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Abstract

We consider a one-dimensional one-phase Stefan problem for a semi-infinite substance. We suppose that there is a tran-
sient heat flux at the fixed face and the thermal coefficients are constant.

The goal of this paper is to determine the behavior of the free boundary and the temperature by changing the thermal
coefficients. We use the maximum principle in order to obtain properties of monotony with respect to the latent heat of
fusion, the specific heat and the mass density. We compute approximate solutions through the quasi-stationary, the Good-
man’s heat-balance integral and the Biot’s variational methods and a numerical solution through a finite difference scheme.
We show that the solution is not monotone with respect to the thermal conductivity.

The results obtained are important in technological applications.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Phase change materials (PCMs) are substances whose phase-change temperature makes it available to mod-
erate the oscillations of temperature and to store energy of another substance put in contact with them. The
heat storage by PCMs is almost isothermal, so it is preferable to the storage by sensible heat in applications
which involve small changes of temperature. When a temperature jump occurs, the PCM absorbs the excess of
energy changing its phase and then it gives the energy back in a later time [1].

Among the variety of uses of the PCMs we can mention the climate of buildings, the storage of energy in
satellites and clothes and the transport of biological substances. In this last application we must consider that
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Nomenclature

c specific heat (J/kg °C)

K = K(1) heat flux on the face x = 0 (W/m?)

k thermal conductivity (W/m °C)

L latent heat of fusion per unity of mass (J/kg)

s(2) free boundary position (m)
T¢ phase-change temperature (C)
t time (s)

X space variable (m)

o =% thermal diffusivity (m?/s)

p mass density (kg/m?)

the breathing of substances generates a caloric energy. So, the temperature of the package rises and conse-
quently the early degradation of the transported product can occur. For this reason, it is important to know
the evolution of the temperature in the border of the PCM in contact with the biological substance and also
the thickness of the layer of PCM able to absorb the excess of energy, in order to keep the temperature in the
interior of the package in an optimal range. It is also important to determine how does that temperature vary
with respect to the different thermal properties of the PCM [2,3].

When we consider a packaging of a PCM that recovers an organic substance to be transported, it is essen-
tial to find the thickness of this pack to insure the optimal temperature of conservation in the organic sub-
stance during total time of transport [4-9]. Because the sizes of the pack (wide, length and height) are
sufficiently greater than its thickness, we can assume that the heat transfer occurs in only one direction. More-
over, we can suppose that the initial temperature is constant and equal to the phase change temperature since
the PCM and the substance are pre-cooling. So we think in a one-phase one dimensional Stefan problem.

The goal of the present work is to stablish if there is or not any monotone dependence of the solution for a
one-dimensional Stefan problem with respect to the variation of some thermal coefficients of a substance (for
example a PCM).

We consider the following one-dimensional one-phase Stefan problem (melting case):

Problem P: Find the function s(¢) (free boundary or solid-liquid interphase) defined for ¢ > 0, and the tem-
perature [10-12]:

T(x,t) if 0<x<s(t), t>0, i
if x>=s(¢), t>0. (1)
so that they satisfy
T,=oaly, 0<x<s(t), t>0;
kT.(0,¢) = —K(¢), t>0;

T(s(t),t) =Tp, t>0; (2)
kT, (s(2),t) = —pls'(t) t>0;
s(0) =0,

where K = K(¢) > 0 is a given smooth function which represents the heat flux on the fixed border x = 0; &, p, ¢
and / are the thermal conductivity, the mass density, the specific heat and the latent heat of fusion per unity of
mass respectively; o = ﬁ is the thermal diffusivity and 7} is the phase-change temperature.

Numerical solution of the phase-change problem, in general, requires solution of the heat conduction equa-
tion with an adequate treatment of the phase front.

For the numerical treatment of this free boundary problem we can mention [13-20].

In Section 2 we show properties of monotony for the solution of Stefan problem P with respect to the phys-
ical parameters ¢, ¢ and p by using the maximum principle. In Section 3 we obtain approximate solutions of
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the problem P by using the Goodman’s heat balance integral, the Biot’s variational and the quasi-stationary
methods and an implicit finite difference method. In Section 4 we show numerical results for a given PCM
material and we obtain that the solution of the Stefan problem P is not monotone with respect to the thermal
conductivity k.

2. Study of monotony of the solution with respect to the physical parameters

In this section we use the maximum principle and the result of the following Lemma, when it is required, in
order to establish some properties of monotony for the solution of problem P. We consider the compatibility

conditions Ty(b) = Ty and T;(0) = —%O)‘

Lemma 1. Let be the Stefan problem

T,=al,, 0<x<s(¢), t>0; (3.1
kT.(0,8) = —K(¢), t>0; (3.2)
T(s(t),t) =Ty, t>0; (3.3)
kT (s(t),t) = —pls'(¢), ¢>0; (3.4)
T(x,0)=To(x) >T;, 0<x<b; (3.5)
s(0)=5b = 0. (3.6)

We have that:

(1) If To(x) <0in 0 <x < b, then Ty(x,1) <0in0<x<s(t), t = 0.

(i) If To(x) = 0in 0 < x < b and K'(t) = OVt > 0, we obtain Ty(x,t) =2 0in 0 <x < b, forall t = 0.
Proof. The maximum principle applied to problem given by Egs. (3.1)-(3.6) implies that T(x,?) > T/,

0 <x < s(¢), t > 0 and therefore s'(¢) > 0 for ¢ > 0.

(i) We define the auxiliary function w(¢) = T, (x, ¢), which verify the associated problem:

Wy = 0wy, 0<x<s(t), t>0; (4.1
w(0,7) = %(t) <0, t>0; (4.2)
w(s(t),1) = —%ﬂs’(t) <0, t>0; (4.3)
w(x,0) = Ty(x) <0, 0<x<b; (4.4)
s(0) = b. (4.5)

Then, from the maximum principle and K(¢) > 0 and T;(x) < 0 the thesis holds.
(ii) We consider the auxiliary function v(x, ¢) = T, (x, ), which satisfies the associated problem:

U =0y, 0<x<s(t), t>0 (5.1
—K()

0,(0,7) PRI 0, t>0; (5.2)

v(s(t),1) = Z—ﬁs’z(t) >0, >0 (5.3)

v(x,0) =Ty(x) =0, 0<x<b; (5.4)

5(0) = b. (5.5)

Then, from the maximum principle and K'(¢) > 0 and Tj(x) > 0 we get the thesis. [
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Proposition 2. Problem P depends monotonically on the thermal coefficients ¢, ¢ and p, that is,

(a) If €; < &y and {T(x,t),s,(¢)} is the solution of the problem P for the data ¢;(i = 1,2) and 5,(0) = s,(0), then

we have:
51(8) = (1), t>0; (6.1)
Ti(x,t) = Th(x,t), 0 < x < s2(¢), t>0. (6.2)

(b) If ¢1 < ¢z and {Ti(x,t),s:(t)} is the solution of the problem P for the data c;(i = 1,2), and 5,(0) = s,(0),
then we have:
s1(t) = s2(8), t>0; (7.1)
Ti(x,t) = Tax,1), 0 <x < s2(f), t>0.

(©) If p; < py and {T:(x,t),s:(2)} is the solution of the problem P for the data p,(i = 1,2), and 5,(0) = 5,(0),
then we have:

51() = s2(1), t>0; (8.1
Ty(x,1) = Ta(x,1), 0 <x < sa(t), ¢>0.

Proof. The three results are similar but the proofs are different because we must change the coefficients in the
heat equation or in the Stefan condition or in both conditions at the same time.

(a) We consider two cases, 51(0) > s55(0) and s1(0) = s5,(0).

Case I Let us suppose b = s51(0) > s52(0) = by and we consider for ¢;(i = 1,2) the corresponding problem
(i=1,2):

T, =0T, 0<x<s(t), t>0 9.1
kT:(0,1) = —K(1), t>0; (9.2)
Ti(si(t),t) =Ty, t>0; (9.3)
KT, (si(t),t) = —plisi(t), t>0; (9.4)
Ti(x,0) =To(x) = Ty, 0<x<b; (9.5)
5i(0) = b;. (9.6)

Let 7y be the first moment such that s,(¢)) = s,(¢) and s,(¢) < s1(¢) for all 0 < ¢ < #y, then it will occur
s (t0) < sh(to). (10)

If we define the function W (x,t) = T)(x,t) — T2(x,1), ¥(x,?) € D* with D* = {(x,#)/0 < x < 52(¢), 0 <t <t}
then we have:

W,—aW, =0, V(x1) €D (11.1)
W.(0,6) =0, 0<1t<ty (11.2)
W(x,0)=0, 0<x<by; (11.3)
W(sa(t),t) = T1(s2(t),6) =Ty >0, 0<t<ty (11.4)
$2(0) = b, (11.5)

since by the maximum principle 7 (x,¢) > T, in its domain of definition. By the same principle we conclude
that W > 0in CI(D*). Atx = s1(to) = s2(to), we have that W (s,(¢y), ) = 0, therefore W attains a minimum at
(s2(t0), t0). By the strong maximum principle, we have that W, (s»(%), %) < 0. But from the Stefan condition
Eq. (9.4) and ¢, < ¢, we obtain that

,051 pé2 ’ p€2

Wi(s2(to), t0) = T1,(s1(t0), t0) — T2, (s2(t0), t0) = —TSE (fo) +==53(t0) = == [5(to) = 5\ (t0)] = 0, (12)
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which leads to a contradiction and therefore
51(6) > s2(t), YVt =0 and T (x,¢) = Ta(x,1), Y0O<x<s(1), ¢>0.

Case II: We consider now the case by = 51(0) > s5,(0) = b,. Let 6 > 0, then b, < b; < by + . We consider a
problem like Egs. (9.1)—(9.5) with thermal coefficients (k, p, ¢, ¢1), s5(0) = by + 0 and we call (ss, T's) the solu-
tion of this new problem. We take To(x) =T, for by < x < by +0. It results s1(¢) < s5(¢), V¢ = 0 and
Ti(x,t) < Ts(x,t), VO<x<s(f) and ¢ >0 by the maximum principle. From the Case I we have that
52(8) < s5(t) Vet = 0and Th(x, 1) < Ts(x,1), VO < x < s55(¢) and ¢ > 0. The integral relation between the free
boundary s; and the temperature 7; with i = 1, is given by [21]:

s:(8) (%‘ _ Tf> — 5(0) (%1 _ T,) + /0 " I +$ /0 K(o)dr — /0 " e 0dx,

Subtracting the expressions for i =1 and i = 0 we get

Is5(£) — 51(2)] (il - Tf> - 5%1 - /0 " T5(x, £)dx + /0 R (x, £)dx

’ () 55(0) ’
—ot [ - Tl e — [ Tl <37 = Trlsio) = i),
0 s1()

c
taking into account that 7T's(x,#) — 71 (x,#) = 0 and Ts(x,#) > T,. Then, s5(¢) — 51(¢) < 6, that is, to say:

Sz(t) <S(5(l) <S1(I)+5, Vo >0 (13)
and consequently, letting 6 — 0, we obtain that s, < s; in the common domain of existence.

(b) We consider again two possible cases, s1(0) > s2(0) and s1(0) = s2(0).
Case I Let us suppose b; = 51(0) > s,(0) = b, and we consider for ¢; (i = 1,2) the corresponding problem:

T, =T, 0<x<s(t), t>0 (14.1)
kT:(0,1) = =K (1), 1> 0; (14.2)
Ti(si(t),t) = Tr,t > 0; (14.3)
kT (i), 1) = —plsi(t), t>0; (14.4)
T:i(x,0) =To(x) > Ty, 0<x<b; (14.5)
5i(0) = by, (14.6)

with oy = & and o, = -, Let t, be the first moment such that s, (ty) = s1(o) and s,(¢) < s1(¢) for all 0 < ¢ < 1o,
then it will occur _
51(t0) < y(t0)- (15)
If we define the function W (x, ) = T(x,t) — T2(x,1), ¥(x,t) € D* with
D" = {(x,1)/0 < x < s2(¢),0 < t < to}, then we have:
k k(1 1

W,——WXX:—(———>T1XX >0, V(x,1) €D, (16.1)
pPC1 P \C1 C)
W.(0,6) =0, 0<t<ty (16.2)
W(x,0) =0, 0<x< by (16.3)
W(sy(t),t) = Ti(s2(2),6) =Ty >0, 0<t<ty; (16.4)
52(0) = by (16.5)
as a consequence of Lemma 1 and 7', (x,#) > T, by the maximum principle. Then, we conclude that ¥ > 0 in

CI(D"). At x = 51(ty) = 52(ty), we have that W (s,(¢), ) = 0, therefore W attains a minimum at (s,(¢), %). By
the strong maximum principle, we have that W, (s,(¢), f) < 0. But from the Stefan condition Eq. (14.4) we
obtain that

14

W(52(00), ) = T, (1), 10) = T, ((t0), 10) = =25, 1) + 5 sha0) = B o) = sy (a)] 0 (17)
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which leads to a contradiction and therefore
51(0) > s2(t), ¥Vt =0 and Ti(x,t) = Ta(x,1), VO<x<s(), t>0.

Case II: We consider now the case b; = 51(0) = 5,(0) = b,. Let 6 > 0, then b, < by < by + 5. We propose a
problem like the problem given by Egs. (14.1)—(14.5) with thermal coefficients (k, p, ¢, ¢), s;(0) = by 4+ ¢ and
we call (ss, T5) the solution of this new problem by considering To(x) = T, for by < x < by + 9, ¢ > 0. It results
s1(t) < s5(t), T1(x,8) < Ts(x,t), YO < x < s51(f) and ¢ > 0 by the maximum principle. From the Case I we have
that s,(¢) < s5(¢), V¢ = 0and Ta(x,¢) < Ts(x, ), VO < x < 52(¢) and ¢ > 0. The integral relation between the free
boundary s; and the temperature 7; with i = 1,6 is given now by [21]:

C o(t_r o ¥)dx K(x)d " . f)dx
(N —=T; ) =s:(0)(——T, ) + +— - (x, £)dx.
(1) =0 (1) [ s ke [T

Then, we obtain:
s1(t) 5(
[sa(t)—sl(t)](fl—Tf> ﬁ_/o [Ty (x,2) — Ts(x,t)]dx — / Ts(x,t)dx 5£—T,[()()—s1(t)}.

Taking into account that T5(x,t) — Ty (x,¢) > 0, and Ts5(x,#) > T, then we have s5(f) — s, (f) < ¢ that is to
say:

52(8) < s5(t) <s1(¢) +0, VI>0. (18)
Consequently, letting 6 — 0, we obtain that s,(¢) < s;(¢) in the common domain of existence.

(c) We consider again two possible cases, s1(0) > 52(0) and s1(0) = s52(0).
Case I Let us suppose by = 51(0) > 5,(0) = b, and we consider for p,(i = 1,2) the corresponding problem:

T, =0T, 0<x<s(t), t>0; (19.1)
kT:.(0,1) = =K(1); 1> 0; (19.2)
Ti(si(t), 1) =Ty, 1> 0; (19.3)
KT: (si(t),1) = —pilsi(t), t>0; (19.4)
T:(x,0) =T >T;, 0<x<b; (19.5)
5:(0) = by, (19.6)

with a; = ,T and o, = C. Let ¢, be the first moment such that s;(#) = s,(%) and s,(¢) < s;(¢) for all 0 < ¢ < ¢,
then it will occur

51 (to) < 55(to). (20)

If we define the function W(x,?) = Ty(x,t) — T»(x,1), ¥(x,t) € D* with
D" ={(x,1)/0 <x < s(¢),0 <t <t} then we have:

w, —LWXX :]f<i—i) T, =0, VY(x,t)eD; (21.1)
pic P1 P2

W.(0,0) =0, 0<t<t; (21.2)

W(x,0)=0, 0<x< by (21.3)

W(s2(t),t) = T1(sa2(t ) =Tr>0, 0<t<to; (21.4)

52(0) = by, (21.5)

as a consequence of the Lemma | and the maximum principle. Then we conclude that W > 0 in CI(D*). At
x = s1(ty) = s2(to), we have that W (s,(2),) = 0, therefore W attains a minimum at (s»(#), #). By the strong
maximum principle, we have that W,(s,(¢), ) < 0. But from the Stefan condition Eq. (19.4) we obtain that:

W olsalto) to) = To,(s1(00) 10) = T, sa(00). 10) = 225,10 + 2255, 1)
Pt

= é [p255(t0) — pysi (10)] > v [s5(t0) — s\ (t0)] =0 (22)
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which leads to a contradiction and therefore
s1(t) > s2(), Ve =0 and T(x,t) = Ta(x,1), VO<x<s((), t>0.

Case II: We consider now the case by = 5;(0) > 5,(0) = b,. Let 6 > 0, then b, < by < by + 0. We propose a
problem like the problem given by Egs. (19.1)-(19.5) with thermal coefficients (k, p,c,¢), s5(0) = by + 9
and we call (s;, T'5) the solution of this new problem by considering Ty(x) = T, for b; < x < by + 0. It results
s1(t) < s5(t), vVt = 0and T(x,t) < Ts(x, 1), VO < x < s1(¢) and ¢ > 0 by the maximum principle. From the Case
I we have that s5(¢) < s5(¢), V¢ = 0 and Ta(x,?) < Ts(x,¢), VO < x < s52(¢) and ¢ > 0. The integral relation be-
tween the free boundary and the temperature for problems whose solutions are (s;, T;), with i = 1, is now
given by [21]:

/¢ / »5i(0) 1 t si(1)
s5i(1) (— - T,»> = 5:(0) (_ - Tf) + / To(x)dx +— [ K(r)dr — / T;(x, £)dx.
¢ ¢ 0 pic Jo 0

Then we obtain:

s1(t) s5(t)
() =)= 17) = 05— [ iren) = T — [ 10 < 07~ Tyl =0

because Ts(x,#) — T (x,¢) = 0, and Ts(x,¢) = T,. Then we have s;(¢) — s1(¢) < 0 that is to say:
52(8) < s5(t) <s1(¢) +0, Vo>0. (23)

Consequently, letting 6 — 0, we obtain that s,(¢) < s1(¢) in the common domain of existence. [

Remark. We can not obtain any conclusion through the maximum principle about variations in the thermal
conductivity k. This case can be studied by numerical approximations and it will be done in Section 4.

3. Approximate solutions of the problem P

With the aim to obtain the behavior of the solution of problem P when there exists a variation in the ther-
mal conductivity, we compute the solution to this problem through approximate methods and a numerical
method. First we check all this methods with a test problem and then, we use the best of them in order to
obtain the desired conclusion.

From now, we consider that the solution of the problem P can be obtained like:

T(x,t) =u(x,t)+ Ty, (24)
where u(x,t) satisfies the same problem (2) with 7, =0, i.e.,

U = oy, 0<x<s(t), t>0 (25.1)

ku(0,¢) = —K(), t>0; (25.2)

u(s(t),r) =0, ¢>0; (25.3)

ku,(s(t),t) = —pls'(t), t>0; (25.4)

s(0) = 0. (25.5)

3.1. Heat balance integral method

The Goodman’s heat balance integral method [22], in analogous form to the integral moment method used
in the theory of the boundary layers in fluids mechanics, is based on the physical concept of “thermal depth of
penetration”. That is to say, the effect of the excitation in the fixed border x = 0 does not propagate immedi-
ately to all the domain, but in a limited interval [0, d(¢)]. Outside this interval the temperature is the initial
temperature. For one-phase problems, this thermal layer agrees with the free boundary s(¢).
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By using the heat balance integral method we must solve the following problem:

s(1)
G| e = k0 - g5, 10 (26.1)
2(s(0),1) = Suals(),1), 1> 0, (26.2)
u(s(t),) =0, 1> 0; (26.3)
ku,(0,¢) = —K(¢), t>0; (26.4)
s(0) =0. (26.5)

For the non-unique solution of problem (26.1)—(26.5) we can propose a solution. In [23] an exponential type
solution is used. We choose the quadratic approximant used by Goodman [22] for u(x,?) given by

u(x, ) :A(t)(l —%) +B(t)(1 —ﬁy, (27)

where A(t), B(¢) y s(¢) are unknown functions.

Proposition 3. The solution of problem P, through the heat balance integral method, is given by:

) =T+ |90+ 560 - 05 (s g) ] , 28.1)
S(0) = e Ol + 40, (282)

where the function ¢ = ¢(t) is the unique solution of the following Cauchy’ s problem:

R eyt resal CORFRCTUITTORS AR 9.1)
$(0) =0, (29.2)
with:
S K(c;)ez A= i(,f
and
K0P

As(t) = (6 +3¢(1) + ¢*(1))

Proof. If we replace Eq. (26) in Eqgs. (25.2) and (25.4), we obtain:

k c

B(t) = 5, A(0), (1) = 0 [4(0) + 540 (30)
We define the function ¢() = $A4(¢). From the condition Eq. (26.1) we obtain Eq. (28) where ¢ is given as
the solution of Eqgs. (29.1),(29.2). This problem is well defined because the expression
14 3¢(t) +24°(2) —|—§q53 (¢) is a positive and strictly increasing function if ¢(¢) is non negative. Moreover
Egs. (29.1),(29.2) has a unique solution because, if we call f(¢$,¢) = W [42(6)+
As(t)$(1)(¢(t) + 1)], we obtain that fand % are both continuous functions when K and K’ are continuous func-

tions of ¢ = 0. Then the proposition holds. O
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3.2. Biot’s variational method

The Biot’s variational method [24,25] is based on irreversible thermodynamic arguments and it is charac-
terized by:

(1) A vectorial field called “heat displacement” which depends on the space coordinates, on the time and on
a set of generalized coordinates suitably chosen for the problem.
(i1) The concepts of thermal potential, dissipation function and generalized thermal force.

Let H = H(x,t,s) the heat displacement and s = s(¢) a generalized coordinate. We must solve the following
variational equation:
oV oD
ds os =V
where the functions V' the thermal potential, D the dissipation function and Qy, the generalized thermal force,
are defined by the following expressions:

(31)

1 s(1)
V== / pcudyx; (32)
2 Jo
1 01 (eH\’
D=~ =) dx; 33
2 /0 k (6t> ’ (33)
oH x=s(t)
= —U— 4
0=~y (34)
The functions H, u and s satisfy the set of conditions Egs. (25.2) and (25.3) and
H
%:—pcu, 0<x<s(t), t>0, (35.1)
X
d = pls'(t), t>0, (35.2)
dr x=s(t)

Proposition 4. If we consider for u a polynomial expression with respect to the space variable then the solution of
the problem P through the Biot’s variational method Eqs. (31)—(35) is given by:

T(x, t) = Tf + u(x, l) = Tf +K(t2)1~:(t) <1 - Szcl)) (36)

where (1) is the solution of the following Cauchy problem:
s(f) = K(t)pl + By (1)s(t) — Ba(t)s*(t) — B3 (2)s*(¢)

5 , (37.1)
2(pl)” + B4(t)s(t) + Bs(t)s*(¢)

5(0) =0, (37.2)

with
11K>(¢) plK'(t) SK(H)K'(t) plK (1) 11K>(¢)

Bl =—=go, 1 B =05, Bl =5 Bl =" = Bsl) =5

Proof. We propose a quadratic form for u in the space variable x of the type
2
X
u(x, 1) = A1) (1 - s(t)> . (38)

From Eq. (25.2) we obtain A(¢) = K<’2>,f(’).
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Taking into account Eq. (35.1), from Eq. (38) we have %—I;’ = Ks(0) (1- i)z and therefore

2a s(0)
H“%”:ngo_ﬁﬁi“w”' (39)
As in x = s we have that H = p/s’, we choose G(t,s) = pls. After some computations we obtain:
3K2(4)s2
T 40(kto)cs ’ (40)
T
% _ ((pi)% N péf lg;)ﬁ % K;(ZZIZS3>S/ E pﬁf];it) bt 51;()252/:) . )

Replacing Egs. (40)—(42) in the variational Eq. (31) we get the Cauchy problem given by Eqgs. (37.1) and (37.2).
This problem is well-defined because the expression 2(pf)” + By(1)s(t) + Bs(t)s2(¢) is a quadratic function with-
out real zeros. Furthermore, there exist a unique solution to the problem Egs. (37.1) and (37.2). In effect, if we
call
Fls,0) = K(t)pl + Bi(1)s(t) — Ba(1)s*(1) — B3(t)s(¢)
7 2(pt)’ + Ba(1)s(t) + Bs(1)s*(1) 7

and considering that K and K’ are continuous functions on ¢ > 0, we have that f'and g—f are both continuous
functions when ¢t > 0. O

Remark. If K'(¢) < 0, the second member in Eq. (37.1) is a positive function, then s(z) is a strictly increasing
function.

3.3. Quasi-stationary method

The quasi-stationary method [1,10,11,26] is used to model physical processes that develop very slowly
(u, ~ 0). In these processes the latent heat of fusion ¢ tends to infinity and consequently the Stefan number
Ste = % tends to zero. Using this approximate method we obtain, for problem Eq. (2), the associated problem
[22]:

e =0, 0<x<s(t), t >0 (43.1)
ku,(0,6) = —K(t), t>0; (43.2)
u(s(t),t)=0, ¢>0; (43.3)
ku,(s(2),t) = —pls'(t), t>0; (43.4)
s(0) = (43.5)

Propeosition 5. The solution of the problem P through the quasi-stationary method given by Eqs. (43.1)-(43.95), is:
K(?) I
T(x,t) =Ty +—=[s(t) =x], s(t)=— [ K(r)dz. (44)

Proof. We propose a solution u(x, ) of the problem Egs. (43.1)—(43.5) in the form

u(x, 1) = a(t)x + b(r), (45)

where a(¢) and b(¢) are unknown functions. From Eq. (43.3) we get b(t) = —a(¢)s(¢) and from Eq. (43.2) we
have a(t) = — 1 K(t). The Stefan condition Eq. (43.4), with these a(¢) and b(¢), gives the expressions Eq. (44)
for s(¢) and T(x,¢). O



M.C. Olguin et al. | Applied Mathematics and Computation 190 (2007) 765-780 775
3.4. Implicit finite difference method

Provided that {T(x,¢),s(¢)}, solution of the problem P, is a pair of sufficiently regular functions, we can use
a finite difference scheme to approximate this problem [13,17,27].

Without loss of generality, we suppose 0 < x < E (E fixed, £ > 0) and we define a variable grid with con-
stant space step and equal to Ax =£ (N is the number of space intervals). Then we take x; = (i — 1)Ax,
i=1,...,N+ 1. The heat equation in the problem P is transformed into:

% ~ o l+] 2T + Tl 1
dr Ax?
We call ¢, the time such that s(¢,) = E and let us divide the interval [0,,] in N subintervals of variable size

(46)

At;with j =1,..., N. These time steps are such that the moving boundary coincides with a grid line in space at
each time level, that is, to say:
S(l‘j+1) =]Ax, with tj+1 = l]' + Al]', (47)

that is, equivalent to (s(¢,1),+1) be a node of the mesh.
In order to determine the step Az, we consider an equivalent integral form of the Stefan condition in P [21]:

s(t) (é _ Tf) :% /0 'K(o)dr - /0 Y e s, (48)

which connects the free boundary position and the temperature. Replacing Eq. (47) in Eq. (48) with ¢ = ¢4,
we obtain

) /¢ 1 i1 JAx
JAx o Tr|=— K(t)dr — /0 T(x,t41)dx. (49)

pec Jo

We make the approximations

JjAx J+1
/ T(X,tj+])dxﬁ ZA}CT,‘JJFI
0 i=2

i1

J
K(r)dtr ~ Z At, Ko

0 m=1
with 7,1 = T(x;,t41), K1 = K(tq1) and, for each j=1,...,N, we suppose that Af,At,,...,At;; and
T(x;,t;),i =1,...,j are known. Then, we obtain the following iterative scheme in order to calculate approx-
imately At;:
@, _ Pe | (L SR .
Ay = (- —T, | Ax+ A T, —— Aty K it |, = 0, 50
= (5= 1 v LR S S A (50)
where Tff’j) =T9(x;,t /+1) and A", > 0 is chosen arbitrarily. Considering T'? 1 = Tr, g =0, the solution

proceeds 1terat1vely by using Eq. (50) to correct the assumed time step.

In order to find the components T, J +1 ,i =1,...,/, we make a finite-difference representation of both, the
first member of the equation Eq. (46) and the flux condition in the fixed border x = 0 in the problem P. Then
we solve the associated linear system:

(g+1)

+1 +1) (g+1)
Tz('?jJrl)_Ti,jiaTz(il]H_2T73+1 +T1 1j+1 i=2 .
Aty Ax2 ’ =Sl

J

K(tj)Ax
(g+1) _ mlg+1) 41
TV =T + 7’,{ ;
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whose matrix expression is Av = b, with v = (Tf,qjii))i:lw/,
K(t;y
1+2r = 0 0 .. 0 0 Ty rA S
- 142r —r 0 ... 0 0 T,
A= , b= ,
0 cee —-r 142 —
r + 2r r T, 1,

(g+1) X i
with r = (szi,z. The matrix 4 € RV"Y*UY is a non singular tridiagonal matrix, and then the system Eq. (51)

has unique solution.
The iteration Eq. (50) is repeated until we get the desired tolerance. With the value of the time step
f fori=1,...,7+1 and

At = A("*)tj, for some appropriate ¢*, we take the temperature vector 7, = Tj{j ol

j=1,...,N.

Remark. It is important to note that we must solve at each time a linear system of equations but there is not
restrictions about convergence, because it is an implicit scheme [17,20].

3.5. Test problem

In this section, in order to validate the approximate methods described above, we make a program in Scilab
for each one of these methods and we obtain a comparative graphic of the numerical solutions with respect to
the exact solution of the following test problem:

Uy = Oy, 0<x<s(t), 0<t<ty
ku,(0,1) = =K (1), 0<t<ty

u(s(r),r) =0, 0<t<ts (52)
ku(s(t),t) = —pls'(t), 0<t<t;
5(0) = 0;
where K (t) = m is the flux function on the fixed border x = 0 and we consider ¢ = p = ¢ = k = 1. For this
problem, the exact solution has the form [10,21,28]:
erf(z" )
N
u(x, 1) (@) s(t) = 28Vt (53)
20
—— HBIM
1|—BM
QM
154|—Es
FDM
E
= 104
”
5 - /
0 T T T T T T T T T
0 2 4 6 8 10
time [s]

Fig. 1. s(z) versus ¢.
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and ¢ is the unique solution of the equation
c

feizerf(f) = W}E .

In the following graphics (see Figs. 1-3) we represent the exact solution (ES), the analytical approximate
solutions obtained through the heat balance integral method (HBIM), the Biot’s variational method (BM)
and the quasi-stationary method (QM) and the numerical solution given by the finite difference method
(FDM).

We see in Table 1 the corresponding relative errors for the different methods. We consider the Euclidean
norm to compute the errors. We conclude that the finite difference scheme is the best, because for this method

1.4
1.2
O 1.01
e |
|
= 0.8 —— HBIM
s ——BM
~ 0.61| QM
= \ ——ES
044 FDM
|
|
0.2
l
00 T T T T T T T T T
0 2 4 6 8 10
time [s]
Fig. 2. T(0,1) versus ¢.
1.44
1.24
1 — HBIM
o 101 ——BM
e, 1 Qm
€ 0.8 —ES
5 FDM
— 0.6
0.4
0.2
0.0 T
0 space [m] 5
Fig. 3. T(x,t) versus x.
Table 1
Comparison of relative errors
HBIM BM QM FDM
s(1) 5.79 1.076 0.458 0.568
7(0,7) 0.464 0.852 0.441 0.188
T(x,tr) 0.392 0.625 0.469 0.340
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the error for the temperature’s distribution at the final time is minimum, while the error for the free boundary

is acceptable.

4. Numerical results

As we have seen in the previous section, we obtain more adjusted results using the finite difference method,
so we will use this method in order to analyze the behavior of the solution of the problem P with respect to

variations in the value of the thermal conductivity.

With that purpose, we will consider in the problem P a constant heat flux on the fixed border x = 0 and the
values of the thermal coefficients which correspond to the paraffin PCM (his commercial name is Rubitherm).

Let be the problem:
T,=al,, 0<x<s(t), t>0;
kT,(0,8) = —K, t>0;
T(s(t),t) =Ty, t>0;
kT, ( )= —pts'(t), t>0;
s(0) =0;

0}
—~

~
~—

~

k/10
— k/4
— k/2

k

2k
4k
— 10k

0 200 400 600 800
time [h]

Fig. 4. s(z) versus ¢.
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Fig. 5. T(0,1) versus ¢.
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Fig. 6. Distribution of temperature at 122 h.
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Fig. 7. Distribution of temperature at 300 h.

where o = -- is the thermal diffusivity, the thermal conductivity is k 0.2 oc’ the mass density is p = 770 %,
the latent heat is £ = 214000 J , the specific heat is ¢ = 2100 oc and the phase change temperature is
Ty=2°C. In addition we suppose a fictitious constant heat flux K =100 W/m?. In the Fig. 4, we see the evo-
lution of the free boundary for different values for the thermal conductivity such as k/10, k/4, k/2, k, 2k, 4k
and 10k, where k is the real value for the thermal conductivity of the paraffin. This evolution agrees with the
physical idea because at greater conductivity, we need less time to melt the material.

In Fig. 5 we can analyze the behavior of the temperature in the border in contact with the heat source. For
each of the values of the conductivity we observe a decreasing monotone behavior. That is correct, because the
system is less time in contact with the heat source.

In Fig. 6 we represent the temperature distributions at a fixed time ¢* = 1224. for three values of the thermal
conductivity: k/10, k and 10k;we choose this time because in that moment none substance is totally melted. We
observe that the corresponding curves intersect and so there is not monotonicity.

The curves in Fig. 7 correspond at a fixed time * = 300 h, which is the time when the material with the
higher conductivity is totally melted. Again we observe that there is not monotonicity.

5. Conclusions

We consider a one-phase one dimensional Stefan problem with a variable heat flux condition on the
fixed face x = 0. We have proved the monotone decreasing behavior of the free boundary and temperature
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distribution with respect to the latent heat, specific heat and mass density of a substance by using the maxi-
mum principle.

We apply three analytical methods (Heat balance integral method, Biot‘s variational method and Quasi-
stationary method) and a numerical method (Implicit finite difference method with variable grid in the time)
with the aim to approximate the solution to the problem P. We developed the corresponding four programs in
Scilab.

We obtain more adjusted results by using the finite difference method and we used it in order to analyze the
behavior of the solution of the Stefan problem with respect to the thermal conductivity. We have showed that
there is no monotonicity with respect to this thermal coefficient.
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