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Abstract. Generally the practice applications about phase-change problems (Stefan problem)
haven’t accurate solutions. Then it is neccesary to have numerical methods for their analysis.
The goal of this paper is to compare some numerical methods to compute the interphase of a
one-phase supercooled liquid with a constant heat flux on the fixed face and to determine
when there exist a blow-up or an extinction time for the corresponding solution.



Mariela C. Olgin, María C. Sanziel, Doming A. Tarzia

2

1 INTRODUCTION

1.1 The general case of non-negative flux

     Let us consider the following free boundary problem (P1): find a triple (T, s, z) such that

(i) T > 0;
(ii) s(t) is a positive continuous function in [0, T), s ∈ C1 ( 0, T);
(iii) z( x, t) is a bounded function, continuous in 0 ≤ x ≤ s(t), 0 ≤ t < T, such that zx(x, t) is bounded in
the same domain and continuous, with the possible exception of a finite number of points on the
parabolic boundary, zxx(x, t) and zt(x, t) are continuous in 0 < x < s(t), 0 < t < T;
(iv)  the following conditions are satisfied:

             zxx −zt = 0, DT = {(x,t): 0< x < s(t), 0 < t < T} (1i)                      

             z(x, 0) = 0, 0 < x < 1; s(0) = 1; (1ii)

             zx(0, t) = g(t) , 0 < t < T; (1iii)

             z( s(t), t) = 0, zx( s(t), t) =  − s
•

(t) , 0 < t < T. (1iv)

    We are concerned with the case in which g(t) is a non negative piecewise continuous function in
(0,  +∞), bounded in every interval (0, t), t > 0.
    The problem (P1) with this hypothesis is called a one-phase supercooled Stefan Problem in one
spatial dimension. It is well known that, with this hypothesis, the problem (P1) has a unique solution2

and one of the following cases must occur2, 3, 6:

       (A) the problem (P1) has a solution with arbitrarily large T;
       (B) there exists a time TB > 0 such that lim ( )

t TB

s t
→ −

= 0 ;   

       (C) there exists a time TC > 0 such that

                              inf ( )
( , )t TC

s t
∈

>
0

0      and     lim inf ( )
•

t TC

s t
→ −

= −∞ .

Some simple properties of the solution of (P1) are summarized in the following Lemma1 :

Lemma 1: (i) If (TC, s, z) solves (P1) and       lim inf ( ) ,
•

t TC

s t
→ −

= −∞                 lim ( )
t TC

s t
→ −

> 0

then there exists a t ≤ TC such that        g u du
t

( )
0

1∫ ≥ .
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(ii) If the case (C) occurs, then     g t dt

TC

( )
0

1∫ > .

(iii)  If (TB, s, z) solves (P1) and lim ( ) ,
t TB

s t
→ −

= 0  then    g t dt
TB

( ) =∫ 1
0

.

(iv) If there exists T0 > 0 such that g t dt
T

( ) =∫ 1
0

0

  and  g(t) ≤ 1, 0 < t < T0, then (B) occurs with  TB

= T0 .

(v) The problem (P1) has a (unique) solution for arbitrarily large T if and only if

                   g d
t

( )τ τ
0
∫  < 1  for any   t > 0 .

1.2 The case with constant flux

     We consider the case in which the flux zx(0, t) is constant in time, say g(t) = K > 0. As a trivial
consequence of  (v) of Lemma 1, no global solutions exist in this case, so that either (B) or  (C) must

occur. Moreover, for a given positive K, the solution exists for any   t < 
1
K

  and if K ≤ 1 then  (B)

must occur. The following lemma gives some sufficient conditions on K so that the solution is in case
(B) or (C)1, 4 .

Lemma 2: (i) A K1 > 0 exists such that K > K1 implies (C) for the solution of (P1). The following
estimate holds for K1:
                               K1 < 2.221297 .

(ii) Let K2 > 0 be the solution of   K
K

( exp( ( )))1
8

8
1

1
12

2

2− − + =
π

π
. Then K ≤ K2  implies (B).

An estimate for K2 is K2 > 1.091465.

The goal of this paper is to verify numerically the results given in Lemma 2 and also to investigate
the behavior of the solution when the values for the constant heat flux K are in the interval
(1.091465, 2.221297). From the numerical experiences, we can observe that the solution is in case
(B).
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2. NUMERICAL ANALYSIS

In order to approximate the solution z(x,t) of problem (P1) we use first an implicit method with
variable space grid5 and then an explicit method with variable time and space grid5. The number of
space intervals between x = 0 and x = s(t) is kept constant and equal to N for all time. Thus ∆x =
s t
N
( )

  is different in each time step and the moving boundary is always on the N-th. grid line. The

variable U i j,   will approximate z(xi, tj) where xi  = i∆x and tj  = j∆t, while sj will approximate s(tj).

2.1 Implicit Method

Using an implicit scheme, the equations of (P1) become:

 U iq r U r U iq r Ui j j j i j j i j j j i j, , , ,( ) ( ) ( )= − + + − +− + + +1 1 1 11 2 i=1,..,N-1;  j=0,1, 2, .... (2i)

 s0 1= , (2ii)

 U i, ,0 0= i = 0, ..,N, (2iii)

 U U K xj j j0 1 1 1 1, ,+ + += − ∆ , j = 0, 1, 2,... (2iv)

 UN j, ,+ =1 0 j = 0, 1, 2,... (2v)

 s s
t

x
Uj j

j
N j+ −= +1 1

∆
∆ , , j = 0, 1, 2,... (2vi)

where   r
t

xj

j

j

=
+

∆
∆ 1

2        and         q
s s

sj

j j

j

=
−
+

+1

2 1
, j = 0, 1, 2,.....

2.2 Explicit Method

Using an explicit scheme, the equations of (P1) become:

 U r iq U r U iq r Ui j j j i j j i j j j i j, , , ,( ) ( ) ( )+ − += − + − + +1 1 11 2 i=1,..,N-1; j=0,1, 2, ... (3i)

 s0 1= ,                         (3ii)

U i, ,0 0= i = 0, ..,N  (3iii)
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U U K xj j j0 1 1 1 1, ,+ + += − ∆ , j = 0, 1, 2,...  (3iv)

UN j, ,+ =1 0 j=0, 1, 2,... (3v)

s s
t

x
Uj j

j

j
N j+ −= +1 1

∆
∆ , , j = 0, 1,2.. (3vi)

where   r
t

xj

j

j

=
∆
∆ 2        and         q

s s

sj

j j

j

=
−+1

2
, j = 0, 1, 2,....

3. NUMERICAL RESULTS

To obtain the numerical results we use the following algorithms:

Algorithm for the Implicit Method:
Step 0_ Give initial and boundary conditions for the temperature and the free boundary;

Step 1_ Compute s1 using (2vi);
Step 2_ Compute Ui, 1 solving the system (2i);
Step 3_ Compute U0, 1 using (2iv);
Step 4_ Evaluate ¿s1 ≥ 0? * NO, then STOP,

      * YES, turn to Step 1.

Algorithm for the Explicit Method:
Step 0_ Give initial and boundary conditions for the temperature and the free boundary;

Step 1_ Compute s1 using (3vi);
Step 2_ Compute Ui, 1 using (3i);
Step 3_ Compute U0, 1 using (3iv);
Step 4_ Evaluate ¿s1 ≥ 0? * NO, then STOP,

      * YES, turn to Step 1.

The language used to program the above algorithms was Turbo Pascal 7.0. Now we show the
graphics obtained though the software Origin 3.0 for different values of the constant heat flux K. We
have taken N = 10 and we have considered 4300 components for the discrete free boundary vector
in the implicit scheme, and 32000 components in the explicit scheme.
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           Fig 1: Heat constant flux K= 1.5 with implicit method
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     Fig 2: Heat constant flux K= 2.0 with implicit method
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Fig 3: Heat constant flux K= 2.22 with implicit method.
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  Fig 4: Heat constant flux K= 1.5 with explicit method.
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               Fig 5: Constant heat flux K= 2.0 with explicit method.
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         Fig 6: Heat constant flux K= 2.22 with explicit method.
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Proposition 3: Taking into account the numerical results given by figures 1 to 6 we can state the
following result:

K ≤ 2.221297 implies case (B).

Remark: We have also used an explicit and an implicit method with an inmovilized domain (through

the substitution y
x

s t
=

( )
) which transforms the spatial domain (0, s(t)) into the fixed domain (0, 1).

In this case we can use a constant ∆x, and we have obtained similar results to that obtained through
the above methods.
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