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The uptake of a single nutrient for root of crops is studied through a moving boundary
model, which differ of previous models that solve the problem in fixed domains. The
equations of the model are solved through the Integral Balance method. Theoretical and
experimental results are compared for the potassium uptake for three hybrids of maize
(Dekalb 762, Tilkara Funks and Capitán Ciba). The model has been also tested with
experimental data extracted of the literature in order to compute and compare the
nutrient uptake of various nutrients in different crops and soils. It is obtained a better
prediction with respect to only one nutrient though of the same way that for previous
models some deviations persists in certain cases.

Analysis

The nutrient uptake has been evaluated through models that solve differential equations
of transport in soils (diffusive and mass flows) coupled with absorption kinetics. These
equations are solved on fixed domains (Cushman, 1979, Barber et al., 1984) through
which the nutrient concentration at root-soil interface and the resulting nutrient uptake
are estimated. Moreover, the formulation of free boundary problems allows to postulate
a model of nutrient uptake due to the transport and absorption of ions from a dynamic
point of view  (Reginato et al, 1990, 1991, 1993a). The goal of the present work is to
evaluate a moving boundary model (root growth known a priori) for the nutrient uptake.
A one-dimensional model is considered, i.e., a single cylindrical root in the soil where
all the nutrients arriving at the root surface are assumed to be used for root growth. It is
also assumed that the conditions of moisture, light and temperature are controlled (like
in a growth chamber), i.e. the model coefficients are constant.
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With these assumptions, the following one-dimensional root growth model through a
moving boundary problem to one phase (the soil) (Crank, 1984; Tarzia, 1988) in
cylindrical coordinates is proposed:
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axis [cm], t is the time [sec]; T is the maximum time for which the system has solution
[sec]; Cu is the minimum concentration under which growth is stopped [mol/cm3]; vO is
the mean effective velocity of soil solution on root surface [cm/sec]; b is the buffer
power, D is the diffusion coefficient, ka (= Jm / Km) is the root absorption power of
nutrient [cm/sec]; R is the half distance between roots, [cm], ϕϕ is the initial
concentration profile [mol/cm3]; a is the stequiometric coefficient [dimensionless],  s(t)

is the root radius as a function of the time t, 
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 is the radial root growth rate,

k is the root rate constant [1/sec] , and  so is the root initial radius [cm]. The parameter

εεo is given by 
Db

sv oo
o ==εε .  Equation (1-a) represents the ion transport equation in soil.

Equation (1-b) is the initial concentration profile and Equation (1-c) is the boundary
condition representing null flux (can input water but not nutrients). Equations (1-d)
represent the mass balance at the root surface where the ions arriving are incorporated
through absorption kinetic. Equation (1-e) gives us the moving boundary s (t) (the root
radius) which is known a priori. The expression (1-e) is obtained assuming fixed
volume of soil and relating the root radius with the root length (which is a especial
function according to the method for to estimate the longitudinal root growth l(t), i.e.,
linear, exponential, sigmoid, etc.) through the following expression (See Appendix A.):
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The model is solved applying the integral balance method (Reginato et al., 1993b,
1997a). So, the partial differential equation (1-a) is integrated in variable r on the
domain (s (t), s (t)+R-so) and the following expression for C(r, t) is proposed:
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which verify the initial (1-b) by taking 0)0( ==ββ and boundary (1-c) conditions. So, after

some elementary but tedious manipulations, the following differential equation for ββ(t)
was obtained:
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The system (5) is solved through the Runge-Kutta method for ordinary differential
equations.
The uptake nutrient can be obtained from the following formula (See Reginato, Tarzia,
1997b), which is a modified version of the Cushman´ formula (Cushman, 1979; Claasen
and Barber. 1976).
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where ka [C (s (t), t)-Cu]/(1+ ka[C (s (t), t)-Cu]/Jm) is the influx and )t(l
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 the
longitudinal root rate growth.

Materials and Methods

Three hybrids of maize (Dekalb 762, Capitán Ciba y Tilkara Funks) grown in pots with
1.6 kg. of soil Typic Hapludoll of Río IV, Córdoba, Argentina during 11 days in growth
chamber to 26 o C. At emergence (5 DAG) plants were harvested to determine initial
potassium and root length. Later, plants were harvested 11 DAG, dried at 70 °C to
determine potassium uptake through acid digestion (Jackson, 1964) and flame
photometry.
 In order to predict the potassium uptake it has made measurements of parameters that
are used as data input to the present model. Soil parameters: Values of CR (initial soil
solution concentration of potassium) were obtained by analyzing aliquots of displaced
solution from soil columns equilibrated at field capacity for 24 h. (Adams, 1974) The
buffer power b and the diffusion coefficient D were determined as described by Kovar
and Barber (1990). Root parameters: The flux velocity vo  was determined by dividing
the total water uptake of the plant, which was obtained by subtracting the water loss due
to evaporation from the total water loss due to evapotranspiration each pot within given
time, by the mean root surface area within given time: vo = W(ln S-ln So)/(t - to)(S - So).
The root rate constant, k, was calculated from root length as a function of time by: k =
(ln l (t) - lo)/(t-to) assumed an exponential growth; the root radius so was calculated from
the length and fresh weight of by:  so = [Weight Fresh / 1. Root length] 1/2; the half
distance between roots, R, was calculated by: R =  [Soil Volume / 1. Root Length] 1/2.
Root length, l, was measured by a line-intersect method (Tennant, 1975). Kinetics
parameters: Jm, Km, Cu y ka are determined by analysis of potassium depletion curves in
nutritive solution of which absorb nutrients the roots (Claassen y Barber, 1974).

Results and Discussion
The results obtained for the potassium uptake for the three mentioned hybrids are shown
in the Table I.
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Hybrids Predicted Uptake
(mmol)

Observed Uptake
(mmol)

DEKALB 762
TILKARA FUNKS
CAPITAN CIBA

0.2023
0.2729
0.2235

0.1685
0.293
0.304

Table I. Potassium uptake for three hybrids of maize

Moreover, the model is tested with experimental data extracted of the literature. Thus, is
estimated the uptake of Mg, K y P for loblolly pine seedlings during 180 days in a
modified horizon A soil mesic Typical Hapludult (Kelly, Barber, Edwards, 1992). The
comparison between the Barber-Cushman prediction and the estimation of the present
model by using a linear root growth is shown in Table II.

Nutrient Observed
Uptake
(µmol)

Predicted Uptake.
(Kelly-Barber)

(µmol)

Predicted Uptake
(Reginato-Tarzia)

(µmol)

Mg
K
P

1617
6663
1332

625
6285
1185

Er. (%)
61.3
5.6
11

680
6653
1302

Er. (%)
57.1(*)
0.15(*)
2.25(*)

Table II. Mg, K y P uptake for pine seedlings. The data with asterisk
showed a better prediction

The model is also tested with data corresponding the NO3 uptake for wheat, rice and
rape during 3 to 20 days in soils Paddy (derived from lacustrine deposits), Red
(developed from Quaternary red clay) and Fluvo-aquic (developed on the alluvial
deposits of the Huanghe River) (Xuan  Jia-Xiang, Zhang Li-Gan y Zhu Wei-Min, 1991).
The predicted uptakes using an exponential root growth are shown in the Table III.

Nutrient
NO3 (N)

Observed
Uptake
(µmol)

Predicted Uptake
Xiang, Li-gan, Wei-

min (µmol)

Predicted Uptake
Reginato-Tarzia

(µmol)

Wheat (Red)
Wheat (Paddy)
Wheat (Fluvo)

Rice (Red)
Rice (paddy)
Rape (Red)

Rape (Fluvo)

189
1263
2205
514.2

2517.1
190
401

208
974
1847
640
2300
300
350

Er. (%)
10

22.9
16.2
24.5
8.6
57.9
12.7

157
1468

1961.4
740.1
1661
179.1
351

Er. (%)
16.9

16.2(*)
11(*)
43.9
34.2

5.73(*)
12.4(*)

Table III. NO3 uptakes for wheat, rice and rape.

Moreover, for this last case, the predicted uptake NO3 for the model and the observed
uptake are compared in the Figure 1.
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A                   0,17506           0,16068
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R  = 0,94134
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Figure 1. Comparison between predicted and observed NO3 uptake

In spite of that the errors obtained are 7% (Tilkara), 20% (Dekalb) and 26% (Capitán)
the validation of our model with experimental data of other authors shown a better
prediction that the same authors using the Cushman-Barber model. The predictions are
improved up to 30% more arriving up to 80% in some cases.
However, the nutrient uptake predicted by this model and the previous models is
perfectible both experimentally as theoretically. For the last case, the difficulty of these
models is that consider the absorption of only one nutrient no taking into account the
simultaneous absorption any way the possible coupling with others ions in the
absorption. We remark that our model and the Barber-Cushman display similar
deviations for the magnesium uptake (Kelly-Barber). This last fact raising the need of a
model that will simultaneously taking into account interactions between nutrients, by
example, by using competitive kinetic absorption.

Appendix A. The expression (2) is obtained assuming that for the same time the root
volume grown radially is equal to volume grown longitudinally, i.e., if so and lo are the
initial root radius and initial root length, we can write:
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Thus, after elementary manipulations the condition (2) is obtained.
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