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Abstract— We consider one-dimensional
two-phase Stefan problems for a finite sub-
stance with different boundary conditions at
the fixed faces. The goal of this paper is to de-
termine the behavior of the free boundary and
the temperature when the thermal coefficients
of the material change.

We obtain properties of monotony with re-
spect to the latent heat, the common mass den-
sity, the specific heat of each phase and the
thermal conductivity of the liquid phase.

We show that the solution is not monotone
with respect to the thermal conductivity of
solid phase, in some cases, by computing a
numerical solution through a finite difference
scheme.

The results obtained are important in techno-
logical applications as the climate of buildings,
the storage of energy in satellites and clothes
and the transport of biological substances and
telecommunications.

Keywords— Phase change material, Two
phase Stefan problem, Finite difference method

I. INTRODUCTION

Several technological applications can be modeled
through heat transfer problems with phase-change.
The Phase Change Materials (PCMs) are substances
whose phase-change temperature make them available
to moderate oscillations of temperature and to store
energy of another substance in contact with them (Jiji
and Gaye, 2006). For this reason PCMs are used for
the climate of buildings, the storage of energy in satel-
lites and clothes and the transport of biological sub-
stances (Asako et al., 2002; Lamberg and Sirn, 2003),
among a variety of applications.

Usually, the technological way to select a PCM is
through its phase-change temperature, but when there

are several products in the correct range of tempera-
ture, it is necessary to study another properties of the
substance, for example the thermal coefficients, in or-
der to choose the most convenient PCM.

When we consider a packaging of a PCM that re-
covers an organic substance to be transported, it is
essential to find the thickness of this pack to insure
the optimal temperature of conservation in the organic
substance during total time of transport (Bouciguez et
al., 2001; Farid et al., 2004; Medina et al., 2004; Zalba
et al., 2003; Zivkovic and Fujii, 2001). Because the
sizes of the pack (wide, length and height) are suffi-
ciently greater than its thickness, we can assume that
the heat transfer occurs in only one direction. More-
over, if we consider a material with one portion at
solid state and the other at the liquid state, and take
into account the environment conditions, we have an
one dimensional two-phase Stefan problem (Lamberg,
2004; Lamberg et al., 2004).

In Olgúın et al. (2007), we considered a one-
dimensional one-phase Stefan problem for fusion of a
semi-infinite material. We showed that, both, the tem-
perature and the free boundary present a monotonous
behavior with respect to the latent heat, the mass den-
sity and the specific heat. We also showed that the
solution is not monotone with respect to the thermal
conductivity.

At the present work we continue this line of research.
We consider several two-phase one-dimensional Stefan
problems for a finite material, with different boundary
conditions at the two fixed faces, in order to deter-
mine the behavior of the solutions when the thermal
coefficients change.

In Section 2 we study a phase-change problem with
temperature specification on both fixed faces of the
finite material and we obtain results of monotony for
latent heat, mass density, specific heat of the solid and
the liquid phase, and thermal conductivity of the liq-
uid phase, by using the maximum principle (Protter
and Weinberger, 1967).
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Analogous results are obtained in Section 3, by con-
sidering heat flux specification at both fixed faces of
the finite material and, in Section 4, with tempera-
ture specification at the left fixed face and a heat flux
specification at the right fixed face.

When we consider the thermal conductivity of the
solid phase, it was not possible to establish analytical
results of monotony. In order to obtain some conclu-
sion for this case, in Section 5 we consider a numer-
ical solution. Since the free boundary change with
time, the domain of the problems is variable, then it is
necessary to develop a particular scheme with a time
variable mesh. We can show that, in some cases, the
solutions are not monotone.

II. PROBLEM WITH TEMPERATURE
BOUNDARY SPECIFICATION AT

BOTH FACES

A. Mathematical problem and preliminary
results

We consider a finite material represented by the in-
terval [0, 1]. At the initial time, we suppose that one
portion of the material is at solid phase and the other
is at liquid phase. If we consider that s(t) is the posi-
tion of the free boundary at each time and

w(x, t) =
{

u(x, t) 0 ≤ x ≤ s(t), 0 ≤ t ≤ T,
v(x, t) s(t) ≤ x ≤ 1, 0 ≤ t ≤ T,

is the temperature of the material, the problem (P1)
is to find functions w(x, t), s(t) and a time T > 0, so
that they satisfy the following conditions:

αl uxx = ut, 0 < x < s(t), 0 < t < T, (1)

αs vxx = vt, s(t) < x < 1, 0 < t < T, (2)

u(0, t) = f(t) > 0, 0 < t < T, (3)

v(1, t) = g(t) < 0, 0 < t < T, (4)

u(s(t), t) = v(s(t), t) = 0, 0 < t < T, (5)

ksvx(s(t), t) − klux(s(t), t) = ρ�s′(t), 0 < t < T, (6)

u(x, 0) = ϕ(x) ≥ 0, 0 ≤ x ≤ b, (7)

v(x, 0) = ψ(x) ≤ 0, b ≤ x ≤ 1, (8)

s(0) = b, 0 < b < 1, (9)

where αi = ki

ρ ci
is the thermal diffusivity of the phase

i (i = s, l) and ϕ(b) = 0 = ψ(b) (see Fig.1).
In Cannon and Primicerio (1971), Tarzia (1987) and

Cannon (1984), under suitable hypothesis for data, it
was proved that:
∗) there is a unique solution for problem (P1) for all
T > 0;
∗∗) the Stefan condition (Eq.6) is equivalent to the
integral equation:

s(t) = b +
∫ 1

0

Φ(x)dx − cl

�

∫ s(t)

0

u(x, t)dx
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Figure 1: Scheme of the problem (P1)

−cs

�

∫ 1

s(t)

v(x, t)dx +
ks

ρ�

∫ t

0

vx(1, τ)dτ

− kl

ρ�

∫ t

0

ux(0, τ)dτ t ≥ 0 (10)

where

Φ(x) =
{

cl

� ϕ(x), 0 ≤ x ≤ b,
cs

� ψ (x), b < x ≤ 1.

B. Analytical results of monotony

In this Section we use the maximum principle, Hopf’s
lemma (Protter and Weinberger, 1967; Cannon, 1984)
and the result of the following Lemma, when it is
required, in order to establish some properties of
monotony for the solution of problem (P1).

Lemma 1 Let w be the solution of (P1). Then:
i) ux(s(t), t) < 0 and vx(s(t), t) < 0 for t > 0;
ii) If the function f(t) is continuously differentiable

for t > 0 and ϕ(x) is twice continuously differentiable
at 0 < x < b, f ′(t) ≤ 0 and ϕ′′(x) ≥ 0 then
uxx(x, t) ≥ 0 for 0 < x < s(t), 0 < t < T .

iii) If g(t) is continuously differentiable for t > 0
and ψ(x) is twice continuously differentiable at
b < x < 1, g′(t) ≥ 0 and ψ′′(x) ≥ 0 then vxx(x, t) ≥ 0
for s(t) < x < 1, 0 < t < T .

Proof.
i) The results are obtained when the maximum prin-

ciple and Hopf’s lemma are applied to functions u and
v respectively.

ii) We define the auxiliary function z = uxx which
verify the associated problem

zt = αl zxx, 0 < x < s(t), t > 0,
z(0, t) = 1

αl
f ′(t) t > 0,

z(x, 0) = ϕ′′(x) 0 < x < b,
z(s(t), t) ≥ 0, t > 0,
s(0) = b.

By using the maximum principle, we obtain z ≥ 0.
iii) The proof follows (ii) by defining now the aux-

iliary function z = vxx.
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Proposition 2 The solution {w(x, t), s(t)} of prob-
lem (P1) depends monotonically on the latent heat �,
the mass density ρ, the specific heat ci (i = s, l) and
the thermal conductivity of the liquid phase kl.
Proof. The five results are similar but the proofs are
different because we must change the coefficients only
in the Stefan condition for the latent heat �, only in
the heat equation for the specific heats ci(i = s, l) and
in both equations in the remaining cases.
a) We consider �1 < �2. We call {w1, s1}, {w2, s2}
the solutions of problem (P1) with � = �i and si(0) =
bi for i = 1, 2. We consider two cases: s1(0) > s2(0)
and s1(0) ≥ s2(0).

Case I: Let b1 = s1(0) > s2(0) = b2. We suppose
t0 is the first time such that s1(t0) = s2(t0) and s2(t) <
s1(t) for all 0 < t < t0. Because of that, it must occur
(Fig.2):

s
′
1 ( t0) ≤ s

′
2 ( t0) (11)

If we define the functions{
U(x, t) = u1(x, t) − u2(x, t), 0 ≤ x ≤ s2(t),
V (x, t) = v1(x, t) − v2(x, t), s1(t) ≤ x ≤ 1,

for 0 ≤ t ≤ t0, then U satisfies the following condi-
tions:

Ut − αl Ux,x = 0, 0 < x < s2(t), 0 < t < t0, (12)

U(0, t) = 0, 0 < t < t0, (13)

U(x, 0) = 0 0 ≤ x ≤ b2, (14)

U(s2(t), t) = u1(s2(t), t) > 0, 0 < t < t0, (15)

s2(0) = b2. (16)

By the minimum principle, condition (Eq.15) holds
and then U ≥ 0 in 0 ≤ x ≤ s2(t), 0 ≤ t ≤ t0. At the
point x = s1(t0) = s2(t0),we have U(s2(t0), t0) = 0,
therefore U attains a minimum at (s2(t0), t0). By the
Hopf’s lemma, we have

Ux (s2(t0), t0) < 0. (17)

On the other hand, the function V , satisfies the
following conditions:

Vt − αsVxx = 0, s1(t) < x < 1, 0 < t < t0, (18)

V (s1(t), t) = −v2(s1(t), t) > 0, 0 < t < t0, (19)

V (x, 0) = 0, b1 ≤ x ≤ 1, (20)

V (1, t) = 0, 0 < t < t0, (21)

s1(0) = b1. (22)

In a similar way as above, we obtain that V (x, t) ≥ 0
in s1(t) ≤ x ≤ 1, 0 ≤ t ≤ t0.Taking into account
that V (s1(t0), t0) = 0, then V has a minimum at
(s1(t0), t0) and from the Hopf’s lemma, it results

Vx (s1(t0), t0) > 0. (23)

But, from the Stefan condition (Eq.6), (Eq.11) and
(Eq.17) we obtain:
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Figure 2: Free boundaries for �1 < �2

Vx(s1(t0), t0) = v1x(s1(t0), t0) − v2x(s2(t0), t0)
= ρ

ks
[�1s

′
1 (t0) − �2 s

′
2(t0)] + kl

ks
Ux(s2(t0), t0)

< ρ �1
ks

[s
′
1(t0) − s

′
2(t0)] + kl

ks
Ux(s2(t0), t0) < 0,

which is a contradiction with (Eq.23). Then we con-
clude that:⎧⎨

⎩
s1(t) > s2(t),
u1(x, t) ≥ u2(x, t), 0 ≤ x ≤ s2(t),
v1(x, t) ≥ v2(x, t), s1(t) ≤ x ≤ 1

for 0 ≤ t ≤ T .
Case II:We consider now b1 = s1(0) ≥ s2(0) = b2.

Let δ > 0,then b2 ≤ b1 < b1 + δ. Let w
δ
, s

δ
be the

solution of (P1) whit latent heat �1 and sδ(0) = b1 + δ
in (Eq.9). We define the functions ϕδ and ψδ on the
intervals[0, b1 + δ] and [b1 + δ, 1]respectively by:

ϕδ(x) = ϕ
( b1 x

b1 + δ

)

and

ψδ(x) = ψ
( (1 − b1)x − δ

1 − b1 − δ

)
.

From case I, we have that:

s2(t) < sδ(t) ∀ t ≥ 0.

Taking into account the Stefan condition (Eq.10) for
s1 and sδ, and from Case I, it results that:

[sδ(t)−s1(t)] = δ+ 1
ρ�1

∫ t

0
ks[vδx(1, τ)−v1x(1, τ)]dτ−

1
ρ �1

∫ t

0
kl[uδx(0, τ) − u1x(0, τ)] dτ

− cl

�1

[∫ sδ(t)

0
uδ(x, t) dx − ∫ s1(t)

0
u1(x, t) dx

]
+

cs

�1

[∫ 1

s1(t)
v1(x, t) dx − ∫ 1

s
δ
( t)

v δ(x, t) dx
]

+ cl

�1

[∫ b1+δ

0
uδ(x, 0) dx − ∫ b1

0
u1(x, 0) dx

]
+

cs

�1

[
− ∫ 1

b1
v1(x, 0) dx +

∫ 1

b1+δ
v δ(x, 0) dx

]

< δ + 1
ρ �1

∫ t

0
ks

[
v

δx(1, τ) − v1x(1, τ)
]
dτ −

1
ρ�1

∫ t

0
kl

[
u

δx
(0, τ) − u1x(0, τ)

]
dτ

+ cl

�1

[∫ b1
0

[
ϕ

δ
(x) − ϕ(x)

]
dx +

∫ b1+δ

b1
ϕδ (x) dx

]
+

cs

�1

[∫ 1

b1+δ

[
ψ

δ
(x) − ψ(x)

]
dx − ∫ b1+δ

b1
ψ (x) dx

]
.
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If we apply again the maximum principle and Hopf’s
lemma, we can see that:
v

δx(1, τ) − v1x(1, τ) < 0 and u
δx

(0, τ) − u1x
(0, τ) > 0,

then
sδ(t) − s1(t) < δ + cl

�1

[∫ b1
0

[
ϕ

δ
(x) − ϕ(x)

]
dx +∫ b1+δ

b1
ϕδ(x)dx

]
+ cs

�1

[∫ 1

b1+δ

[
ψ

δ
(x) − ψ(x)

]
dx +∫ b1+δ

b1
ψ (x) dx

]
, ∀ δ > 0,

which implies
s2(t) < sδ(t) < s1(t) + δ + cl

�1

∫ b1
0

[
ϕ

δ
(x) − ϕ(x)

]
dx +

cl

�1

∫ b1+δ

b1
ϕδ (x) dx − cs

�1

∫ 1

b1+δ

[
ψ

δ
(x) − ψ(x)

]
dx

− cs

�1

∫ b1+δ

b1
ψ(x)dx, ∀ δ > 0.

Taking the limit when δ → 0, we have that s2 ≤ s1

in the common domain of existence. To complete the
proof, we consider for i = 1, 2

wi(x, t) =
{

ui(x, t) 0 ≤ x ≤ si(t), 0 < t < T ;
vi(x, t) si(t) ≤ x ≤ 1, 0 < t < T.

As we have seen before, w1 − w2 ≥ 0 for 0 ≤ x ≤
s2(t) and s1(t) ≤ x ≤ 1. For s2(t) ≤ x ≤ s1(t),
we have w1(x, t) − w2(x, t) = u1(x, t) − v2(x, t) ≥ 0,
because u1 ≥ 0 and v2 ≤ 0 and the thesis holds.
b) Now, we consider that the thermal conductivity of
the liquid phase changes. Let kl1 < kl2 and we note
as {w1, s1}, {w2, s2} the solutions of problem (P1)
with kl = kli and si(0) = bi for i = 1, 2. As before, we
consider two cases: s1(0) > s2(0) and s1(0) ≥ s2(0).

Case I: b1 = s1(0) < s2(0) = b2 and t0 is the
first time such that s1(t0) = s2(t0), then we have (see
Fig.3):

s
′
1(t0) ≥ s

′
2(t0). (24)

If we define the function{
U(x, t) = u2(x, t) − u1(x, t), 0 ≤ x ≤ s1(t), t ≥ 0,
V (x, t) = v2(x, t) − v1(x, t), s2(t) ≤ x ≤ 1, t ≥ 0,

we see that U satisfies the following conditions:

Ut − kl2

ρcl
Uxx ≥ 0, 0 < x < s1(t), 0 < t < t0, (25)

U(0, t) = 0, 0 < t < t0, (26)

U(x, 0) = 0, 0 ≤ x ≤ b1, (27)

U(s1(t), t) = u2(s1(t), t) − 0 > 0, 0 < t < t0, (28)

s1(0) = b1. (29)

The inequality (Eq.25) is a consequence of part (ii)
of Lemma 1, while the condition (Eq.28) is obtained
from the minimum principle and then we conclude
that U ≥ 0 in 0 ≤ x ≤ s1(t), 0 ≤ t ≤ t0. At
x = s1(t0) = s2(t0), we have U(s1(t0), t0) = 0, then
U has a minimum at (s1(t0), t0) and from the Hopf’s
lemma, it results

Ux(s1(t0), t0) < 0. (30)

On the other hand, the function V satisfies the follow-
ing conditions:

Vt − αsVxx = 0, s2(t) < x < 1, 0 < t < t0, (31)

 

)(1 ts  )(2 ts  

t  
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V 

Figure 3: Free boundaries for kl1 < kl2

V (s2(t), t) = −v1(s2(t), t) > 0, 0 < t < t0, (32)

V (x, 0) = 0, b2 ≤ x ≤ 1, (33)

V (1, t) = 0, 0 < t < t0, (34)

s2(0) = b2. (35)

In the same way as above, we have that V (x, t) ≥ 0
in s2(t) ≤ x ≤ 1, 0 ≤ t ≤ t0. Since V (s2(t0), t0) =
0, V has a minimum at (s2(t0), t0)and from Hopf’s
lemma, it results

Vx(s2(t0), t0) > 0. (36)

Therefore, from the Stefan condition
(Eq.6), (Eq.24), (Eq.30) and Lemma 1 (i) we have:
Vx(s1(t0), t0) = v2x(s1(t0), t0) − v1x(s1(t0), t0)

= ρ�
ks

[s
′
2(t0) − s

′
1(t0)] +

[
kl2
ks

Ux(s1(t0), t0)

+ kl2−kl1
ks

u1x (s1(t0), t0)
]

< 0,

which is a contradiction with (Eq.36). Then we con-
clude that:⎧⎨
⎩

s1(t) < s2(t),
u1(x, t) ≤ u2(x, t), 0 ≤ x ≤ s1(t),
v1(x, t) ≤ v2(x, t), s2(t) ≤ x ≤ 1

for 0 ≤ t ≤ T .
Case II: Let b1 = s1(0) ≤ s2(0) = b2. Let δ > 0,

then b1 ≤ b2 < b2 + δ. We note {wδ, sδ} the solu-
tion of the problem (P1) with thermal conductivity of
liquid phase kl2 and sδ(0) = b2 + δ. We define the
functions ϕδ and ψδ on the intervals

[
0, b2 + δ

]
and[

b2 + δ, 1
]
respectively by:

ϕδ(x) = ϕ
(

b2 x
b2+δ

)
and ψδ(x) = ψ

(
(1−b2) x−δ

1−b2−δ

)
.

From case I, we have that:

s1(t) < sδ(t) ∀ t ≥ 0.

From the Stefan integral condition (Eq.10) for s2 and
sδ and Case I we obtain:

[sδ(t)−s2(t)] = δ+ 1
ρ�ks

∫ t

0

[
vδx(1, τ)−v2x(1, τ)

]
dτ+

1
ρ� kl2

∫ t

0

[
u2x(0, τ)− uδx(0, τ)

]
dτ − cl

�

∫ s2(t)

0

[
u

δ
(x, t)

−u2(x, t)
]
dx− cl

�

∫ sδ(t)

s2(t)
uδ(x, t)dx+ cs

�

∫ 1
sδ(t)

[
v2(x, t)
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−vδ(x, t)
]
dx+ cl

�

∫ sδ(t)

s2(t)
v2(x, t)dx+ cl

�

[∫ b2+δ

0
ϕ

δ
(x)dx

− ∫ b2
0

ϕ(x)dx
]

+ cs

�

[∫ 1

b2+δ
ψδ(x) dx − ∫ 1

b2
ψ(x)dx

]
.

If we apply the maximum principle and Hopf’s
lemma, we obtain that[

vδx(1, τ) − v2x(1, τ)
]

< 0 and[
u2x(0, τ) − uδx(0, τ)

]
< 0

and consequently:
sδ(t) − s2(t) <

δ + cl

�

[∫ b2+δ

0
ϕ

δ
(x)dx − ∫ b2

0
ϕ(x)dx

]
+

cs

�

[∫ 1

b2+δ
ψδ(x) dx − ∫ 1

b2
ψ(x) dx

]
, ∀ δ > 0.

When δ tends to zero, we obtain that s1(t) ≤ s2(t)
in the common domain of existence.

c) By a similar argument as above, applying the
maximum principle and the Hopf’s lemma when it is
necessary, we obtain the thesis taking into account that
in this case the specific heat of each phase changes. We
must consider that in this situation the heat equations
(Eq.1) or (Eq.2) are affected.

d) As in c), when the mass density changes, we can
show the monotony considering that the heat equations
(Eq.1), (Eq.2) and also the Stefan condition (Eq.6)
are affected.

III. PROBLEM WITH FLUX BOUNDARY
SPECIFICATION AT BOTH FACES

A. Mathematical problem and preliminary
results

We consider a similar problem to (P1), but on
x = 0 and on x = 1 the conditions (Eq.3) and
(Eq.4) are replaced by heat flux conditions respec-
tively. Then, we define the problem (P2) for equations
(Eq.1), (Eq.2), (Eq.5) − (Eq.9) and

klux(0, t) = f(t) ≤ 0, 0 < t < T, (37)

ksvx(1, t) = g(t) ≤ 0, 0 < t < T. (38)

In Tarzia (1987), Cannon (1971) and Cannon (1984)
under certain hypotheses, it was proved that: *) there
is unique solution for problem (P2) in 0 < t < T0, for
some T0 > 0;

**) the condition (Eq.6) is equivalent to the integral
equation for all t ≥ 0:

s(t) = b +
∫ 1

0

Φ(x) dx − cl

�

∫ s(t)

0

u(x, t)dx−

cs

�

∫ 1

s(t)

v(x, t) dx +
1
ρ �

∫ t

0

[
g(τ) − f(τ)

]
dτ, (39)

where Φ(x) =
{

cl

� ϕ(x) 0 ≤ x ≤ b,
cs

� ψ (x) b < x ≤ 1.

B. Analytical results of monotony

Proposition 3 Let {w(x, t), s(t)} be the solution of
(P2). It depends monotonically on the latent heat �,
the mass density ρ, the specific heat ci (i = s, l) and
the thermal conductivity of the liquid phase kl.

Proof.
a) When the latent heat � changes, we consider two

cases, as in the proof of Proposition 2:
Case I: b1 = s1(0) > s2(0) = b2 and
Case II: b1 = s1(0) ≥ s2(0) = b2.
In both cases we repeat the proof but we consider,

for the auxiliary functions U and V , the following flux
data:

Ux(0, t) = 0, 0 < t < t0,

Vx(1, t) = 0, 0 < t < t0.

In addition, in Case II, as before, we consider the
functions ϕδ and ψδ on the intervals

[
0, b1 + δ

]
and[

b1 + δ, 1
]
respectively by:

ϕδ(x) = ϕ
(

b1x
b1+δ

)
and ψδ(x) = ψ

(
(1−b1) x−δ

1−b1−δ

)
.

From the integral Stefan condition (Eq.39) for s1

and sδ and considering Case I we have:
[sδ(t) − s1(t)] =
δ + c

l

�1

∫ b1
0

[ ϕ
δ
(x) − ϕ(x)]dx + c

l

�1

∫ b1+δ

b1
ϕ

δ
(x)dx +

cs

�1

∫ 1

b1+δ
[ψδ(x) − ψ(x)]dx

− cs

�1

∫ b1+δ

b1
ψ(x)dx− cl

�1

[∫ s1( t)

0
[uδ(x, t)−u1(x, t)]dx+∫ s

δ
(t)

s1( t) uδ(x, t)dx
]

− cs

�1

[∫ 1

s
δ
( t)

[v δ(x, t) − v1(x, t)] dx −
∫ s

δ
(t)

s1(t)
v1(x, t)dx

]
≤ δ + c

l

�1

∫ b1
0

[ ϕ
δ
(x) − ϕ(x)]dx +

c
l

�1

∫ b1+δ

b1
ϕ

δ
(x)dx + cs

�1

∫ 1

b1+δ
[ψδ(x) − ψ(x)]dx

− cs

�1

∫ b1+δ

b1
ψ(x)dx, ∀δ > 0,

and consequently:
s2(t) < sδ(t) ≤
s1(t) + δ + c

l

�1

∫ b1
0

[ϕ
δ
(x)−ϕ(x)] dx + c

l

�1

∫ b1+δ

b1
ϕ

δ
(x)dx

+ cs

�1

∫ 1

b1+δ
[ψδ(x)− ψ(x)]dx− cs

�1

∫ b1+δ

b1
ψ(x)dx, ∀δ >

0.
Taking the limit as δ tends to 0, we obtain that s2 ≤

s1 in the common domain of existence. In order to
complete the proof, we continue as in a) of Proposition
2.

The proof of the Proposition 3 for the other param-
eters is analogous to the cases b), c) and d) of Propo-
sition 2.

IV. PROBLEM WITH TEMPERATURE
SPECIFICATION ON x = 0 AND FLUX

SPECIFICATION ON x = 1

A. Mathematical problem and preliminary
results

We consider a similar problem to (P1), but on x =
0 and x = 1 the conditions Eq.(3) and Eq.(4) are
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replaced by temperature specification and heat flux
condition respectively. Then, we define the problem
(P3) for e Eqs.(1), (2), (5 − 9) and

u(0, t) = f(t) > 0, 0 < t < T, (40)

ksvx(1, t) = g(t) ≤ 0, 0 < t < T. (41)

In this case, under suitable hypothesis, it can be
prove that the Stefan condition (Eq.6) is equivalent to
the following integral equation for all t ≥ 0:

s(t) = b +
∫ 1

0

Φ(x, 0)dx − cl

�

∫ s(t)

0

u(x, t)dx

−cs

�

∫ 1

s(t)

v(x, t)dx +
1
ρ�

∫ t

0

[
ksg(τ) − klux(0, τ)

]
dτ,

(42)

where Φ(x) =
{ c

l

� ϕ(x), 0 ≤ x ≤ b,
cs

� ψ(x) b < x ≤ 1.

B. Analytical results of monotony

Proposition 4 Let {w(x, t), s(t)} be the solution of
(P3). It depends monotonically on the latent heat �,
the mass density ρ, the specific heat ci(i = s, l) and
the thermal conductivity of the liquid phase kl.
Proof.

a) We consider that the thermal conductivity of the
liquid phase changes and, as in the proof of item b) of
Proposition 2(b), we take into account two cases:

Case I: b1 = s1(0) < s2(0) = b2 and
Case II: b1 = s1(0) ≤ s2(0) = b2.
We consider, for the auxiliary function V , a flux

specification:

Vx(1, t) = 0, 0 < t < t0,

and in Case II, as before, we consider the func-
tions ϕδ and ψδ on the intervals[0, b2 + δ] and [b2 +
δ, 1]respectively by:

ϕδ(x) = ϕ
(

b2 x
b2+δ

)
and

ψδ(x) = ψ
(

(1−b2)x−δ
1−b2−δ

)
.

From integral expression of the Stefan condition
(Eq.42) for s2 and sδ and Case I we have:
[sδ(t) − s2(t)] = δ + cl

�

∫ b2
0

[
ϕδ(x) − ϕ(x)

]
dx +

cl

�

∫ b2+δ

b2
ϕδ(x)dx − cs

�

∫ b2+δ

b2
ψ(x)dx

+ cs

�

∫ 1

b2+δ

[
ψδ(x) − ψ(x)

]
dx + 1

ρ � kl2

∫ t

0

[
u2x(0, τ) −

uδx(0, τ)
]
dτ

− cl

�

∫ s2(t)

0

[
u

δ
(x, t) − u2(x, t)

]
dx − cl

�

∫ sδ(t)

s2(t)
u

δ
(x, t)dx

+ cs

�

∫ 1
sδ(t)

[
v2(x, t) − v

δ
(x, t)

]
dx + cs

�

∫ sδ(t)

s2(t)
v2(x, t)dx.

By the maximum principle and the Hopf’s lemma,
we obtain

[
u2x(0, τ) − uδx(0, τ)

]
< 0

which implies that

sδ(t) − s2(t) ≤ δ + cl

�

∫ b2
0

[
ϕδ(x) − ϕ(x)

]
dx +

cl

�

∫ b2+δ

b2
ϕδ(x)dx − cs

�

∫ b2+δ

b2
ψ(x)dx

+ cs

�

∫ 1

b2+δ

[
ψδ(x) − ψ(x)

]
dx, ∀δ > 0,

and consequently, if δ → 0, we obtain s1(t) ≤ s2(t) in
the common domain of existence.

The proof for the other parameters is analogous to
the Proposition 2.

Remark: We can not obtain any conclusion,
through the maximum principle, about variations in
the thermal conductivity ks of the solid phase. This
case will be studied by a numerical approximation in
Section 5.

V. NUMERICAL SOLUTIONS AND
MONOTONY

A. Numerical scheme

In this section we propose a numerical method in or-
der to approximate the solution {w(x, t), s(t)} of the
problems P (q), for q = 1, 2, 3. Since the free bound-
ary change with time, the domain of the problem is
variable. The numerical solution of free boundary
problems of this type can be computed through differ-
ent methods: front-traking methods and front-fixing
methods (Zerroukat and Chatwin, 1994; Meyer, 1971;
Crank, 1984). In this paper, we develop a scheme with
a time variable mesh We propose a variable grid with
fixed time step and with a constant number of space
steps. These space steps will be update at each time
level so that the free boundary is located on a node of
the mesh (Fig. 4).

We consider a fixed time step Δt and:
∗) tj+1 = jΔt for j = 0, 1, .., N . (N number of time
intervals so that tN+1 ≤ T , time of coexistence of both
phases).
∗) For each time tj+1, we define a partition of [0, 1],
and we take m steps in each phase as follow:

- in the liquid phase:
Δxlj = sj

m , then xij = (i−1)Δxlj , i = 1, ...,m+1
- in the solid phase:

Δxsj = 1−sj

m , in consequence
xij = sj +(i−m−1)Δxsj , i = m+2, ..., 2m+1.

where sj � s(tj).
∗) wi,j+1 � w(xij , tj+1), , i = 1, .., 2m + 1, j = 0, .., N .
∗)(xm+1,j , tj+1) � (sj+1, tj+1) for j = 0, .., N .

We define the coefficients:
rl,j = αl

Δt
(Δxl,j)2

; β
l,i,j

= Δt (i−1)s′
j

mΔxl,j
;

rs,j = αs
Δt

(Δxs,j)2
; β

s,i,j
= Δt (2m+1-i) s′

j

1−sj

where, we note s′j � s′(tj), and in each phase we ap-
proach the heat equation by an explicit finite difference
scheme.

In order to approximate the distribution of temper-
ature in (0, 1) x (0, T ) we replace equations (Eq.1) and
(Eq.2) with j = 0, .., N by:

wi,j+1 = (rl,j − βl,i,j)wi+1,j

+(1 − 2rl,j + βl,i,j)wi,j + rl,jwi−1,j ; i = 2, .., m; (43)
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Figure 4: scheme for the time variable grid

wi,j+1 = (rs,j − βs,i,j)wi+1,j

+(1 − 2rs,j + βs,i,j)wi,j + rs,jwi−1,j ; i = m + 2, .., 2m.
(44)

In an analogous way, we make the approximations
of the boundary conditions:
for (P1): w1,j+1 = fj+1;

w2m+1,j+1 = gj+1. (45)

for (P2): w 1,j+1 =w2,j+1 − fj+1Δxl,j+1
kl

;

w2m+1,j+1 = w2m,j+1 +
gj+1Δxs,j+1

ks
. (46)

for (P3): w1,j+1 = fj+1;

w2m+1,j+1 = w2m,j+1 +
gj+1Δxs,j+1

ks
. (47)

We obtain the numerical solution through the fol-
lowing algorithm:
Step 1:
∗ Set the initial conditions and the boundary condi-
tions
∗ Choose Δt > 0 and m;
Step 2: Set j = 1

- compute Δxl,j ; Δxs,j ,
- evaluate s′j from the Stefan condition (Eq.6),
- wm+1,j+1 = 0 (temperature on the free boundary),
- compute wi,j+1 i = 2, .., m,m + 2, ..., 2m, from

(Eq.43) and (Eq.44),
- compute w1,j+1, w2m+1,j+1from (Eq.45), (Eq.46)

or (Eq.47) depending on the problem,
Step 3: While j ≤ N return to Step 2 with j = j +1;

Remark: Since we use an explicit scheme, we must
regard that the following four conditions are satisfied
at each step, in order to have a convergent method:
for j = 0, .., N

for i = 2, .., m
rl,j − βl,i,j > 0, 1 − 2rl,j + βl,i,j > 0,

for i = m + 2, .., 2m

0 100 200 300 400 500 600
0.50
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0.65

Time [ h ]
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 ) 
[ m

 ]

ks/9

ks/20

Figure 5: Free boundary position (t ≤ 600h)

rs,j −βs,i,j > 0, 1−2rs,j +βs,i,j > 0. The nu-
merical solutions obtained from the above algorithm,
are used to find counterexamples that show the non-
monotonicity of the solution with respect to the solid
thermal conductivity. For this reason, any analysis
about stability or convergence are done.

B. Numerical results

In order to analyze the monotony, we consider the nu-
merical solutions of problem (Pq) (q = 2, 3), for the
thermal coefficients of water (Alexiades and Solomon,
1996):
∗ mass density ρ = 1000 kg

m3 ;
∗ latent heat � = 334000 J

kg ;
∗ thermal conductivity of liquid phase kl = 0.58 W

mK ;
∗ thermal conductivity of solid phase ks = 2.24 W

mK ;
∗ specific heat of the liquid phase cl = 4185.5 J

kgC ;
∗ specific heat of the solid phase cs = 2090 J

kgC .

i) Problem (P2)
We consider the numerical solutions of problem (P2)

for two different values of the thermal conductivity of
the solid phase: 1

20ks,
1
9 ks. For the initial conditions

and the boundary conditions we take:
ϕ(x) = −76x + 38; ψ(x) = −8x + 4
f(t) = −10; g(t) = −8;
and we choose �t = 240seg and m = 25.
In Figure 5, we obtain a comparative graphic of the

free boundary positions and in Figure 6 we show the
temperature distribution at a fixed time t = 600hs.

We can observe that the free boundary position have
a monotone behavior but it does not occur for the
temperature distributions.

For the numerical solutions of the problem (P3) we
consider the same values of the thermal conductivity
of the solid phase as above. For the initial conditions
and the boundary conditions we take:

ϕ(x) = −140x + 70; ψ(x) = −8x + 4
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Figure 6: Temperature distribution at t = 600h

ii) Problem (P3)
f(t) = 70; g(t) = −8;

and we choose �t = 240seg. and m = 25.
In Fig. 7, we obtain a comparative graphic of the

free boundary positions, in Figure 8 we show the tem-
perature distribution at a fixed time t = 276hs and in
Figure 9 we zoom in Figure 8. We can observe that the
free boundary position have a monotone behavior but
it does not occur for the temperature distributions.

VI. CONCLUSIONS

It was showed, through the maximum principle, that
the solutions of two-phase one-dimensional Stefan
problems for finite domains, depend monotonically on
the latent heat, the mass density, the specific heat
of each phase and the thermal conductivity of liquid
phase when we consider the following boundary con-
ditions:

1) temperature specification on both fixed faces;
2) flux specification on both fixed faces;
3) temperature specification on the left face and flux

specification on the right face.
We developed a numerical scheme using finite dif-

ference methods with variable space step in order to
obtain an approximate solution for those problems.
We have showed, through those approximate solutions,
that there is no monotony of the solution when the
thermal conductivity of the solid phase changes for
the problems with boundary conditions 2) and 3).

The monotony of the solution for the problem with
temperature boundary condition on both fixed faces
when the thermal conductivity of the solid phase
changes, is at the moment, an open problem.
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