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PREFACE

This CD ROM Proceedings contain the papers presented at the Fourth World Congress
on Computational Mechanics (IV WCCM) held in the city of Buenos Aires (Argentina)
on June 29-July 2, 1998. The first three congress in the series where held in Austin
(1986), Stuttgart (1990) and Tokyo (1994). The 1998 “Congress incorporated the XIX
Ibero-Latin-American Conference on Computational Methods in Engineering
(CILAMCE). This joint event was held under the auspices of the International
Association for Computational Mechanics (IACM) and was jointly organized by the
Argentinean Association for Computational Mechanics (AMCA) and the Spanish
Association for Numerical Methods in Engineering (SEMNI).

The continuous importance of this research topic is demostrated by the fact that the
number of papers has increased from 400 papers presented in the first congress to
over 1000 papers in the Buenos Aires meeting.

The developments that have taken place in the different theoretical and engineering
application fields of the broad area of Computational Mechanics are illustrated by the
contents of these CD-ROM proceedings. The 700 papers included represent a
Compendium of nearly 14.000 pages. The papers are clasified into the following main
areas: (1) Mathematical Modelling and Numerical Methods, (i1) Solid and Structural
Mechanics, (ii1) Solid Materials Modeling, (IV) Fluid Mechanics (V) Heat Transfer
and Fluid-Structure Interaction, (VI) Inverse Problems and Optimizations (VII)
Software Development, Algorithms and Programming and (VIII) Applications Fields
including problems in Biomechanics, Computational Physics, Electromagnetics,
Environmental Sciences, Geomechanis, Forming Processes, Chemical Engineering,
Robotics and Educational aspects of Computational Mechanics, among others.

The CD-ROM proceedings are printed directly from electronic versions of the
manuscripts provided by the authors. The editors therefore can not accept responsability
for any inaccuracies, comments or opinions contained in the papers.

Finally the editors wish to thank the authors for their participation and cooperation in
making the IV WCCM a success.

S. Idelsohn, E. Onate and E. Dvorkin,
Buenos Aires, June 1998
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Abstract. Generally the practice applications about phase-change problems (Stefan problem)
haven't accurate solutions. Then it is neccesary to have numerical methods for their analysis.
The goal of this paper is to compare some numerical methods to compute the interphase of a
one-phase supercooled liquid with a constant heat flux on the fixed face and to determine
when there exist a blow-up or an extinction time for the corresponding solution.
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1 INTRODUCTION

1.1 The general case of non-negative flux

Let us congder the following free boundary problem (PL): find atriple (T, s, z) such that

HT>0;

(i) t) is a positive continuous function in [0, T), sT C* (0, T);

(i) z( x, t) isabounded function, continuousin 0 £ X £ S(t), 0 £ t < T, such that z(x, t) isbounded in
the same domain and continuous, with the possble exception of a finite number of points on the
parabolic boundary, z«(X, t) and z(x, t) are continuousin0< x < §t), 0<t<T;

(iv) the following conditions are satisfied:

Zn-2% =0, Dr ={(xt): 0<x <), 0<t< T} (1)
2(x, 0) =0, 0<x<l, s0)=L (1ii)
2(0,0) = g(t), 0<t<T; (1)

2( (1), 1) =0, 2(s(t), )= - s(t), 0<t<T. (Liv)

We are concerned with the case in which g(t) is a hon negative piecewise continuous function in
(O, +¥), bounded in every interva (O, t), t > 0.

The problem (P1) with this hypothesisis cdled a one-phase supercooled Stefan Problem in one
soatiad dimengion. It iswell known that, with this hypothesis, the problem (P1) has a unique solution?
and one of the following cases must occur® 3 ©:

(A) the problem (P1) has a solution with arbitrarily large T;
(B) thereexigsatime Tg >0suchthat  lim s(t) =0;

e Ty

(C) there exigts atime T¢ > 0 such that
inf s(t)>0 and liminfs(t)=-¥ .
t1(0,Te) t® T2

Some smple properties of the solution of (P1) are summarized in the following Lemma’ :

Lemmal: (i) If (Tc, s, 2) solves (P1) and lngn inf é(t) =-¥ lims(t) >0
- t® T

t® TG

t
then thereexitsa t £ Tc such that Oo(wdus 1.
0
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Tc

(ii) If the case (C) occurs, then  ((t)dt > 1.

Tg

(i) 1f (Ts, s 2) solves (P1) and lim (t) =0, then ~ dg(t)clt =1.

To

(iv) If thereexists To > O such that (o(t)dt =1 and g(t) £ 1, 0 <t < T, then (B) occurs with Tg
0

:To.

(V) The problem (P1) has a (unique) solution for arbitrarily large T if and only if

t

oo(t)dt <1 forany t>0.
0

1.2 The case with constant flux

We congder the case in which the flux z(0, t) is congtant in time, say g(t) = K > 0. As atrivid
consequence of (v) of Lemma 1, no globa solutions exist in this case, so that either (B) or (C) must

occur. Moreover, for a given postive K, the solution exists for any  t < % adif K £ 1then (B)

must occur. The following lemma gives some sufficient conditions on K o thet the solution isin case
(B) or (O)*.

Lemma2: (i) A K; > 0 exists such that K > K implies (C) for the solution of (P1). The following
estimate holds for K;:
K;<2221297.
2
(ii) Let K5 > O be the solution of K (1- —-exp(- %(1+ %))) = 1. Then K £ K, implies (B).
P

An esimate for K, isK, > 1.091465.

The god of this paper isto verify numericdly the results given in Lemma 2 and ao to invedtigate
the behavior of the solution when the vaues for the condant heat flux K are in the interval
(1.091465, 2.221297). From the numerical experiences, we can observe that the solution isin case
(B).
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2.NUMERICAL ANALYSS

In order to gpproximate the solution z(x,t) of problem (P1) we use firg an implicit method with
variable space grid® and then an explicit method with variable time and space gric®. The number of

pace intervals between x = 0 and x = H(t) is kept constant and equal to N for al time. Thus Dx =
% is different in each time step and the moving boundary is adways on the N-th. grid line. The

vaidble U; ; will goproximate z(x;, tj)) wherex, = iDx and t; =jDt, while s will approximate g(t;).

2.1 Implicit Method
Using an implicit scheme, the equations of (P1) become:

U, =g, - 1)U, ., +@+2r)HU, ., - (g, +r U, i=1,..,N-1; j1=0,1, 2, .... (2)

=1, (2ii)
S

U,=0, i=0,..N, (2iii)
Ug s SUju - KDX,y, j=0,1,2.. (2v)
Uy =0 i=0,1,2... (2v)
Siu =8 t—Uy.,, i=0,1,2.. (2vi)

i
h =] d “2mTA 01,2
where 1; =3 an 4 =57 15012

2.2 Explicit Method
Using an explicit scheme, the equations of (P1) become:

U o=@ - ig)U,, +(2- 2r))U + (g +1r)U,,; 1=L0N-1; j=0,1,2,...  (3)
S =1, (3ii)

U, =0, i=0,..,N (i)
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Ug s TUp - KDXj g, j=0,12.. (3v)
Uy =0, i=0,1,2,... (3v)
_ Dt o .
Sy = S +§1UN.1,,», j=0,12.. (3vi)
where r, =—. and i i=0,1,2
i 2 q]_ 2s ' 1=0, 4 4..

3.NUMERICAL RESULTS
To obtain the numerical results we use the following agorithms

Algorithm for the Implicit Method:

Sep 0 Giveinitia and boundary conditions for the temperature and the free boundary;
Step 1 Compute s; using (2vi);

Step 2 Compute U; 1 solving the system (2i);

Step 3 Compute Uy, ; using (2iv);

Step 4 Evduate ¢s, 3 0?* NO, then STOP,

* YES, turnto Step 1.

Algorithm for the Explicit Method:

Sep 0 Giveinitia and boundary conditions for the temperature and the free boundary;
Step 1 Compute s; using (3vi);

Step 2 Compute U; 5 using (3);

Step 3 Compute Uy, ; using (3iv);

Step 4 Evduate¢s; 2 0?* NO, then STOP,

* YES, turnto Step 1.

The language used to program the above agorithms was Turbo Pasca 7.0. Now we show the
graphics obtained though the software Origin 3.0 for different values of the constant hesat flux K. We
have taken N = 10 and we have consdered 4300 components for the discrete free boundary vector
in the implicit scheme, and 32000 components in the explicit scheme.
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free boundary x = s(t)
isotherm U(x, t) = -1

08 -

Fig 1: Heat constant flux K= 1.5 with implicit method

free boundary x= s(t)
isother U(x, t) = -1

06

Fig 2: Heat constant flux K= 2.0 with implicit method
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05

free boundary x = s(t)
isotherm U(x, t) = -1

08

06

02

Fig 3: Heat constant flux K= 2.22 with implicit method.

free boundary x = s(t)
isotherm U(x, t) = -1

00
00

Fig 4: Heat constant flux K= 1.5 with explicit method.



MarielaC. Olgin, MariaC. Sanziel, Doming A. Tarzia

free boundary x = (t)
—isotherm U(x,t) = -1

071

Fig 5: Constant heat flux K= 2.0 with explicit method.

free boundary x = s(t)
— isotherm U(x, t) = -1

06

Fig 6: Heat constant flux K= 2.22 with explicit method.
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Proposition 3: Taking into account the numerica results given by figures 1 to 6 we can date the
following result:
K £ 2.221297 implies case (B).

Remark: We have a0 used an explicit and an implicit method with an inmovilized domain (through
the subgtitution y = %) which transforms the spatid domain (0, §t)) into the fixed domain (0, 1).

In this case we can use a congtant Dx, and we have obtained smilar results to that obtained through
the above methods.
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