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Abstract

We study a one-phase Stefan problem for a semi-infinite material with temperature-
dependent thermal conductivity with a constant temperature or a heat flux condi-
tion of the type —qo/v/t (go > 0) at the fixed face 2 = 0. We obtain in both cases
sufficient conditions for data in order to have a parametric representation of the so-
lution of the similarity type for t > ty > 0 with ¢ an arbitrary positive time. These
explicit solutions are obtained through the unique solution of an integral equation
with the time as a parameter.

Key words : Stefan problem, free boundary problem, moving boundary prob-
lem, phase-change process, nonlinear thermal conductivity, fusion, solidification,
similarity solution.

2000 AMS Subject Classification: 35R35, 80A22, 35C05

I. Introduction. We will consider a phase-change problem (Stefan problem) for a
non-linear heat conduction equation for a semi-infinite region x > 0 with a nonlinear
thermal conductivity k(6) given by

pc

k(6) L (1)
and phase change temperature 6. This kind of thermal conductivity or diffusion co-
efficient was considered in [3, 5, 6, 14, 16, 18, 21, 23, 28]. The modeling of this type
of systems is a great mathematical and industrial significance problem. Phase-change
problems appear frequently in industrial processes and other problems of technological
interest [1, 7, 8, 9, 11, 12, 13, 15, 17]. A recent large bibliography on the subject was
given recently in [27].
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The mathematical formulation of our free boundary (fusion process) problem consists
in determining the evolution of the moving phase separation x = s(t) and the temperature
distribution 6 = 0(x,t) satisfying the conditions

pc%z%(k(@)%) ,0<zx<s(t),t>0 (2)
k@@ﬂ%%&ﬂzf%,%>0J>0 (3)
M@@@J»%%@@J):—ds@,t>0 (4)

0 (s(t),t) =0;, t>0 (5)
5(0) =0 (6)

where a + bf; > 0, in order to guarantee that k is well defined. Here —qo/ V/t denotes the
prescribed heat flux on the boundary x = 0 which is of the type imposed in [26]. This
kind of heat flux condition (3) was also considered in numerous papers, e.g. [2, 10, 22].
Other problems in this subject are [4, 19, 23, 24].

The free boundary problem (2) — (6) with k(6) defined by (1) is a particular case of
one studied in [20, 25] by taking the parameter d = 0 for the following equation

9 0 o0 00
Pa = B (k(@)%) — v(@)% ,0<zx<s(t),t>0 (7)

where the thermal conductivity k(f) and the velocity term v(#) are given by (1) and

v(f) = pC2 d (8)

(a + b9)?

respectively, and ¢, p and [ are the specific heat, the density and the latent heat of fusion of
the medium respectively, all of them are assumed to be constant with positive parameters
a,b and d.

In those papers temperature and flux type conditions on the fixed face x = 0 were
studied. Furthermore, necessary and sufficient conditions for the existence of an explicit
solution was found in [20]. Here we study the case without the velocity term, i.e. d =0 in
the differential equation (7) which cannot be obtained from what it was previously done
in [20, 25] for the case d # 0. In those papers it was defined the transformation

2 1
y:g[ﬂ+d@;—4 9)
which is the identity if we take d — 0 since

im 2 b=
(ljlir(l)(—i[(l—l—dl’) —1}—:1:,‘V’:B>0.

Then, the case d = 0 must be solved by using other techniques which will be the goal
of this study.
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In Section II we prove the existence and uniqueness of an explicit solution of the
similarity type of the free boundary problem (2) — (6) for ¢ >ty > 0 with ¢, an arbitrary
positive time when data satisfy condition a + b8y > bl/c. The solution is explicitly given
by (41), (47) and (48), and by (50), (51) for the cases a + bf; > bl/c and a + b8y = bl/c
respectively. The explicit solution for the two cases is obtained through the unique solution
of an integral equation in which time is a parameter.

Besides, there does not exist any solution of the similarity type to the free boundary
problem (2) — (6) for the case a + b8y < bl/c.

I1. Existence and uniqueness of solution of the free boundary problem with
flux boundary condition on the fixed face.

We consider the free boundary problem (2) — (6) with the parameters a,b and the
coefficients [, ¢ satisfy the following condition

a+ bl > %l . (10)
If we define 1
=— 11
© a+ b0’ (11)
the problem (2) — (6) becomes
00 ,0%0
E—@w,0<l’<s(t),t>0 (12)
00 w
g - 1
55 (0 0) \/E’t>0 (13)
00 bl «
o Sty =—5(t), t>0 (14)
1
pu— 1
s(0) = (16)
where w is a constant defined by
bgo
pu— —_— . 1
p” (17)
Let us perform the transformation
«  dn
x(@,t) = [,
O(n,t) (18)
U (x,t) = O(z,1)
and
S(t) = x(s(t),1) (19)
The problem (12) — (16) becomes
2
oW _ o0 w OV S, >0 (20)

ot o Viox
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ov w

G0 = u 00 >0
ou | .
TZ(S(t),t) = . S (t
ax S (a+bef)(a(a+bef)—1)( "
W(S(H), ) = a—l—lef >0
S(0) = 0

where

S (t) = (a+b9f—%l)§(t)+%.

If we introduce the similarity variable

and the solution is sought of type

T (x,t) = (&) Zw(%ﬁ)

then the free boundary S(t) of the problem (20) — (24) must be of the type

S(t) =2MVE, t>0

(21)

(22)

(23)

(24)

(28)

with A; > 0 an unknown coefficient to be determined and the problem (20) — (24) yields

¢ F20(E)(E—w)=0,0<E< N

¢' (0) = 2wy (0)

1
A) =
SD( 1) a+69f

2

¢ (A1) = C (A —w).

(a+ boy) (a (a+b0;) — 1)

Taking into account the expression (25) we have

s(t) = 22Vt

ith
wi A —w
bl -

A=
a+be—z

(29)
(30)

(31)

(32)

(33)

(34)
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If we integrate (29) we obtain

¢ (§) = Dyerf (§ —w) + (35)

where D; and C) are two constants of integration which can be determined from (30) and
(31)

_ Vrwexp(u?) 56)

Dy = (a+00f) [1 + /mwexp (w?) (erf (A — w) + erf (w))]
B 1+ /7w exp (w?) erf (w)
€= (a+b8y) (1 + /mwexp (w?) (erf (A; — w) + erf (w))) (37)

Now, we have to consider here the condition (32) which implies that A; must be the
solution of the following equation

Wi (z) = Wa(x) , T >w (38)
where
W) = W @)exp [~ (@ — w)] (30)
14+ wexp (w?) /7 (erf (x — w) + erf (w))
and
Wy (z) = i (x —w) . (40)

c(a+bly) —bl

It is easy to prove that W1(0) = w > 0, W (400) = 0, and Wj is a decreasing function,
and Wy(w) = 0, Wa(400) = 400 and W, is an increasing function because condition (10).
So, there exists a unique solution A; of the equation (38) and then we have the following
theorem.

Theorem 1.- Let us consider the hypothesis (10).
(i) If (©, s) is a solution of the free boundary problem (12) — (16) then © = ©(z,t) is
a solution, in variable z, of the integral equation:

Iy 50
O(z,t) = Cy + Dy erf (%\2” —w) , 0< 2 < s(t), (41)

where ¢ > 0 is a parameter and w, D; and C; are defined by (17), (36) and (37) respec-
tively, and s(t) is given by (33) and A; is the unique solution of the Eq. (38). Moreover,
function Y (z,t) defined by

1 T
</
Y(z,1) 2\/;&/0 omy W , 0<z<s(t),t>0 (42)

satisfies the conditions

Y 1 1
e 4
aﬂf(gj’t) 2/t O( 77j),0<£13<s(t),t>0 (43)
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Y(0,8) = —w, t >0 (44)
%—i@:,t) - _2% (Y(m,t) + %exp ((;(?t(;”’t))) L0<z<st),t>0  (45)
Y (s(t), ) = Ay —w, t >0 (46)

(ii) Conversely, if © is a solution of the integral equation (41) with s given by (33)
and function Y, defined by (42) satisfies the conditions (43) — (46), and w, D; and C} are
defined by (17),(36) and (37) respectively, and A; is the unique solution of the Eq. (38)
then (O, s) is a solution of the free boundary problem (12) — (16).

(iii) The integral equation (41) has a unique solution for ¢ > ¢, > 0 with ¢, is an
arbitrary positive time.

(iv) The free boundary problem (2) — (6) satisfying the hypothesis (10) has a unique
similarity type solution (6, s) for t > ¢ty > 0 (with ¢y an arbitrary positive time) which is
given by

1 1
- - — > 4
0(x,t) b{@(x,t) a}, 0<z<s(t), t>ty>0 (47)
s(t) = 2(A1—_wl))l\/i,t2to>0 (48)
a+69f—z

where © is the unique solution of the integral Eq. (41) where A; is the unique solution of
the Eq. (38), and w, D; and C} are defined by (17), (36) and (37) respectively.
Proof.

(i) From the previous computation we have

L/SE ()Eipt)

2/t
that is © is a solution of the integral equation (41) . Function Y, defined by (42) , satisfies
the conditions (43),(44) by elementary computations, and

O(z,t) = p(§) = C1 + Dyerf (§ —w) = Cy + Dy erf

Yy 1 | dn 1 7
—(z,t) = — - Oua N d
ot (1) 4t/ [ O(n,t) 2/t / (n, t)dn

1 (Y(x) . 1 (Y(x,t) D exp (—=Y?(z,t))
=i (T rewn) == (P A )

that is (45) . Finally we get

s(t)
_ 1 dy _ _xG®Y SO
Y(S(t)’t)_zﬁ / O(nt) 2yt 2Vt A

0

that is (46) .
(ii) In order to proof that (©, s) is a solution of the free boundary problem (12) — (16)
we get:
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! O (1) = (\%GXP ((;(ZQt(;E ’t)))m =
BTG e BIE)
A Oz, ) = 2—\% exp (—Y?(z,1)) Yi(z,t) =
_ _% exp (—Y2(z, 1)) (Y(:B, £) + %exp g::t(;” : t)))
that )is Eq. (12);
C 0(0,) = Cy — Dy erf(w) = W :
! 0,(0,) — f/%eXp (@—(15;()0 1) _ % , that is (13);
’ O(s(t),t) = C1 + Dyerf(A —w) = %bef , that is (15);
f)
01160 = LS G O = L B e (s ) =
_ %Wl () = %WQ (Ay) =
L bl (A —w) =22 Py that s (14)

R

(iii) Now in order to complete the proof, we just have to proof the existence of a
solution of the integral equation (41). If we define Y(x,t) by (42) then, Eq. (41) is
equivalent to the following Cauchy differential problem

Vitela+blg) —bl

aY 1 1
%(z’t):2\/E(C'1+Dlerf(Y(:B,t)))EGl(z’t’Y(ig’t)) , O0<z<s(t),t>0
Y(0,t) = —w,

(49)

with a positive parameter ¢t > 0. We have }%} < cZ’D\}_t which is bounded for all
1 T
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t >ty >0,0 <z <s(t), for an arbitrary positive time ¢3. Then, problem (49) (i.e. the
integral Eq. (41)) has a unique solution for ¢ > t, > 0, for an arbitrary positive time .
(iv) It follows from elementary but tedious computation.l

Remark 1. Y (z,t) dos not possess a limit at (0,0) because Y (0,t) = —w = —% <0
for t > 0 and PI?% Y(s(t),t) = Ay —w > 0for all t > 0.

If © is the solution of the integral equation (41) then © is strictly monotone in variable
x. We obtain that 0(z,t) = (1/0(x,t) — a) /b does not have limit when (z,t) — (0,0)
but (zx,t) is bounded in a neighborhood of (0,0) checking that

0, = lim inf O(n,7) <O(z,t) < lim sup O(n,7) =
FT im0 0 T) < bl t) < Um o sup 60, 7)
bo
= 07+ ot L/mw exp(w?) (erf (w) + erf (Ay — w))

When the hypothesis (10) is not satisfied we can follow an analogous method to the
one described before in order to obtain the following result.

Theorem 2.
(i) The result of the Theorem 1 is also true if we replace the condition (10) by a+b6; =

—. Furthermore, in this case, the solution of the free boundary problem (2) — (6) is given

by
Oz, 1) = % {@(;t) _ a} Cs(t) = 2DO\E (50)

where O is the unique solution of the following integral equation

— Dyerf | 280D _ £ o<z <s(t 51
@($7t) 0 €r ( 2\/]@ w +bl7 _iL’_S(), ( )

with
D — qor/7 exp(w?)
07 pl(1+ /rwexp(w?) erf(w))

for t > tg >0, 0 <z < s(t) for any arbitrary positive time ¢, and w defined by (17) .

(ii) There does not exist any solution to the free boundary problem (2) — (6) for the

bl
case a + by < = |

A more complete version of these results and the corresponding study for the analogous
problem with a temperature condition on the fixed face x = 0 instead of the heat flux
condition (3) will be given in a forthcoming paper.
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