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Abstract .. — We consider the supercooled one-phase Stefan problem with temperature boundary
condition at the fixed face. We analyse the relation between the temperature boundary data and the
possibility of continuing the solution for arbitrarily large time intervals. We also give a family of

explicit solutions.
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I. — Introduction .

We study a one-phase supercooled Stefan problem in one space dimension. The initial
temperature of the material is equal to h(x). We impose a temperature boundary condition on x = 0,

where the temperature f is a function of time.

The classical Stefan problem ( f > 0, h > 0 ) is well studied in the literature, as for example
[3, 11, 18)]. Here we will treat the case f < 0 and h <0 that corresponds to a supercooled liquid. The
existence and uniqueness for this problem is proved in [7], where a class of free-boundary problems for
the heat equation in one space dimension was analyzed, releasing the sign restrictions on the data and
the latent heat usually required in the Stefan problem. In the next sections we relate the possibility of
continuing the solution for arbitrarily large time intervals to the sign of

1 ¢
R(t):%+]xh(x)dx+[f(r)dr.
0 0
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Problems of this kind have been studied by other authors also in conection with the freezing of
a supercooled liquid. A one-phase Stefan problem with initial temperature h(x) and a heat flux equals
to zero on x = 0 was studied in [9]. In [5, 17] a one-phase Stefan problem with initial temperature
equal to zero and the heat flux g(t) on x = 0 was considered. Other condition is considered in [6]. On
the other hand, convexity and smoothness properties of the free boundary are analyzed in [8, 13] and
[12, 14] respectively, and a review on this subject were given in [16, 20] Moreover, in [2] an
application to the liquid-phase epitaxy is presented and in [15, 21] a two-phase supercooled or
superheated Stefan problem is analyzed. An explicit solution is given in [4].

In section II we give the preliminaries corresponding to the description of the problem and we
consider the case of a temperature boundary condition with a determined sign ( in our case, negative )

and we give some results in order to characterize the three possible cases (7, 19].

In section III we study the case in which the temperature on x = 0 is a constant in time, say

"f(t) = — B < 0 and we give a family of explicit solutions.

II. — The one-phase Stefa'n problem.

Let us consider problem (P) (one-phase Stefan problem with temperature boundary ;:ondition
on the fixed face x=0) which consist of finding (T,s,z) such that :
i T >0
(ii) s € C([0,T) ), s € C}((0,T)); 0 < s(t) <1for0 <t <T.
(iii) z(x,t) is a function, bounded in 0 < x < s(t), 0 < t < T and continuous on the same region ,
except perhaps at the points (0,0) and (8(0),0) ; 2x(x,t) is a continuous function in 0 < x < s(t),
0<t<T; zxx, u are continuous functions in 0< x < s(t), 0 < t < T.

(iv) The following conditions are satisfied :

(2.1) Iyx— %, =0 in DT={(x,t):0<x<s(t),0<t<T},
(2.2) s(0)=1,

(2.3) #(x,0) = h(x), 0<x<1,

(2.4) z(0,t) = f(t), 0<t<T,

(2.5) s(s(t),t) = 0, 0<t<T,

(2.6) zx (8(t),t) = — 5(t) 0<t<T ,

where the function f is a non positive piecewise continuous function on every interval (0,t), t>0 and

h(x) is a given non positive continuous function in [0,1].

‘Moreover, if the solution exists, then three cases can occur [7, 19] :
(A) The problem has a solution with arbitrarily large T.
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(B) There exists a constant Tp > 0 such that {imT s(t) = 0.

m,
B
(C) There exists a constant Ty > 0 such that lim _ s(t)> 0 and lim _ &(t)=—oo.
t—Tg t—Tc

As we shall see, any of these cases can actually occur with an appropiate choice of the functions
h = h(x) and f = f(t) in (2.3) and (2.4) respectively.

If (Ts,2) solve (2.1)—(2.6) then it is well known that the following integral representations are

satisfied : 1 t s(t)
@) s(t) = 1 + I h(x) dx — I ax(0,7) dr — I 2(x,t) dx ,
0 0 0
2 1 t s(t)
2.8) O =D _ Ix h(x) dx + J f(r) dr — J x 2(xt) dx
0 0 0
. ¢ s(r) (1) 1
(2.9) ('(t)——s——l) =2 I dr I z(x,7) dx — I z(x,t) x? dx + I h(x) x? dx .
0 0 0 0

The first simple properties of the solutions of (2.1)—{2.6) are summarized in the following :

PROPOSITION 2.1 .— If (T,s,z) is a solution of Problem (P), then :

()2 <0 inDp.

(ii) s(t) is a decreasing function in (0,T) .

(ifi) If h’(x) > 0 and f(t) < 0, then zx(x,t) > 0 in Dr.

(iv) f h(x) = C — 1, with C = Const. < 0 for 0 < x < 1 and f(t) > C — 1fort > 0, then no
solution to Problem (P) can exist.

PROOF.— (i)—(iii) follow from the maximum principle.

(iv) For any solution (T, s, z) of the Problem (P) it would be 0 < s(t) < 1,0 <t < T and
z(x,t) > C—1 in D because of (2.1)—(2.6) and the maximum principle. Thus, from (2.8) we have

(sz(t)_l) < Q—l_(C_l)s_zéQ’

i e < 0, which is a contradiction to C < 0 and s(t) < 1.

@®-1nc
=
REMARK 1 .— A general result of non—existence was given in [ 10 ]. A sufficient condition of non-
existence is given by h< —1 in a left neighbourhood of x =1, independently of the behavior of the
boundary temperature f = f(t) on x = 0.
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PROPOSITION 2.2 .— If (T,s,2) is a solution of Problem (P), and

(2.10) h(x) >m(f) (1 - x),0<x<1,

then

(2.11) #(x,t) > m(f) (1 — x) in D,
t 1

(2.12) (1) =01+ m®) - m —3,9 Jf(f) dr +~J xh(x) dx, 0 < t < T,
0 0

t
where m(f) = ml{](_rf( ).

PROOF .— (i) We define the function :
Wit =m@ (x—1),inD={(x):0<x<L0<t< T}

By comparing W with z and using the maximum principle we obtain (2.11). By using (2.8) we obtain
(2.12).

We proceed to characterize cases (A), (B) and (C) depending on the value of R(t), where

1 t
(2.13) REW) = § + Ix h(x) dx + If(r) dr
0 0

We remark that R(t) = f(t) < 0,0<t < T.

PROPOSITION 2.3 .— We have that
(i) Case (B) = R.(TB) = 0.

T
B 1
(ii) Case (B) = [ 2x(0,r)dr =1 + [ h(x) dx.
0 0
1
(iii) Case (B) = 2 [ [ 2(x,7) dxdr = — 31.‘ — | x* h(x) dx.
D 0
B
PROOF .— Owing to Proposition 2.2, we can perform the limit for t — TB in (2.7), (2.8) and (2.9) in

order to obtain the above three relations.

PROPOSITION 2.4 .— Assume h(x) satisfies : There exists a positive constant H such that
(2.14) h(x) > —H(1 -—x),0<x<1,

and let (T\s,2) be a solution of Problem (P) such that
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(2.15) oy =, oisnfo,'r) s(t) > 0.

If there exists two constants d € (0, sx), zo € (0, 1) such that Hd < z, In(2) and

(2’16) Z(S(t) —d, t) 2 — 2o 0<t<T,
then
(2.17) 8(t) > min[— H /z5,In (1 —25) /d].

PROOF .— It is the same as the one for the Lemma (2.4) in [9].

COROLLARY 2.5 .— If case (C) occurs, the isotherm z = — 1 exists and reaches the free-boundary at
t:TC .

PROPOSITION 2.6 .— Let (T,s,z) be a solution of the Problem (P). If R(Tg) = 0 and —1<m(f)<0
then we have the case (B).
BROOF .— We replace R(Tp) = 0 in (2.12) of Proposition (2.2) then we get

2 s3
"CB (1 4 m(m) - m0 52 <.

Since 1 + m(f) > 0 and m(f) < 0 we conclude that s(Tp) = 0, i.e., case (B).

PROPOSITION 2.7 -— ¥ (Ts,2) is a solution of Problem (P), with f € L!(0,00), h verifies inequality
(2.10) and we have case (A), then

(2.18) R(t) >0, t>0.

PROOF .— Using the equality (2.8) and the hypothese we obtain the following inequality

s(t) 1
(2.19) - J x z(x,t) dx < Ifl, + m(f) Jx (x — 1) dx = If}, — % m(f) = C,
0 0 ,

where C > 0. From the above inequality we conclude

s(t) s(t)

J x? (— z(x,t)) dx < J x (— z(x,t)) d&x<C.
0 0

The following estimation is obtained by replacing the above inequality in (2.9)
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T s(7)
(2.20) 2Jd‘rj z(x,‘r)dxd‘rz—C—%,tZO.
0 0

Now suppose that there exists a Tq such that R(Ty) < 0, then from (2.8), it follows that

s(t) s(t) .
(2.21) j (— z(x,t)) dx> j —(x z(x,t)) dx = 8—'9‘ R(t)> — R(To) > 0, t>To.
0 0

If we integrate with respect to time the last inequality, it follows

(2.22) I I 2(x,7)dxdr < R(To)t,t > To
Dy
contradicting (2.20).

PROPOSITION 2.8 .— If (T\s,2) is a solution of the Problem (P) and the functions h and f satisfy the
following hypotheses :
(i) h = h(x) < 0 is an increasing function in [0,1];
(ii) f(t) < 0 is a decreasing function of t, t > 0;
then Case (C) implies R(T) < 0.
BROOF .— From Proposition (2.1)(iii) we have zx(x,t) > 0 in Dy.. From Corollary 2.5 the isotherm
z = —1 must reach the free boundary at T = TC , then the domain is divided in two regions, and
z(x,t) < —1 to the left of the isotherm z = —1. If we replace this estimation in (2.8) we get

Te (Tc)

!
(2.23) iFS%):———Iz[xh(x)<ix+[f(f)df+f x dx
0 0 0

2 2
ie. 259> rero) + £5€ . Then R(T) < 0.

COROLLARY 2.9 .—If (T,s,z) is a solution of the problem P and the functions h and f satisfy the
following hypotheses:

(i) h = h(x) < -1 in (0,b) , h(b)=-1 and -1<h(x)<0 in (b,1), with be(0,1).

(ii) -1<f(t)<0 in (0,Tp), f(To)=-1 in (To,T¢) ; f(t)<-1 in (To,T¢)-

then Case (C) implies R(T) < 0.

PROOQF .— Using the same methods from Proposition 2.8, one obtains a region where z <-1 to left of
one isotherm z=-1. In this region the inequality (2.23) is hold.

COROLLARY 2.10 .— If R(t) > 0 for every t > 0, then we have case (A).
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REMARK 2 .— In the same way we can obtain the same results for the solid phase overheated.

III1. — The case f(t) = Constant.

In this section we consider the case in which the temperature z(0,t) is a constant in any time,

say f(t) = —B < 0 (B>0) and the initial temperature h(x) = 0.

As a trivial consequence of Proposition 2.7 no global solution exist in this case, so either (B) or
(C) must occur. Moreover, one can easily prove that the solution, for a given B > 0, exists for any t <
T, with T > ,[15

PROPOSITION 3.1 .— Let (T,s,2) be a solution of the problem (P). If 0 < B < 1 then we have case
(B).

PROQF .— Using the maximum principle it follows that z(x,t) > —1. From Proposition 2.4 case (C)
is excluded. Then only case (B) is possible.

PROPOSITION 3.2 .— Let (T,s,z) be a solution of the problem (P), then

(3.1) z(x,t) > —B erfc( ﬁz ) yin D .

PROOF .— This follows from the maximum principle applied to z(x,t) — w(x,t), where w is the
solution of the heat equation in the first quadrant x > 0 and t > 0, with the following boundary

conditions : w(x,0) = 0, x > 0 and w(0,t) = —B, t > 0. By the other hand, w is given by

(3.2) w(x,t) = —-B erfc( é—ﬁ-t ) , x>0, t>0.

As a consequence of Lemma 3.2, we have the following estimate on B for the case (C).

PROPOSITION 3.3 .— Let (T,s,2z) be a solution of the problem (P). Then, B < g is a necessary
condition in order to have case (B).

PROOF .— From Lemma 3.2 we can deduce that

(3.3) 2x(0,t) > wy(0,t) = ﬁ_t .
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We replace the above estimation in (2.7) and it follows

1/28

B 1 — .2B
0
PROPOSITION 3.4 .— The following inequalities hold :
(3.5) st) > 1—2Bt,0<t < 215
1 — 2B 4§
(3.6) s(t)g—i—_—B—‘E,tzo,o<B<1.
1-2Bt

3.7 )< M=2Bt g<ci< b, 0<B<
BT )< g 0St< g

PROOF .— (3.5) and (3.7) follow by replacing z(x,t) < 0 and z(x,t) > —B respectively in (2.8).
Moreover, (3.8) follows by replacing z(x,t) > —B and the estimation (3.3) in (2.7).

From now on, we shall consider the particular case
(3.8) ft)=-B<0,t>0 (B>0)

corresponding to conditions (2.1)—(2.6) with an initial temperature h = h(x). This problem will be
denoted by (Pp).

We shall give an explicit solution to problem (Pp), when the condition
(3.9) 8(0) <0

is considered.

PROPOQSITION 3.5 .— The real number T > 0 and the functions x = s(t) and 2=3(x,t), defined by
(3.10) s(x,t) = Q(R%) , 0<x<st),0<t<T,

is a solution of (Pp) if and only if the function & = () is given by

(3.11) o(¢) = —B + F(B{) F(né)

where 5 > 0 is a solution of the equation
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(3.12) G(x) = 173 ,x>0

with
T o

(3.13) F(x) = I e dr, G(x) = x exp(—x?) F(x).
0

Moreover, in this case, we have

(3.14i) Ca(t) = ,|1 — 4t =T —t,0<t<T,

(3.14ii) T= ﬁ’, >0, 30 = —29°<0,

(3.14iii) h(x) = ®(x),0 < x < 1.

PRQOOF .— The function ® = ®({) must satisfy the following ordinary differential problem :
(3.15) @"(€) + 8(0) £ ®'(¢) = 0, ®(0) = —B, &(1) = 0.

From (3.15) we obtain the thesis.

BREMARK 3 .— (i) Let f; = f;(x) be the function defined by

(3.16) fi(x) = exp(—x®)) F(x) >0, x> 0 » (' Dawson's integral [1] ) .

Then, we have the following properties.

(3.17i) £,(0) = 0, fy(+o00) = 0,
- >0 if 0<x<x, -
(3.17ii) fx) =f/x) =1-2xfi(x) = |=0 if x=x,
<0 if x> x,
where

(3.17iii) X = 0.924, f(x,) = 0.541.
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Moreover, we have

< 0 if 0 <x< Xg
(3.17iv) £,"'(x) = 0 if  x=x,,
>0 if x>x,,
where
(3.17v) x; = 1.502, fi(x;) = 0.428 .

(ii) The function G = G(x) = x f;(x), defined in (3.13) verifies the following properties :

(3.18i) Gex) =§(1-£(x)) GO =0,G(x)=G(+o0) = } ,
(3.18) G'(x) = £(x) + x ) = - ') = - } £"(x), 6'0) = 0,
where

(3.18iii) Gy = Max G(x) = G(xs) = 0.645 .

COROQLLARY 3.6 .—i) The equation (3.12) has a solution n > 0 if and only if the datum B satisfies
the inequalities

(3.19) 0<B<2Gy, (with 2Gyy =1.29).

(ii) If 0 < B < 1 then the number 5 > 0 is unique. _

(iii)lf 1 < B < 2 Gy there exist two numbers 7, = 7,(B) and 1, = 5,(B) which satisfy the
following inequalities

(3-20) 0<x1<n1<x2<172 s

and the limits

(3.21i) lim 5,(B) = x,, lim = n,(B) = +oo,
B—’1+ B—>l+

3.21ii li B)= I B) = x, .

(3.21ii) B “l’!gGM 7:(B) B —lngM 72(B) = x,

(iv)IfB = 2 Gy then the number 5 = 5(B) is unique and given by
(3.22) 1 =n(2Gy) = x,.



45

PROOF .—(i), (ii) and (iv) follow from the properties of the function G and (3.18i,ii,iii).

iii) Since G is an increasing function from 0 to G in [0,x,] and decreasing function from G, to ! in
(iii) £ 2 g M3
[x2,00], then for the case 1<B<2G)y there exist two numbers n,=n,(B) and ny=n9(B) which satisfy
the inequality (3.20) and the limits (3.21 i,ii).

THEOREM 3.7 .— If we choose a parameter > 0 we obtain that the following family of functions :

‘ F(n s(t))
(3.23) z(x,t) = —-2G(n)[1 — BiON ], 0<x<st))0<t<T,
(3.24) s(t) = .]1 —49%, 0<t<T,
(3.25) T=-L1 >0, B = 2 G(y),
4n
3.26) h(x) = — 2G(n) [1 — Fr("('q))‘) 1 0<x<1,

is solution of the supercooled one-phase Stefan problem (PB). Moreover, we have the case (B) and
(3.27) {T}, 5 0=R", {B}, 5 0=(026y),

where G is given by (3.18iii).

PROQF .— It follows from Propotition 3.5, Remark 2 and Corollary 3.6.

REMARK 4 -— The solution (3.23) —(3.26), for each > 0 verifies the following equalities

1
(3.28) | b ax = = {1 = exp-n)1,
0
1
(3.29) lxh(x)dx:—%+80’G(n)=—%+BT,
0
f B
—_B t
(3-30) l zx(O,-r) dr = F(']) ﬁ_ﬂT_—t, 0<t< T,
T
(3.31) I 2x(0,7) d7 = exp(—n?) .
0
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It is important to remark what is the physical meaning of the coefficient B.

REMARK 5 .— We consider the supercooled one-phase Stefan problem in physical variables :

pclr —kbyy =0, 0<y<r(r), 0<1T<T10
(0) =b>0,
(3.32) 0(y,0) = &(y) , 0<y<hb,
0(0,r) = —-6,<0, 0<7<T71g,
0(r(r)0)=0, 0<7<710,
kOy(r(r),r) = — p 1i(7), 0<7<T1g,
where
@ : temperature, T : time, ; v
v(3.33) y : spatial variable v k : thermal conductivity,
p : mass density ¢ : specific heat,

1 : latent heat of fusion.

We can obtain the dimensionless problem (Pp) by choosing the following variables :

X=%, t=pﬁ§ra T=chb§1'o’
(339 s(xt) = § 03,7, o) = 50,
h(x) = “i ¢(Y)a B /= C_’o_q ’

that is, B is the Stefan number.

REMARK 6 .— If, in problem (PB) , we perform the classical transformation :

s(t)  s(t)
(3.35) u(xt) = J { J [1+ s(ayt) ] da } a8,
X

B
then we obtain the following oxygen consumption problem

ugx—u =1, 0 < x < 8(t), 0<t<T,
s(0) = 1,
(3.36) u(x,0) = H(x), 0<x<1l; u(0t)=Get), 0<t<T,

u(s(t),t) = ux(s(t)t) =0, 0<t<T,



where

(8.379) B = bRt + ) (B0 ),

(3.37ii) Golt) = fl(:”) 6%(t) = B (T — t) > 0,

with

(3.38) W(x) = (x — §) F(x) — § exp(x?), x> 0.
Mareover, the function u = u(x,t) is given by :

(339) wxt) = LBt + ) IO, win Xy,
On the other hand, we have

o uxg(xt) = (1 — B) x — exp(—n?) exp( = _’(—t)' ) fz(T)) 8(t)

ux(0,t) = —exp(—n?) s(t) < 0.

REMARK 7 .— (i) The function W = W(x), defined by (3.38) verifies the following properties :

w() = 0, Witeo) = oo, Wi(ey) = Min Weo) = — 20 1(x),
(3.41) W) = — ‘3-"22@-) G'(x), w/'(0) = -1,
W(x) = — exp(x?) fa(x), W'x) = 2 F(x).

(ii).The function H = H(x), defined in (3.37), verifies the following properties (H"(g)=1 + h(x)) :
_ fi(n) oy — 3 Mgy _
H(o)—'ﬁ’ H'(0) = —exp(—9?), H'(0)=1-B,
(3.42) H(1) =0, (1) =0, H'(1) =1,

H(x) > 0, H'(x) <0, Y x€ [0,1) .

47
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On the other hand, we have :
(3.43) H'(x) > 0, v x € (0,1], VvBe (0],

and H"' < 0 in [0,8], H'(§) = 0 and H' > 0 in (5,1], where § € (0,1) is the unique solution of the
equation -
(3.44) h(x) = -1, x € (0,1),

for the case 1 <B<2Gy.
(iii) The function u = u(x,t), defined in (3.39), verifies the following properties :

ug(xt) <0, 0<x<s(t))0<t<T,
(3.45) 0 <u(xt) <B(T —t), 0<x<st), 0<t<T,
-B <uy(xt) = 2(xt) <0, 0<x<st), 0<t<T.

REMARK 8 .— If £ > 0, h > 0 and we impose the condition 8(0) > 0 then we obtain the classical
Lamé-Clapeyron solution instead of the one obtained in Proposition 3.5.
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