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ON THE FREE BOUNDARY PROBLEM FOR THE MICHAELIS-MENTEN
ABSORPTION MODEL FOR ROOT GROWTH

J. C. REGINATO,! D. A. TARZIA;? aANpD A. CANTERO?

We have studied the plant root surface
as an absorption mechanism and plant root
growth, and a growth absorption model is
proposed, i.e., the free boundary Michae-
lis-Menten model.

Differences in nutrient availability and
transport between the root surface and the
rhizosphere were studied through the
mechanism of absorption which manifests
itself in the limit expression of Michaelis-
Menten kinetics for low concentrations.
We solved the resultant equations analyti-
cally by the quasi-stationary method with
two interface boundary conditions and
with boundary and initial conditions. The
solution is used to compute growth of root
radius.

Several examples of concentration dis-
tribution curves in soil and root-soil inter-
face as a function of root radius are plotted.
The parameters that are varied are root
absorption power, flux velocity, transpir-
ation rate, rhizosphere soil-solution con-
centration, diffusion coefficient, and
buffer power.

Many methods exist for studying the mecha-
nism involved in nutrient uptake. One of the
most promising methods is the mathematical
model, which can be a satisfactory method of
modeling the plant-root system by use of the
partial differential equation for convective and
diffusive flow to a root (Caasen and Barber 1966;
Nye and Marriot 1969; Cushmann 1979, 1980,
1982). In general, these models have not consid-
ered computing root growth, but rather they
have assumed young roots to be growing at
exponential rates (Caasen and Barber 1966;
Cushmann 1980, 1982).
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In the past, various devices and models have
been proposed and analyzed with the purpose of
interpreting the growing process as a free bound-
ary problem for the heat-diffusion equation
(Lame and Clayperon 1831; Stefan 1889; Cars-
law aiid Jaeger 1359; Crank 1975; Tarzia 1988).

In this article we compute the free boundary
(the root-soil interface) a priori unknown
through the quasi-stationary method (Stefan
1889; Carslaw and Jaeger 1959). We obtain an
analytical solution for the nutrient interface
concentration and the interface position (the
free boundary).

ANALYSIS (THE FREE BOUNDARY MODEL)

Before developing the present model for the
nutrient flow to a root, we make several assump-
tions, which are the following:

The porous medium is homogeneous and
isotropic,

Moisture conditions are maintained at a
steady state,

Nutrient uptake occurs at the root surface
of the absorption zone,

The roots are smooth cylinders,

The rate of uptake can be described by a
Michaelis-Menten type equation,

The nutrient transport occurs via convec-
tion and diffusion in the radial direction
only (the latter takes place in soil-solution
phase oniy),

The rate of influx at infinite concentration
(Jm) and the Michaelis Menten constant
(K.) are independent of the velocity of soil
water at the root (v,), and the diffusion
coefficient (D) is independent of the flux,
D and the buffer power b (b = dC/dC, where
C is the total diffusible ion and C, is the ion
concentration in soil solution) are inde-
pendent of concentration,

The root system parameters are not
changed by root age (k = Jn/Kn = con-
stant),

The velocity of water is not affected by
nutrient concentration,

Production or depletion of nutrient by mi-
crobial or other activity is null,
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All parameters D, b, k are independent of

temperature, in the temperature range nor-

mally encountered in root growth,

The net uptake of nutrient is totally avail-

able for growth, and

Root hairs do not affect nutrient uptake.

With the above assumptions, the partial dif-

ferential equation for mass and diffusive trans-
port of nutrient to the root (Cushmann 1979,
1980) is given (in cylindrical coordinates) by

bjr
where
C =C, is the ion concentration in soil solution,
aC #C
Cr‘— ar;Crr_ 61'2’
aC . .
C. =5 T the position coordinate, t = the

time, D = the effective diffusion coefficient,
vo = the velocity of flux solution at the root
surface, b = the buffer power, and s, = the
initial radius.

Taking into account the idea of the model
used for the shrinking core problem for non-
catalytic gas-solid reactions (Wen 1968; Tarzia
and Villa 1990), we propose the following free
boundary problem for root growth (an extensive
bibliography for moving and free boundary prob-
lems for the heat-diffusion equation is given in
Tarzia (1988))*

l) DC" + DC!() 9 = C'_

- s(t) <r<R, t>0,
1) C(R, 0) = &(r), ss<r=<R
iii) C(R, t) = C. > 0, t>0,

(2)
iv) DbC,(s(t), t) + vo,C(s(t), t) =

kC(s(t), t) _ .
kC(s(t), t) E = aC(s(t), t)s(t)
1+ -T—
v) s(0) = s,, 0<so,<R

where i) is the Cushmann equation (Cushmann
1979; 1980), ii) and iii) are the initial and bound-
ary conditions, respectively, iv) are the interface
conditions representing the mass nutrient bal-
ance, and v) is the initial radius. Function s(t)
is the interface position (root radius), $(t) =
ds(t)
dt
coefficient, E is a constant efflux, k is the ab-

the interface velocity, a is a stoichiometric

*See NOMENCLATURE AND UNITS section at
end of this article.
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sorption power of root, R is the rhizosphere
radius, and ap =1 + ¢, € = ‘—8—29 > 0. ®(r) is the
initial concentration profile (given by equation
(14) below).

A schematic diagram of free boundary prob-
lem is given in Fig. 1.

We notice that conditions (2-iv) transform
the initial problem of solving the linear Cush-
mann equation into a problem which is nonlin-
ear.

Assuming low concentrations, the uptake nu-
trient given by Michaelis-Menten expression re-
duces to

kC(s(t), t)
kC(s(t), t)
+ -—-——-—Jm

~ kC(s(t), t) (3)
1

Thus (2) reduces to the following free boundary
problem

i) DC,,+DaO%=Ct, s(t)y<r<R, t>0,
ii) C(r, 0) = ®(r),” so<r=<R,
iii) C(R, t) = C., t>0 (2-LC)

iv) DBC,(s(t), t) + voC(s(t), t) =
kC(s(t), t) — E = aC(s(t), t)s(t)
v) s(0) = s,, 0<so<R.

A method to solve (2-L.C) (i.e., compute C =
C(r,t), C = C(s(t), t), the free boundary interface
r = s(t) a priori unknown) is the quasi-stationary
method (Stefan 1889; Carslaw and Jaeger 1959;
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Tarzia 1984). This method assumes that the soil
solution concentration is that corresponding to
the stationary case in the interval (s(t), R). We
thus solve the equation
C.

C,,+ao—r—=0, st) <r<R, t>0 (4)
with the conditions (2-LC:li, iii, iv, v) which are
called the quasi-stationary method for low con-
centrations (QSMLC).

The two free boundary conditions (2-LC:iv)
can be written by

C:(s(t), t) = g(C(s(t), t)),
8(t) = £(C(s(t), t)),

where functions g and f are given by

t>0 (5)
t>0 (6)

B0 = [(k-v)C—-E ()
1 E
f(C) = a [k - 6] (8)
which satisfy the properties

f(C)>0=>C>Cp=% (9)
C)>0eC>C, = E (10)

B0 >0=C>Cn =0V

(Ca>Cy)

The solution of the QSMLC problem is given by
(see Appendix, Part A)

a(t)

Clr, t) = B(t) ==, 8(t) <r <R, (11)
t>0
where
1 [(k —vo)Co — E]
=|= 12
*® [Db] e (k—vO)[ 1 _L] .
s™ Db |5(t) R
o oot
B(H) = Cat- T (13)
(r) = C, — — &= V) Ca = E] (14)

EHk_VO)[i_L]

Sol S()¢ R!

1-3]

and s(t) is the unique solution of the following
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Cauchy problem (see Appendix, Part B)

5(t) = F(s(t), t>0 (15)
s(0) = s, € (0, R)
with
k
F(s) = 3 [1 — a3H(s)] (16)
1+ a,G(s)]
HE) = T Ge
. (17)
o=+ [1- 3]
oy, = Vosocm > 0)
ap =TTV (18)
VoSo
E C
ag = k—Q. = a >0

Therefore, we obtain, after some elementary
manipulations, the interface concentration
given by the following expression

Cun
Hi) (=C(s(t)),t >0

C(s(t), t) = (19)

that is, the interface concentration does not
depend explicitly on variable t.

The solution of the Cauchy problem is com-
puted numerically by the Runge-Kutta method
for ordinary differential equations. Figs. 2a, 2b,
2c, 2d, 2e, 2f, and 3a, 3b, 3c, and 3d represent
results for the interface concentration C(s(t), t)
versus s and the interface position s(t) versus t,
respectively, as a function of the dimensionless
parameter k/vo.

From the results of Figs. 2a, 2b, 2c, and 2d we
deduce that, if the parameter k/v, is small (e.g.,
1.5 or 2), accumulation of nutrient is produced
in the interface root-soil, there is counterdiffu-
sion, and the root growth is slow. On the other
hand, for large values of k/v, (e.g., 10), the root
growth is fast, and the counterdiffusion is null.
The limit value of k/v, which produces the coun-
terdiffusion effect depends on the remaining
parameters.

From the results of Fig. 2e it follows that if
the nutrient concentration C. increases or k/vo
is large, then the counterdiffusion is null and
the growth is faster. On the other hand, as shown
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in Fig. 2f, if E decreases or k/v, is large, then
the counterdiffusion is null, and the root growth
is faster.

Some of the above theoretical results have
been observed from an experimental point of

view (Barley 1970; Nye and Tinker 1977). Let v
be the parameter defined by

E

YTk - vo)Ca

&,
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surface.

We can prove that, if (see Appendix, Part C)

E

—_ <1
& — vo)Ca

) v=
implies that C(s(t), t) has a minimum value

because the absorption power k is large with
respect to v, and there is no counterdiffusion.

ii1) ‘y_(k—vo)Cm——l
implies that C(s(t), t) is constant. (20)
ii1) = —E——— >1
Y7 & = vo)Ca

implies that C(s(t), t) has a maximum value
because k is small and the root cannot absorb
all the arriving nutrient and there is a counter-
diffusion effect.

These results agree with Cushmann’s conclu-
sions (Cushmann 1979).

CONCLUSIONS

We conclude from the model presented above
that

s = s(t) increases when parameter k or C.
increases (Figs. 3a and b).

s = s(t) decreases when parameter E in-
creases (Fig. 3c).

s = s(t) increases when parameter (k/v,)
increases and k and v, are large (Fig. 3d).

s = s(t) does not vary in function of the
parameters v,, b, and D because we did not
have variations in the corresponding dia-
grams in a wide range of order of magnitude
(1 to 10° for each).

§ = §(t) decreases when parameter v in-
creases, because from (15) through (18) we
have for §(t) the following representation in
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function of the parameter v

1
l_(_ (k = vo) G(s(t) + ;‘2'
a

1- ,
K Gy + L
Yas
t>0

This conclusion agrees with the first three
conclusions.

Finally, we remark that the model presented
in this paper gives us a qualitative approach
(through a mathematical model) to root growth
under the action of only one nutrient with nat-
ural limitations in the real situation. Moreover,
these conclusions are useful for calibrating nu-
merical models of the more complex nutrient
transport and growth problems, or they may be
used to isolate the effects of the various param-
eters in the present model.

s =

APPENDIX
Part A

The general solution of the second order or-
dinary differential ‘equation (4) is given by

=8~ (A1)
where « and 3 are arbitrary constants.

Because the partial differential equation (4)
should be solved in the variable interval r €
(s(t), R), the coefficients « and 8 must depend
on the time t, that is (12) and (13). After some
elementary manipulations we deduce that «(t),
B(t), and s(t) are given by (12), (13), and (15),
respectively.

Part B
) dF
From (16) we obtain that F’(s) = I
F/(s) = — 222 H()
a
_ ke _ o
=- w-e g e B
that is
ka3
|F'(s)| = T fars — a; { Max(1, ¢) (B2)
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because
G%)—l—u+>FI
s) = NR|
G'0)=1, G(R)=—
© (R) =~ g3
G%g=—“§fﬂyﬂ<a

|G’ (s) | = Max(1, ¢)

From (B2), F’ is a bounded function and there-
fore the Cauchy problem (15) has a unique so-
lution.

Part C

From (17) and (19) [C_(s) = Hi(:—)} we obtain

that (Case «a;, # a3)

. _ _C.H'(s)
Cts) [H(s)]?

(C1)

_ _ _Colar = a1)G'(s)
[1 + a,G(s)JF[H(s))
and
C'(s) =0 G'(s) =
R (C2)

0 = s=Ry = ——
0 [1 + ¢
From (C2) we notice that the interface concen-
tration has an extreme value at s = R,.

After some elementary manipulations we ob-
tain

Calay — ay)e[l + €]

C"(Ro) = 11 + wG(RH(RIT’
_ ___E (C3)
= dag [1 (k _ vo)CmJ
= daz(l - ’Y),
where
d Cae[l + €)' >0 (Cd4)

" R[(1 + ««G(Ro))H(Ro)]?

and then we conclude (20).
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Vo

C[:

C(s(t), t):

&(r):

C.:

s(t):

s(t):

ay, Q2

C!o, €, g, ‘Y
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NOMENCLATURE AND UNITS

Position (radius) coordinate
Time

Rate of influx at infinite concentration

Michaelis Menten constant

Absorption power of root

Velocity of flux solution at the root surface

Effective diffusion coefficient

Total diffusable ion concentration

Soil solution concentration

Soil solution concentration at root-soil interface

Initial concentration profile

Constant rhizosphere soil solution concentration

Initial radius

Constant efflux

Instantaneous radius of root

Instantaneous velocity of root-soil interface

Rhizosphere radius
Buffer power

Stoichiometric coefficient

(cm]

[sec]

_
mol
| sec-cm?

[mol-
cm?® |
[cm]

[ mol J
sec-cm?
[cm]
=
sec
[cm]

Dimensionless

Dimensionless

=

Dimensionless
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