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Abstract 

The numerical analysis of a family of distributed mixed optimal 
control problems governed by elliptic variational inequalities (with 
parameter )0>α  is obtained by considering the finite element method 
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with parameter .0>h  A commutative diagram for two continuous 
optimal control problems and the corresponding two discrete optimal 
control problems is obtained when ,0→h  ,∞→α  and ( ) →α,h  

( ).,0 ∞  

1. Introduction 

Following [5], we consider a bounded domain nR⊂Ω  whose regular 
boundary 21 ΓΓ=Ω∂ ∪  consists of the union of two disjoint portions 1Γ  

and 2Γ  with meas ( ) ,01 >Γ  and we state, for each ,0>α  the following free 

boundary system: 

( ) ;in0;0;0 Ω≥−∆−=−∆−≥ guguuu  (1.1) 

( ) ;on;on 21 Γ=
∂
∂−Γ−α=

∂
∂− qn

ubun
u  (1.2) 

where the function g in (1.1) can be considered as the internal energy            
in ,Ω  0>α  is the heat transfer coefficient on ,1Γ  0>b  is the constant 

environment temperature, and q is the heat flux on .2Γ  The variational 

formulation of the above problem is given as ( )( ):system αS  

Find +α ∈= Kuu g  such that ,+∈∀ Kv  

( ) ( ) ( ) ( ) ,,,,, RgQgHggg uvbuvquvguvua αααααα −α+−−−≥−  (1.3) 

where 

{ ( ) } ( ),,in0: 21 Ω=Ω≥Ω∈=+ LHvHvK  

( )2
2 Γ= LQ  and ( ),1

2 Γ= LR  

( )Avu,  is the usual inner functional product over the set A ( ,with HA =  

)., RQ  The application a is defined as ( ) ∫Ω ∇⋅∇= vdxuvua ,  and 

( ) ( ) ( ) .,,, Rvuvuavua α+=α  (1.4) 
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We note that ,1a  and therefore ,αa  is a bilinear, continuous, symmetric 

and coercive form on V with 1λ  and { } 0,1min1 >αλ=λα  the corresponding 

coercive constants [16, 22]. 

In [5], the following family of continuous distributed optimal control 
problems associated with the system ( )αS  was considered for each :0>α  

Problem ( ) :αP  Find the distributed optimal control Hgop ∈
α

 such that 

( ) ( ) ,22
1min 22

HHg
Hg

op gMugJgJ +== αα
∈

α α
 (1.5) 

where the quadratic cost functional 0,: 0 >→ +
α MHJ R  a given constant 

and guα  is the corresponding solution of the elliptic variational inequality 

(1.3) associated to the control .Hg ∈  

Several optimal control problems are governed by elliptic variational 
inequalities [1-3, 9, 19, 20, 27] and there exists an abundant literature about 
continuous and numerical analysis of optimal control problems governed    
by elliptic variational equalities or inequalities [7, 10-15, 18, 23, 24] and by 
parabolic variational equalities or inequalities [4]. 

The objective of this work is to make the numerical analysis of the 
continuous optimal control problem ( )αP  which is governed by the elliptic 

variational inequality (1.3) by proving the convergence of a discrete solution 
to the solution of the continuous optimal control problem. 

In Section 2, we establish the discrete expression for the continuous 
elliptic variational inequality (1.3), and we obtain that these discrete 
problems possess unique solutions for all positive h. Moreover, we define          
a family ( )αhP  of discrete optimal control problems (2.3) and, we obtain 

several properties for the state system (2.1) and for the discrete cost 
functional αhJ  defined in (2.5). 

In Section 3, on adequate functional spaces, we obtain a result of global 
strong convergence when the parameter 0→h  ( )0eachfor >α  and when 
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∞→α  ( )0eachfor >h  for the discrete state systems and for the discrete 

optimal problem corresponding to ( ).αP  We end this work proving the 

double convergence of the discrete optimal solutions of ( )αhP  when 

( ) →α,h ( )∞,0  obtaining a complete commutative diagram among two 

discrete and two continuous optimal control problems given in Figure 1. We 
generalize recent results obtained for optimal control problems governed by 
elliptic variational equalities given in [25, 26]. 

2. Properties of the Discretization of the Problem ( )αP  

Following the considerations given in [21], we approximate the sets V 
and +K  by: 

{ ( ) ( ) },,: 1
0

hhhh TTPTvCvV τ∈∀∈Ω∈=  

{ }.in0: Ω≥∈=+ hhhh vVvK  

The discrete formulation ( )αhS  of the continuous system ( )αS  is, for each 

,0>α  defined as: Find hgh Ku +α ∈  such that for all ,hh Kv +∈  

( ) ( ) ( )QghhHghhghhgh uvquvguvua ααααα −−−≥− ,,,  

( ) ., Rghh uvb α−α+  (2.1) 

Theorem 2.1. Let Hg ∈  and .Qq ∈  Then there exists a unique 

solution of the elliptic variational inequality (2.1). 

Proof. It follows from the application of Lax-Milgram Theorem [16].  

Lemma 2.1. (a) Let ng  and ,Hg ∈  and nghu α  and hgh Ku +α ∈  be the 

associated solutions of the system ( )αhS  for each .0>α  If ggn  in H 

weak, then we have that 

 (i) 0>∃C  (independent of h, α and of n) such that 

;Cu Vgh n ≤α  (2.2) 
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(ii) ,0>∀h  

.0lim =− αα∞→ Vghghn uu n  (2.3) 

(b) We have that 

,1
1212 HVghgh gguu −

λ
≤−

α
αα  

where ighu α  is the associated solution of the system ( )αhS  for .2,1, =igi  

Proof. We follow a similar methodology as in [10, 21].  

Lemma 2.2. Let ( )Ω∈ +α
r

g HKu ∩  ( )21 ≤< r  and hgh Ku +α ∈       

be the solutions of the elliptic variational inequalities (1.3) and (2.1), 
respectively, for the control .Hg ∈  Then there exists a positive constant C 

such that 

( ) ( ) .21−
αα α≤− r

Vggh hCuu  (2.4) 

Proof. If we consider ++α ⊂∈= KKuv hgh  in the elliptic variational 

inequality (1.3) and ( ) hghh Kuv +α ∈Π=  in (2.1) (where hΠ  is the 

interpolation operator [6, 21]), and calling ( ) ,ggh uuw αα −Π=  we have 

that 

( ) ( ) ( ) ( ) ( ) .,,,,, RQHghgghggh wbwqwgwuauuuua α−+−≤−− ααααααα  

By using the coerciveness of ,αa  [6] and by some mathematical 

computation, we obtain that 

( ) .12
rg

r
VgghVggh uhCuuCuu α

−

α
αα

α
αα λ

≤−Π
λ

≤−   

Now, we consider the continuous optimal control problem which         
was established in (1.5) and we establish the following discrete distributed 
optimal control problem ( ) :αhP  
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Find Hg hop ∈
α

 such that 

( ) ( ) ,22
1minmin 22

HHgh
Hg

h
Hg

oph gMugJgJ h +== α
∈

α
∈

α α
 (2.5) 

where ghu α  is the unique solution of the elliptic variational inequality (2.1) 

for a given control Hg ∈  and a given parameter .0>α  We remark that the 

discrete (in the space) distributed optimal control problem ( )αhP  is still an 

infinite dimensional optimal control problem since the control space H is not 
discretized. 

Theorem 2.2. For the control ,Hg ∈  the parameters 0>α  and 

,0>h  we have: 

(a) ( ) .lim ∞=α
∞→

gJh
g H

 

(b) ( ) HHh gCgMgJ −≥α
2

2  for some constant C independent of 

.0>h  

(c) The functional αhJ  is a lower weakly semi-continuous application     

in H. 

(d) For each 0>h  and ,0>α  there exists a solution of the discrete 
distributed optimal control problem (2.5). 

Proof. From the definition of ( ),gJhα  we obtain (a) and (b). 

(c) Let ggn  in H weak. Then by using the equality =2
Hng  

( ) ,,222
HnHHn ggggg +−−  we obtain that 

.inflim HnnH gg ∞→≤  

Therefore, we have 

( ) ( ).22
1inflim 22 gJgMugJ hHHghnh

n
ααα

∞→
=+≥  

(d) It follows from [17].  
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Lemma 2.3. If the continuous state system has the regularity ∈αgu  

( )ΩrH ( )21 ≤< r  for Hg ∈  and ,0>α  then we have the following 

estimation :Hg ∈∀  

( ) ( ) ( ) ,2
1−

αα α≤−
r

h hCgJgJ  (2.6) 

where C is a positive constant independent of .0>h  

Proof. It follows from the definition of αhJ  and by (2.4).  

Remark. In general, the solution of the discrete optimal control problem 
(2.5) is not unique. Following [21], we can also define an open problem, for 
each ,0>α  in order to have the uniqueness (see (39)-(42) and Remarks 8 
and 9 in [21]). 

3. Results of Convergence 

3.1. Convergence when 0→h  

Theorem 3.1. Let ( )Ω∈ +α
r

g HKu ∩  ( )21 ≤< r  and hgh Ku +α ∈      

be the solutions of the elliptic variational inequalities (1.3) and (2.1), 

respectively, for the control .Hg ∈  Then ggh uu αα →  in V when .0+→h  

Proof. Similarly to the part (a) of Lemma 2.1, we can show that there 
exists a constant 0>C  such that ,Cu Vgh ≤α  .0>∀h  Therefore, we 

conclude that there exists V∈ηα  so that αα ηghu  in V (in H strong)     

as +→ 0h  and .+∈η K  On the other hand, given ,+∈ Kv  let ( )vvh Π=  

hK+∈  for each h such that vvh →  in V when h goes to zero. Now, by 

considering hh Kv +∈  in the discrete elliptic variational inequality (2.1), we 

get: 
( ) ( ) ( )QghhHghhghhgh uvquvguvua ααααα −−−≥− ,,,  

( )Rghh uvb α−α+ ,  (3.1) 
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and when we pass to the limit as +→ 0h  in (3.1) by using that the bilinear 
form a is lower weak semi-continuous in V, we obtain: 

( ) ( ) ( )QH vqvgva ααααα η−−η−≥η−η ,,,  

( ) +α ∈∀η−α+ Kvvb R ,,  

and from the uniqueness of the solution of the discrete elliptic variational 
inequality (1.3), we obtain that .guα=η  

Now, we will prove the strong convergence. As a consequence of 

Lemma 2.2, by passing to the limit when +→ 0h  in the inequality (2.4), it 
results: 

.0lim
0

=− αα
→ + Vggh

h
uu   

Theorem 3.2. Let +α ∈ Ku opg  be the continuous state system associated 

to the optimal control Hgop ∈
α

 which is the solution of the continuous 

distributed optimal control problem (1.5). If, for each ,0>h  we choose       
a discrete optimal control Hg hop ∈

α
 which is a solution of the discrete 

distributed optimal control problem (2.5) and its corresponding discrete 
state system ,hgh Ku

hop +α ∈
α

 we obtain that 

αα αα → ophop ggh uu  in V strong when +→ 0h  (3.2) 

and 

αα
→ opop gg h  in H strong when .0+→h  (3.3) 

Proof. Now, we consider a fixed value of the heat transfer coefficient 
.0>α  Let 0>h  and 

αhopg  be a solution of (2.5) and 
αα hopghu  its 

associated discrete optimal state system which is the solution of the problem 
defined in (2.1) for each .0>h  From (2.3), we have that for all ,Hg ∈  

( ) .22
1 22

HHghoph gMugJ h +≤ αα α
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Then, if we consider 0=g  and 0αhu  its corresponding associated state 

system, then it results that 

( ) .2
1 2

0 Hhoph ugJ h αα ≤
α

 

Since ,,0 hCu Hh ∀≤α  we can obtain: 

Cu Hgh hop ≤
αα  and .,1 hC

M
g Hoph ∀≤

α
 

If we consider hh Kbv +∈=  in the inequality (2.1) for ,
αhopg  then we 

obtain, because of the coerciveness of the application :αa  

,Cu Vgh hop ≤
αα  

where the constant C is independent of the parameter h and .0>α  Now we 
can say that there exist V∈ηα  and Hf ∈α  such that αα η

αhopghu  in V 

weak (in H strong), and αα
fg hop  in H weak when .0+→h  Moreover, 

.+α ∈η K  Then, as in Theorem 3.1, we can obtain that .
ααα =η fu  

By using that the functional cost αJ  is semi-continuous in H weak (see 

[5]) and Theorem 3.1, it results that 
αα= opguf  and .

α
=ηα opgu  

Now, we consider ++α ⊂∈=
α

KKuv hgh hop  in the system ( )αS  with 

control ,
αopg  and ( )

ααΠ= opghh uv  in the discrete system ( )αhS  for the 

control 
αhopg  and define .

αα αα −= ophop gghh uuw  After some mathematical 

work, we obtain that 

( ) ( ( ) )
ααα ααααα −Π−≤ opophop gghghhh uuuawwa ,,  

( ( ) ) ( ( ) )RgghQggh opopopop uubuuq
αααα αααα −Πα−−Π+ ,,  

( ( ) ) ( ) .,, HhopHghghop wguug opoph αααα
−−Π+ αα  
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From the coerciveness of the application ,αa  and 
αα αα → ophop ggh uu  

in H and ( )
αα αα →Π opop ggh uu  in H, we obtain that 0→Vhw  if 

.0→h  Thus, (3.2) holds. It is easy to see that (3.3) holds too.  

3.2. Convergence when ∞→α  

Now, under the same hypothesis in Section 1, we consider the following 
free boundary system [5]: 

( ) ;in0;0;0 Ω≥−∆−=−∆−≥ guguuu  (3.4) 

.on;on 21 Γ=
∂
∂−Γ= qn
ubu  (3.5) 

The variational formulation of the above problem is given as ( ).S  Find 

Kug ∈  such that 

( ) ( ) ( ) ,,,,, Kvuvquvguvua QgHgg ∈∀−−−≥−  (3.6) 

where 

{ }.,in0: 1 bvvVvK =ΓΩ≥∈=  

In [5], the following continuous distributed optimal control problem ( )P  

associated with the elliptic variational inequality (3.6) was considered: Find 
the continuous distributed optimal control Hgop ∈  such that 

( ) ( ) 22
22

1minmin HHg
HgHg

op gMugJgJ +==
∈∈

 (3.7) 

as in (2.5) with 0>M  a given constant and gu  is the corresponding 

solution of the elliptic variational inequality (3.6) associated to the control 
.Hg ∈  Therefore, as in Section 2, we define the discrete variational 

inequality formulation ( )hS  of the system ( )S  as follows: Find hhg Ku ∈  

such that 

( ) ( ) ( ) ,,,,, hhQhghHhghhghhg Kvuvquvguvua ∈∀−−−≥−  (3.8) 
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where 
{ }.,in0: 1 bvvVvK hhhhh =ΓΩ≥∈=  

The corresponding discrete distributed optimal control problem ( )hP  of 

the continuous distributed optimal control problem ( )P  is defined as: Find 

the discrete distributed optimal control Hg hop ∈  such that 

( ) ( ) ,22
1minmin 22

HHhg
Hg

h
Hg

oph gMugJgJ h +==
∈∈

 (3.9) 

where hgu  is the solution of the elliptic variational inequality (3.8). 

Theorem 3.3. (i) Let Hg ∈  and .Qq ∈  Then there exists a unique 

solution of elliptic variational inequality (3.8). 

(ii) There exists a solution of the discrete optimal control problem (3.9). 

Proof. (i) It follows from the application of Lax-Milgram Theorem        
[16, 17]. 

(ii) It follows from [21].  

Theorem 3.4. Let QqHg ∈∈ ,  and .0>h  Then we have 

.0lim =−α∞→α Vhggh uu  

Proof. Without loss of generality, we consider 1>α  and we define 
.Vuuw hggh ∈−= α  By definition of ,αa  we have: 

( ) ( ) ( ) .1,, 2
1 Rwwwawwa −α=−α  

After mathematical work, we obtain that 

( ) ( ) ( ) ( ) ( ) ( )wuawqwgwwwawwa hgQHR ,,,1,, 2
11 −−≤−α+≤  (3.10) 

and by coerciveness of ,1a  it results that 

1
2

−α
≤−α

Cuu Rhggh  

and hggh uu →α  in ,1Γ  when .∞→α  
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Moreover, as a consequence of (3.10), we obtain that Cu Vgh ≤α         

(C constant independent of α and h). Then there exists V∈η  such that 

ηαghu  in V (in H strong). 

Then the strong convergence in V is obtained similarly to the one in Theorem 
3.1.  

Theorem 3.5. If, for each ,0>h  we choose Hg hop ∈
α

 a solution of 

the optimal control problem ( )αhP  and consider its respective discrete state 

system hgh Ku
hop +α ∈
α

 the solution of (2.1), then we obtain that 

hhop hfgh uu →
αα  in V when ∞→α  (3.11) 

and 

hop fg h →
α

 in H when ,∞→α  (3.12) 

where Hfh ∈  is a solution of the discrete optimal control problem ( )hP  

and hhfu  is its corresponding discrete state system solution of the 

variational inequality (3.8). 

Proof. As in Theorem 3.2, we have 

Cu Hgh hop ≤
αα  and .,1 hC

M
g Hoph ∀≤

α
 

Now, considering bvh =  in (2.1) (and we take 1>α  without loss of 

generality) for the control 
αhopg  and ,

αα−=
hopghh ubw  we obtain: 

( ) ( ) ( ) ( ) ,,,,, RhQhHhophgh wbwqwgwua hhop α+−≥
αααα  

that is to say: 

( ) ( ) ( ) ( ) ( ) .1,,,, 11 RhQhHhophhh wwqwgwbawwa h −α+−≥+−
α

 (3.13) 

By the coerciveness of the application ,1a  it results that 

.0, >α∀≤
αα Cu Vgh hop  (3.14) 



Numerical Analysis of a Family of Optimal Distributed Control … 171 

Moreover, 

.0,1 >α∀
−α

≤
αα

Cu Rgh hop  (3.15) 

Then there exist Hfh ∈  and Vh ∈η (we  can see that )hh K∈η  such that 

hop fg hα  in H (3.16) 

and 

hgh hopu η
αα  in V (in H strong). (3.17) 

Letting hhh KKv +⊂∈  and given ,
αα−=

hopghhh uvw  we have: 

( ) ( ) ( ) ( ) ,,,,, RhQhHhophgh wbwqwgwua hhop α+−≥
αααα  

( ) ( ) ( ) ( )RhghQhHhophgh wubwqwgwua
hophhop ,,,,
ααα αα −α+−≥  

and because of (3.16), (3.17) and similar arguments given in Theorem 3.2, 
and the fact that the application a is semi-continuous in V weak, we obtain 
that hη  is a solution of (3.8) for the control .hf  Then (by item (i) in 

Theorem 3.3), .hhfh u=η  

If we consider hhhfh KKuv h +⊂∈=  in (2.1) for the control 

Hg hop ∈
α

 and ,
αα−=

hoph ghhfh uuw  then: 

( ) ( ) ( ) ( ) ,,,,, RhQhHhophgh wbwqwgwua hhop α+−≥
αααα  

( ) ( ) ( ) ( )QhHhophhfhh wqwgwuawwa hh ,,,, 11 +−≤
α

 

( ) ( ) ( ) .,1, RhghRh wuwb
hop αα−α+α−  

Again, as a consequence of the coerciveness of the application 1a  and by 

(3.16), (3.17), it results (3.11). 

Now we see that hf  is a solution of (2.5): because of Theorem 2.2(c), 

and by the definition of optimum: 
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( ) ( ) ( ) ,,limlim HggJgJfJ hophhh h ∈∀≤≤ α
∞→α

α
∞→α α

 

and by Theorem 3.4, we conclude that 

( ) ( ) ., HggJfJ hhh ∈∀≤  

Finally, we see that 

( ) ( ) ( ) ,,lim HggJgJfJ hophhh h ∈∀≤≤
αα

∞→α
 

then, if we consider :hfg =  

( ) ( )hhoph fJgJ h =
αα

∞→α
lim  

and, because of (3.11), 

,lim HHop fg h =
α∞→α

 (3.18) 

then, by using (3.16) and (3.17), we obtain (3.12).  

Now, following the idea given in [26], we have this final theorem: 

3.3. Double convergence when ( ) ( )∞→α + ,0,h  

Theorem 3.6. If, for each ,0>h  we choose Hg hop ∈
α

 a solution of 

the optimal control problem ( )αhP  and we consider its respective discrete 

state system ,hgh Ku
hop +α ∈
α

 which is the unique solution of (2.1), then we 

obtain that 

ophop ggh uu →
αα  in V when ( ) ( )∞→α + ,0,h  (3.19) 

and 

opop gg h →
α

 in H when ( ) ( ),,0, ∞→α +h  (3.20) 

where Hgop ∈  is the solution of the optimal control problem ( )P  and opgu  

is its corresponding state system solution of the variational inequality (3.6). 
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Proof. As in Theorem 3.2, there exists Vu ∈∗  with bu =Γ∗
1  and 

Hg ∈∗  such that 

∗
α α

uu
hopgh  (strong in H) (3.21) 

and 
∗

α
gg hop  (3.22) 

when ( ) ( )∞→α + ,0,h  in both cases. Let Kv ∈  be such that .1 bv =Γ  

We consider ( ) hhh Kvv +∈Π=  in the state system (2.1) and we define 

hh vw =  .
αα−

hopghu  Then we obtain 

( ) ( ) ( ) .,,, QhHhophgh wqwgwua hhop −≥
ααα  

Because the application a is semi-continuous weak in V and ∗−→ uvwh  in 

H when ( ) ( ),,0, ∞→αh  it results that ∗u  is a solution of (3.6). But this 

problem has a unique solution, then we conclude that .∗=∗
g

uu  Moreover, 

we have that 

( ) ( ( ))Hgghopgghggh uuguuuua
hophhophop ∗
αα∗

α
∗

α
Π−≤−− αααα ,,  

( ( )) ( ( ))RgghQggh uubuuq
hophop ∗
α

∗
α

Π−α+Π−+ αα ,,  

( ( )) ( ( ) )∗∗
α

∗
α

∗ −Π+Π−− αααα ggghgghg
uuuauuua

hophop ,,  

( ( ) )., ∗∗∗ −Π− α ggg
uuua  

Because of the coerciveness of the application αa  in V and by (3.21) and 

(3.22), we obtain (3.19) when ( ) ( ).,0, ∞→α +h  

As the functional αhJ  is lower weakly semi-continuous in H (Theorem 

2.2) and (3.22), we obtain that .opop gg hα  
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We also have that ( ) ( ) ( ) ( ),lim ,0, opophh gJgJ h =
αα∞→α  and then 

( ) ( ) ,lim ,0, HopHoph gg h =
α∞→α  and by (3.22) and (3.20), the thesis 

holds.  

4. Conclusion 

In conclusion, by using the previous results given in [5] and [21], we 
obtain the following commutative diagram among the two continuous 
optimal control problems ( )P  and ( ),αP  and two discrete optimal control 

problems ( )hP  and ( )αhP  when ,0→h  ∞→α  and ( ) ( ),,0, ∞→α +h  

which can be summarized by the following figure (Figure 1): 

 

Figure 1. Complete diagram of convergence. 
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