function of efflux
E.

Fic. 2c. Root radius s(¢)
versus ¢t as a function of dif-
fusion coefficient .
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model is valid for ions that are relatively im-
mobile, e.g., potassium, phosphorus.

Moreover, we assume that both mechanims
(low and high concentrations) could be found in
a radical system.

Finally, these conclusions may be perfecti-
ble, taking into account the dependence of v, on
the nutrient concentration C. and the water
content 6. The same conclusions are useful to
outline and to understand qualitatively complex
nutrient transport and growth problems.

APPENDIX

Part A

The general solution of the second order or-

dinary differential Eq. (4) is given by:
Ci(r) =8~ (A1)
where a and 8 are arbitrary constants.

Because Eq. (4) should be solved in the vari-
able interval r € (s(t), R), the coefficients « and
8 must depend on the time ¢, that is, Eqs. (12)
and (13). After some elementary manipulations

we deduce that «(t), 3(t), and s(t) are given by
Egs. (12), (13), and (15), respectively.

Part B
From Eq. (16) we obtain that (F'(s) = dF/
ds, with

K1 J _E

F(S)=C—l(s—),K1 =——:1—>O
and
e Ko [ LK)
Cl(s)—-—C,,-Fl_ Wx(S)l:l s(:'—C,,-*—K«ZZ(s),
K2=Jm—E_Cm’K3=Rc>O’

(7}

W1(8)=%[1—%J20,30535R,

_ 1 "'K;;/S‘
Z(s) “1-W.(s) W.(5) ,So<s<R.
Therefore, we obtain:
Ci(s)
F'(s) = K [— ]
L (Cs)®
K,\K,Z'(s)

T T Ca ¥ K (Z)P (B1)

Taking £ = § , we obtain:

o __KKY'® R
) = e TR Y s

- Kle ﬁ)_
[Ca+ K, Y(§))s?

- £ S T(),
[e‘(l —SOE/R) - 1:!
where Y (£) is given by:
1-¢

Y(¢) =
1- E'(l - S;B

(B2)

0

),1<£<E,e>0

and verifies the following properties:
Y(1*) =0~ and Y(+x) =0".
Function T'(§) is given by:
CT@ = l-e
T(¢) verifies the following properties:

T(l) = —e <0, T(+x) = 4,

{831
So So

T'(()=¢&7'>0
and the equivalance:

T() =0t =1+ ¢

¢

=ft=(1+ f)”‘<= £ = g) (B3)

Therefore, F’(s) is a bounded function.

Part C.
Case A: s, <s,and K, > 0:

Ci(s)=Ca+ Ky Z(5)2Cu+2Z(s,)

1
So/ R(1+ €)1+ —¢”

=Cm_K2€ (C]_)

Case B: s, > s, and K, > 0:

Z(s)=2(s,) =1 — <£) = —[(§> - 1},
So So
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then
C, (s)

=Cuo + K;Z(s) 2 Cs — K{(;) - 1}. (C2)

Part D.

REGINATO, TARZIA, AND CANTERO

The function H,(s) verifies the following prop-

erties:

R

a

Remember that:

5(t) = f (1 = asH(s(t)], Ca(s) =

Hi(s) = —agH'(s)

C-
H(s)

1>H1(0+)=1—a3>0
1>H1(R_)=1—a3>0

J<O<=>O<3<RO
=0es=R,
104:»R0<3<R

and H(s) the equivalence:

where
' k — v, H’(s)=0=>s=R=——Ri-———<R
0< oy = < oy = 1+ eV )
050Ce UoSo
E Finally, s(t) > 0 if H,(R,) > 0, that is:
a3 = k C <1 1 1
- Hi(R)>0e—> H(R,) =122, (D2)
¢ 3
His) = Lh @bl ooy 3[1 - (3) } o
1+ a;G(s) R where
Defining: _ R
Hi(s) = 1 — azH(s). (D1) HTA+ e
NOMENCLATURE AND UNITS
r: Position (radius) coordinate [cm]
t: Time [sec]
o Rate of influx at infinite concentration [mol/sec - cm?]
K,.: Michaels-Menten constant [mol/cm?)
k: Absorption power of root [cm/sec]
Uo: Velocity of flux solution at root surface [cm/sec]
D: Effective diffusion coefficient [cm?/sec]
C: Total diffusible ion concentration [mol/cm?)
Ci: Soil solution concentration [mol/cm?]
Ci(s(t), t): Soil solution concentration at root-soil interface (mol/cm?®]
&(r): Initial concentration profile [mol/cm?]
Co: Constant rhizosphere solution concentration [mol/cm?®)
Sot Initial radius [cm]
E: Constant efflux [mol/sec - cm?]
s(t): Instantaneous root radius [cm]
s(t): Instantaneous velocity of root-soil interface [cm/sec]
R: Rhizosphere radius [cm]
b: Buffer power Dimensionless
a: Stoichiometric coefficient [1/cm]
ay, o [1/cm]
O,y €, 03, Y Dimensionless
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