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with parameter 2 > 0. A commutative diagram for two continuous
optimal control problems and the corresponding two discrete optimal

control problems is obtained when # — 0, a — o, and (%, a) -

(0, ).
1. Introduction

Following [5], we consider a bounded domain Q < R” whose regular

boundary 0Q =T7 UT, consists of the union of two disjoint portions T
and T, with meas(I7) > 0, and we state, for each o > 0, the following free

boundary system:
u>0; u(-Au—-g)=0, —-Au-g=>0inQ; (1.1)

ou _Ou

- a(u — b) on I7; =g on Iy; (1.2)

on

where the function g in (1.1) can be considered as the internal energy

in Q, a > 0 is the heat transfer coefficient on I3, b > 0 is the constant
environment temperature, and ¢ is the heat flux on I,. The variational

formulation of the above problem is given as (system (S, )):
Find u = uye € K, such that Vv € K,
ot ¥~ ttag) > (8 ¥ = g )y — (s ¥ = g ) + (b v —tr g (13)
where
K, ={ve H(Q):v>0in Q}, H =I*Q),
0 = I*(Iy) and R = I2(T}),
(u, v) 4 is the usual inner functional product over the set 4 (with 4 = H,

0, R). The application a is defined as a(u, v) = _[ o Vu - Vvdx and

ag(u, v) = a(u, v) + alu, v)p. (1.4)
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We note that a;, and therefore a,, is a bilinear, continuous, symmetric
and coercive form on ¥ with A; and A, =2 min{l, a}> 0 the corresponding

coercive constants [16, 22].

In [5], the following family of continuous distributed optimal control
problems associated with the system (S, ) was considered for each o > 0:

Problem (£, ): Find the distributed optimal control g,, € H such that
— i _1 2 M, 2
Ja(g‘)pcx)_;nelll_}‘]a(g)_zn Ugg "H +7"g||Ha (15)

where the quadratic cost functional J, : H — Ry, M > 0 a given constant

and u,, is the corresponding solution of the elliptic variational inequality

ag
(1.3) associated to the control g € H.

Several optimal control problems are governed by elliptic variational
inequalities [1-3, 9, 19, 20, 27] and there exists an abundant literature about
continuous and numerical analysis of optimal control problems governed
by elliptic variational equalities or inequalities [7, 10-15, 18, 23, 24] and by
parabolic variational equalities or inequalities [4].

The objective of this work is to make the numerical analysis of the
continuous optimal control problem (P2,) which is governed by the elliptic

variational inequality (1.3) by proving the convergence of a discrete solution
to the solution of the continuous optimal control problem.

In Section 2, we establish the discrete expression for the continuous
elliptic variational inequality (1.3), and we obtain that these discrete
problems possess unique solutions for all positive 4. Moreover, we define
a family (P,,) of discrete optimal control problems (2.3) and, we obtain

several properties for the state system (2.1) and for the discrete cost
functional J;, defined in (2.5).

In Section 3, on adequate functional spaces, we obtain a result of global

strong convergence when the parameter 4 — 0 (for each o > 0) and when
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a — o (for each & > 0) for the discrete state systems and for the discrete
optimal problem corresponding to (P,). We end this work proving the
double convergence of the discrete optimal solutions of (P,,) when
(h, o) > (0, ) obtaining a complete commutative diagram among two

discrete and two continuous optimal control problems given in Figure 1. We
generalize recent results obtained for optimal control problems governed by
elliptic variational equalities given in [25, 26].

2. Properties of the Discretization of the Problem (7))

Following the considerations given in [21], we approximate the sets V'
and K by:
Vy ={v, € C°(Q):v;,/T € B(T), VT € 15},
K+h Z{Vh EVh LV ZOII’IQ}
The discrete formulation (S}, ) of the continuous system (S, ) is, for each
a > 0, defined as: Find w4, € K, such that forall v, € K,
aoc(”hocgf Vi — ”hocg) > (g, vy — ”hocg)H — (g, v — uhag)Q
+ O(.(b, vy — uhag)R. (2.1)

Theorem 2.1. Let g€ H and g € Q. Then there exists a unique

solution of the elliptic variational inequality (2.1).

Proof. It follows from the application of Lax-Milgram Theorem [16]. [

Lemma 2.1. (a) Let g, and g € H, and upyg and upyg € Ky be the

associated solutions of the system (S;q) for each o> 0. If g, — g in H

weak, then we have that

(1) 3C > 0 (independent of h, o and of n) such that

I upog, Iy < C; (2.2)
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(i1) VA > 0,
lim,, | Uhag, ~ Uhog ”V = 0. (2.3)

(b) We have that
< 1
| thags ~ thagy Iy <5122~ 21 1y
a
where uyqo. is the associated solution of the system (Spq) for gi, i =1, 2.
Proof. We follow a similar methodology as in [10, 21]. O

Lemma 2.2. Let uy, € Ky, NH'(Q) (1<r<2) and upyy € Ky,

be the solutions of the elliptic variational inequalities (1.3) and (2.1),

respectively, for the control g € H. Then there exists a positive constant C

such that

" Upag — Uag "V < C(a)h(r_l)/z- (2.4

Proof. If we consider v = u;q, € K;j, < K, in the elliptic variational
inequality (1.3) and vy, =TIj(ugg) € Kypp in (2.1) (where TIj is the
interpolation operator [6, 21]), and calling w = IT}, (g ) — gg, We have

that
a(x(”h(xg ~Uggs Upag — ”ocg) = aa(”haga w)—(g, W)]-] +(q, W)Q —ab, W)R-
By using the coerciveness of a,, [6] and by some mathematical

computation, we obtain that

2 C C
I Uhag — Uog ”V < T” 11, (”(xg) — Ugg "V < rhr I Uog ”r u
a a

Now, we consider the continuous optimal control problem which
was established in (1.5) and we establish the following discrete distributed

optimal control problem (B, ):
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Find g,, € H such that

. o1 2 M 2
Tha(&opy, ) = min Tho(g) = ?6125” unag Iy + =1 &l (2.5)

where 1,4, is the unique solution of the elliptic variational inequality (2.1)
for a given control g € H and a given parameter o > 0. We remark that the
discrete (in the space) distributed optimal control problem (B, ) is still an

infinite dimensional optimal control problem since the control space H is not
discretized.

Theorem 2.2. For the control g € H, the parameters o >0 and

h > 0, we have:

(@ lim  Jy(g) =
Il

(b) Jpolg) = %” g ||%1 —-C| gl for some constant C independent of
h > 0.

(¢) The functional Jj is a lower weakly semi-continuous application
in H.
(d) For each h >0 and o > 0, there exists a solution of the discrete

distributed optimal control problem (2.5).

Proof. From the definition of J, (g), we obtain (a) and (b).
(c) Let g, — g in H weak. Then by using the equality | g, ||%_[ =
2 2 .
lgn =2l =1 gl +2(gns &)y We obtain that

I &l < timinf, ool gn |-

Therefore, we have
.. 1 2 M 2
liminf J0(2,) 2 2 g By + 2 g I3y = Jia().
n—»©0

(d) It follows from [17]. O
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Lemma 2.3. If the continuous state system has the regularity uq,, €

H (Q)(1<r<2) for ge H and o >0, then we have the following

estimation Vg € H:

r—1
| Jhoc(g) - Joc(g) | < C(Ot)h 2 > (2-6)

where C is a positive constant independent of h > 0.

Proof. It follows from the definition of Jj, and by (2.4). U

Remark. In general, the solution of the discrete optimal control problem
(2.5) is not unique. Following [21], we can also define an open problem, for

each o > 0, in order to have the uniqueness (see (39)-(42) and Remarks 8
and 9 in [21]).

3. Results of Convergence

3.1. Convergence when 7 — 0

Theorem 3.1. Let uy, € K, NH'(Q) (1<7<2) and upyy € Ky,

be the solutions of the elliptic variational inequalities (1.3) and (2.1),

respectively, for the control g € H. Then ujqg —> tigg in Vwhen h — 0",

og
Proof. Similarly to the part (a) of Lemma 2.1, we can show that there

exists a constant C > 0 such that | ugg [, < C, Vh > 0. Therefore, we

conclude that there exists Mg € V' so that w4, — Mg in V' (in H strong)

as h — 0% and 1 € K,. On the other hand, given v € K, let v, = II(v)
e K, for each & such that v, — v in V when % goes to zero. Now, by
considering v;, € K, j in the discrete elliptic variational inequality (2.1), we
get:

aq (Unogs Vi — Uhag) = (& Vi = Unog )y = (4> Vi = Uhag g

+ Ot(b, vy — uhag)R (31)
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and when we pass to the limit as 7 — 0% in (3.1) by using that the bilinear

form a is lower weak semi-continuous in ¥, we obtain:
a(x(now V= n(x) 2 (g, V= %)H - (q, V= n(x)Q
+a(b,v-mg)p, Yvek,

and from the uniqueness of the solution of the discrete elliptic variational
inequality (1.3), we obtain that n = u,.

Now, we will prove the strong convergence. As a consequence of

Lemma 2.2, by passing to the limit when # — 0" in the inequality (2.4), it
results:

hl_l)rg+|| Uhag — Uog ”V = 0. O

Theorem 3.2. Let Uog,, € K, be the continuous state system associated

to the optimal control 8op, €H which is the solution of the continuous

distributed optimal control problem (1.5). If, for each h > 0, we choose
a discrete optimal control 8opp €H which is a solution of the discrete

distributed optimal control problem (2.5) and its corresponding discrete

state system Uhogp,, € K, j, we obtain that
o

—>u in V strong when h — 0" 3.2)

uhagOPha CEopg
and

Soppe, > Sopg, in H strong when h — ot (3.3)

Proof. Now, we consider a fixed value of the heat transfer coefficient
a>0. Let #>0 and g,, be a solution of (2.5) and Uhag,,, its
o

associated discrete optimal state system which is the solution of the problem
defined in (2.1) for each 2 > 0. From (2.3), we have that for all g € H,

1 2 M 2
Jh(x(gopha) < E" Uphog ”H + 7” g "H
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Then, if we consider g = 0 and uy, its corresponding associated state

system, then it results that
1 2
Tha(&opyy ) < §|| Upoo |l

Since || upqq ||y < C, Vh, we can obtain:

1
gy I < C 20| €0y, Iy <= C.

If we consider v;, = b € K, in the inequality (2.1) for Zoppa > then we

obtain, because of the coerciveness of the application a:

| thagyy, b < C.

where the constant C is independent of the parameter # and o > 0. Now we

can say that there exist n, € V' and f, € H such that Uhagyp,, — Mo inV

weak (in H strong), and 8oppe, /., in H weak when & — 0*. Moreover,

Mo € K. Then, as in Theorem 3.1, we can obtain that ng = . .

By using that the functional cost J is semi-continuous in A weak (see
[5]) and Theorem 3.1, it results that f = Uogp, and n, = U -
Now, we consider v = Uhag,,, € K., < K, in the system (S,) with
control g,, , and v, =11, (uago,;a) in the discrete system (S}, ) for the

control g,, —and define w; = Uhagpy . After some mathematical

B uagOPa

work, we obtain that

ag (W, wy) < _aoL(uhOLgophOL » I, (”‘cxgopOL ) - “agop,, )

+ (q’ I, (u(}‘g()pOL ) h uagopa )Q B (X(b, Y (uagopa ) B uagOPot )R

+ (gopha > Hh(uagopa ) - Yhagp, ) (gol’a W)
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From the coerciveness of the application a,, and Uhagop, > Yagop
a o

in H and Hh(uagopa ) u in H, we obtain that |wy [, = 0 if

AEopg,

h — 0. Thus, (3.2) holds. It is easy to see that (3.3) holds too. O

3.2. Convergence when o — ©

Now, under the same hypothesis in Section 1, we consider the following

free boundary system [5]:
u>0; u(-Au-g)=0, -Au-g=>0inQ; (3.4
u=>bonljy; —a—uzqonF. (3.5)
1> on 2

The variational formulation of the above problem is given as (S). Find

ug € K such that

a(u,v—ug)z(g,v—ug)H—(q,v—ug)Q, Vv ek, (3.6)

where

K={eV:v20inQ, v/} = b}.

In [5], the following continuous distributed optimal control problem (P)
associated with the elliptic variational inequality (3.6) was considered: Find

the continuous distributed optimal control g,, € H such that
. 1 2 M 2
J = min J(g) = min = | u + = 3.7
(gop) ool (g) getl 2 I g ”H 2 ||g||1-1 (3.7)

as in (2.5) with M >0 a given constant and u, is the corresponding

g
solution of the elliptic variational inequality (3.6) associated to the control
g € H. Therefore, as in Section 2, we define the discrete variational

inequality formulation (Sj,) of the system (S) as follows: Find u,, € K,
such that

a(uhg’ Vh — uhg) 2 (gs Vp — uhg)]—] - (q’ Vi — uhg)Qa vvh € Kh’ (3.8)
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where
Kh Z{Vh th v ZOinQ, vh/Fl Zb}

The corresponding discrete distributed optimal control problem (P,) of
the continuous distributed optimal control problem (P) is defined as: Find

the discrete distributed optimal control 8op, € H such that
— mi _ o 1 2 My 2
T(8op, ) = min Jy(g) = min 5 | uyg [y + 571 2 I (3.9)

where u he is the solution of the elliptic variational inequality (3.8).
Theorem 3.3. (i) Let g € H and q € Q. Then there exists a unique
solution of elliptic variational inequality (3.8).
(i1) There exists a solution of the discrete optimal control problem (3.9).

Proof. (i) It follows from the application of Lax-Milgram Theorem
[16, 17].

(i1) It follows from [21]. U

Theorem 3.4. Let g € H, g € Q and h > 0. Then we have

limg oo Upog = g [y =0
Proof. Without loss of generality, we consider o > 1 and we define
W = Upge — Upg € V. By definition of a,, we have:
ag(w, w)—aj(w, w) = (e —1)| w ||§e
After mathematical work, we obtain that
ay(w, w) <ay(w, w)+ (a—1)| w||?e <(g.w)y —(g. W)Q —a(upg, w) (3.10)
and by coerciveness of a;, it results that

C

2
| tuhog = ung I < =7

and ujq, — uje in I, when o — oo,



170 Mariela C. Olguin and Domingo A. Tarzia

Moreover, as a consequence of (3.10), we obtain that || upg, [, < C

(C constant independent of o and /). Then there exists n € V' such that
Upgg — M in V (in H strong).
Then the strong convergence in V is obtained similarly to the one in Theorem
3.1 O
Theorem 3.5. If, for each h > 0, we choose 8oppe € H a solution of

the optimal control problem (P, ) and consider its respective discrete state

system Uhogopy, € K}, the solution of (2.1), then we obtain that

Uhag,, > Ui in Vwhen o — o (3.11)

and

Zoppe, > Jn in Hwhen o — oo, (3.12)
where f;, € H is a solution of the discrete optimal control problem (P,)
and Upg, IS s corresponding discrete state system solution of the
variational inequality (3.8).

Proof. As in Theorem 3.2, we have

1

" uh(xgopha ”H < C and " Eoppa ”H < WC, Yh.

Now, considering v, = b in (2.1) (and we take a > 1 without loss of
generality) for the control g,, —and wy, =b - Uhagyp, > WE obtain:
a(thag,,, » Wi) = (Qoppes W) = (9> i) + albs i),
that is to say:
ay(=wp wi) + a1 (b, Wi ) 2 (8opye - Wi = (@ wi)g + (o =1)]|wy, [ (3.13)
By the coerciveness of the application ay, it results that

| thag,,, Iy <C. Va>o. (3.14)
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Moreover,

C
I Uhogope, ”R = -1 Va > 0. (3.15)

Then there exist f, € H and n;, € V (we can see that 1, € K},) such that

Soppy, — Sn mH (3.16)
and
Uhagy,, M in V (in H strong). (3.17)
Letting v, € K, < K}, and given wy, = v;, — Uhag,,, » We have:

aa(uh(xgopha > Wh) = (gopha’ Wh )H - (C], Wh )Q + Ot(b, Wh )Ra

a(”hagapha , W) 2 (gopha’ Wh )H — (g, wy )Q +a(b - Uhagop,e > " )R

and because of (3.16), (3.17) and similar arguments given in Theorem 3.2,
and the fact that the application « is semi-continuous in ¥ weak, we obtain
that m; is a solution of (3.8) for the control f;. Then (by item (i) in

Theorem 3.3), n = uyy, .
If we consider v, =uy; € Ky < Ky in (2.1) for the control
8opy,, € H and wy =wyp — Uhagyy, > then:
aq(Uhag,,, + Wi) = (Gopyys Wider = (4> wi)g + alb, wy)p,
ay(wy, wy) < ay(upg, s W) = (8oppe» Wil + (@, Wig
—aUb, wy)p + (a0 - 1)(uhag0pha9 W) g

Again, as a consequence of the coerciveness of the application a; and by
(3.16), (3.17), it results (3.11).

Now we see that f, is a solution of (2.5): because of Theorem 2.2(c),

and by the definition of optimum:
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Jp(fp) € lim Jyq(8op,, ) < im Jyq(g), Vg € H,
o —>0 oL—>0

and by Theorem 3.4, we conclude that

Ju(fn) < Jy(g), Vg eH.

Finally, we see that

Jp(fp) < lim Jhot(gopha) < Jy(g), VgeH,
oL—>0
then, if we consider g = f:
ali_l;noo‘]hot(gopha) = Jh(fh)

and, because of (3.11),

i | gy I =17 L G189
then, by using (3.16) and (3.17), we obtain (3.12). O

Now, following the idea given in [26], we have this final theorem:
3.3. Double convergence when (4, o) — (0", o)

Theorem 3.6. If, for each h > 0, we choose 8oppe € H a solution of

the optimal control problem (P,,) and we consider its respective discrete

state system Uhagp,, € K}, which is the unique solution of (2.1), then we
o

obtain that

> g, in Vwhen (h, o) = (07, ) (3.19)

uhagOPh(x 8o
and
Zoppy, — Lop in Hwhen (h, a) — (07, »), (3.20)

where g,, € H is the solution of the optimal control problem (P) and Ug,,

is its corresponding state system solution of the variational inequality (3.6).
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Proof. As in Theorem 3.2, there exists u” €V with u"/T} =b and

g" € H such that
Uhagop, u” (strong in H) (3.21)
and
Zophy — & (3.22)

when (4, @) — (07, ) in both cases. Let v € K be such that v/T} = b.
We consider v, = I1,(v) € K,j in the state system (2.1) and we define

Wi =V~ Uhog,, - Then we obtain
(tpag,, > Wh) = (&ope> Wi)u = (4 Wh)p-

Because the application a is semi-continuous weak in V and w;, — v—u"in
H when (h, o) = (0, ), it results that u” is a solution of (3.6). But this

problem has a unique solution, then we conclude that u* = ug*. Moreover,
we have that

dg (”hotgopha ~ U Hhogop,, T ug*) < (8opy “hogopp,, H(ug* Vi

+ (Qs ”hagopha - H(ug* ))Q + Ot(b, uhagOPha - H(ug* ))R
- aa(ug*  Uhog,, H(ug* ) + aa(uhagopha , H(ug*) - ug*)
- %y IT * ) — * ).
gt o, Tl ) =1 )
Because of the coerciveness of the application a, in V and by (3.21) and
(3.22), we obtain (3.19) when (%, o) — (0%, ).

As the functional Jj, is lower weakly semi-continuous in / (Theorem

2.2) and (3.22), we obtain that Zoppy, — Lop-
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We also have that 1im, o) (0,00) /e (&opy, ) = /(&0p)> and then
M, ) (0,00)| €oppg |z =1 &op 7> and by (3.22) and (3.20), the thesis

holds. O

4. Conclusion

In conclusion, by using the previous results given in [S] and [21], we
obtain the following commutative diagram among the two continuous

optimal control problems (P) and (P,), and two discrete optimal control

problems (P,) and (P,,) when 7 — 0, o — o and (, o) > (07, ),

which can be summarized by the following figure (Figure 1):

Problem (P, ) Problem (P)

grz”!, * ”r:gu”!_ # Jtz (ga‘,ﬂ ) (a —2 +OO) gup‘ ”gw, "J(gnp)

(h,a) — (0,+0)

(h—07) I I(h—ﬂ)*)

ghr{w » “h{rgmop > Jhr: (glfm_q. ) g.frﬂr_ 2 “!’-‘x’h,,). » Jh (gh{‘{. )

(a > +»0)

—_—

Problem(5,, ) Problem (7,)
Figure 1. Complete diagram of convergence.
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