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Abstract

We study a one-phase Stefan problem for a semi-in¯nite material with temperature-
dependent thermal conductivity with a constant temperature or a heat °ux condi-
tion of the type ¡q0=

p
t (q0 > 0) at the ¯xed face x = 0. We obtain in both cases

su±cient conditions for data in order to have a parametric representation of the so-
lution of the similarity type for t ¸ t0 > 0 with t0 an arbitrary positive time. These
explicit solutions are obtained through the unique solution of an integral equation
with the time as a parameter.

Key words : Stefan problem, free boundary problem, moving boundary prob-
lem, phase-change process, nonlinear thermal conductivity, fusion, solidi¯cation,
similarity solution.

2000 AMS Subject Classi¯cation: 35R35, 80A22, 35C05

I. Introduction. We will consider a phase-change problem (Stefan problem) for a
non-linear heat conduction equation for a semi-in¯nite region x > 0 with a nonlinear
thermal conductivity k(µ) given by

k(µ) =
½c

(a+ bµ)2
(1)

and phase change temperature µf . This kind of thermal conductivity or di®usion co-
e±cient was considered in [3, 5, 6, 14, 16, 18, 21, 23, 28]. The modeling of this type
of systems is a great mathematical and industrial signi¯cance problem. Phase-change
problems appear frequently in industrial processes and other problems of technological
interest [1, 7, 8, 9, 11, 12, 13, 15, 17]. A recent large bibliography on the subject was
given recently in [27].
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The mathematical formulation of our free boundary (fusion process) problem consists
in determining the evolution of the moving phase separation x = s(t) and the temperature
distribution µ = µ(x; t) satisfying the conditions

½c
@µ

@t
=
@

@x

µ
k(µ)

@µ

@x

¶
; 0 < x < s(t) ; t > 0 (2)

k(µ(0; t))
@µ

@x
(0; t) = ¡ q0p

t
; q0 > 0 ; t > 0 (3)

k (µ (s(t); t))
@µ

@x
(s(t); t) = ¡½l

²
s(t) ; t > 0 (4)

µ (s(t); t) = µf ; t > 0 (5)

s(0) = 0 (6)

where a+ bµf > 0, in order to guarantee that k is well de¯ned. Here ¡q0=
p
t denotes the

prescribed heat °ux on the boundary x = 0 which is of the type imposed in [26]. This
kind of heat °ux condition (3) was also considered in numerous papers, e.g. [2, 10, 22].
Other problems in this subject are [4, 19, 23, 24].
The free boundary problem (2) ¡ (6) with k(µ) de¯ned by (1) is a particular case of

one studied in [20, 25] by taking the parameter d = 0 for the following equation

½c
@µ

@t
=
@

@x

µ
k(µ)

@µ

@x

¶
¡ v(µ)@µ

@x
; 0 < x < s(t) ; t > 0 (7)

where the thermal conductivity k(µ) and the velocity term v(µ) are given by (1) and

v(µ) = ½c
d

2 (a+ bµ)2
(8)

respectively, and c; ½ and l are the speci¯c heat, the density and the latent heat of fusion of
the medium respectively, all of them are assumed to be constant with positive parameters
a; b and d:
In those papers temperature and °ux type conditions on the ¯xed face x = 0 were

studied. Furthermore, necessary and su±cient conditions for the existence of an explicit
solution was found in [20]. Here we study the case without the velocity term, i.e. d = 0 in
the di®erential equation (7) which cannot be obtained from what it was previously done
in [20, 25] for the case d 6= 0: In those papers it was de¯ned the transformation

y =
2

d

h
(1 + dx)

1
2 ¡ 1

i
(9)

which is the identity if we take d! 0 since

lim
d!0

2

d

h
(1 + dx)

1
2 ¡ 1

i
= x ; 8 x > 0:

Then, the case d = 0 must be solved by using other techniques which will be the goal
of this study.
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In Section II we prove the existence and uniqueness of an explicit solution of the
similarity type of the free boundary problem (2)¡ (6) for t ¸ t0 > 0 with t0 an arbitrary
positive time when data satisfy condition a+ bµf ¸ bl=c. The solution is explicitly given
by (41) ; (47) and (48) ; and by (50) ; (51) for the cases a+ bµf > bl=c and a+ bµf = bl=c
respectively. The explicit solution for the two cases is obtained through the unique solution
of an integral equation in which time is a parameter.
Besides, there does not exist any solution of the similarity type to the free boundary

problem (2)¡ (6) for the case a+ bµf < bl=c:
II. Existence and uniqueness of solution of the free boundary problem with
°ux boundary condition on the ¯xed face.
We consider the free boundary problem (2) ¡ (6) with the parameters a; b and the

coe±cients l; c satisfy the following condition

a+ bµf >
bl

c
: (10)

If we de¯ne

£ =
1

a+ bµ
; (11)

the problem (2)¡ (6) becomes
@£

@t
= £2

@2£

@x2
; 0 < x < s(t) ; t > 0 (12)

@£

@x
(0; t) =

wp
t
; t > 0 (13)

@£

@x
(s(t); t) =

bl

c

²
s (t) ; t > 0 (14)

£(s(t); t) =
1

a+ bµf
; t > 0 (15)

s(0) = 0 (16)

where w is a constant de¯ned by

w =
bq0
½c
: (17)

Let us perform the transformation

Â(x; t) =
R x
0

d´

£(´; t)

ª (Â; t) = £(x; t)

(18)

and
S(t) = Â(s(t); t) : (19)

The problem (12)¡ (16) becomes
@ª

@t
=
@2ª

@Â2
¡ wp

t

@ª

@Â
; 0 < Â < S(t) ; t > 0 (20)
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@ª

@Â
(0; t) =

wp
t
ª(0; t) ; t > 0 (21)

@ª

@Â
(S(t); t) =

1

(a+ bµf)
³ c
bl
(a+ bµf )¡ 1

´ µ ²
S (t)¡ wp

t

¶
; t > 0 (22)

ª(S(t); t) =
1

a+ bµf
; t > 0 (23)

S(0) = 0 (24)

where
²
S (t) =

µ
a+ bµf ¡ bl

c

¶
²
s (t) +

wp
t
: (25)

If we introduce the similarity variable

» =
Â

2
p
t

; (26)

and the solution is sought of type

ª (Â; t) = ' (») = '

µ
Â

2
p
t

¶
(27)

then the free boundary S(t) of the problem (20)¡ (24) must be of the type

S(t) = 2¤1
p
t ; t > 0 (28)

with ¤1 > 0 an unknown coe±cient to be determined and the problem (20)¡ (24) yields

'00 (») + 2'0 (») (» ¡ w) = 0 ; 0 < » < ¤1 (29)

'0 (0) = 2w' (0) (30)

' (¤1) =
1

a+ bµf
(31)

'0 (¤1) =
2

(a+ bµf)
³ c
bl
(a+ bµf )¡ 1

´ (¤1 ¡w) : (32)

Taking into account the expression (25) we have

s(t) = 2¸1
p
t (33)

with

¸1 =
¤1 ¡ w

a+ bµf ¡ bl
c

: (34)
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If we integrate (29) we obtain

' (») = D1 erf (» ¡w) + C1 (35)

where D1 and C1 are two constants of integration which can be determined from (30) and
(31)

D1 =

p
¼w exp(w2)

(a+ bµf ) [1 +
p
¼w exp (w2) (erf (¤1 ¡ w) + erf (w))] (36)

C1 =
1 +

p
¼w exp (w2) erf (w)

(a+ bµf ) (1 +
p
¼w exp (w2) (erf (¤1 ¡ w) + erf (w))) (37)

Now, we have to consider here the condition (32) which implies that ¤1 must be the
solution of the following equation

W1(x) =W2(x) ; x > w (38)

where

W1(x) =
w exp (w2) exp

£¡ (x¡w)2¤
1 + w exp (w2)

p
¼ (erf (x¡ w) + erf (w)) (39)

and

W2(x) =
bl

c (a+ bµf )¡ bl (x¡ w) : (40)

It is easy to prove thatW1(0) = w > 0;W1(+1) = 0; and W1 is a decreasing function,
and W2(w) = 0;W2(+1) = +1 and W2 is an increasing function because condition (10).
So, there exists a unique solution ¤1 of the equation (38) and then we have the following
theorem.

Theorem 1.- Let us consider the hypothesis (10) :
(i) If (£; s) is a solution of the free boundary problem (12)¡ (16) then £ = £(x; t) is

a solution, in variable x, of the integral equation:

£(x; t) = C1 +D1 erf

ÃR x
0

d´
£(´;t)

2
p
t

¡w
!
; 0 · x · s(t) ; (41)

where t > 0 is a parameter and w;D1 and C1 are de¯ned by (17) ; (36) and (37) respec-
tively, and s(t) is given by (33) and ¤1 is the unique solution of the Eq. (38) : Moreover,
function Y (x; t) de¯ned by

Y (x; t) =
1

2
p
t

Z x

0

d´
£(´;t)

¡w ; 0 · x · s(t) ; t > 0 (42)

satis¯es the conditions

@Y

@x
(x; t) =

1

2
p
t

1

£(x; t)
; 0 < x < s(t) ; t > 0 (43)
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Y (0; t) = ¡w ; t > 0 (44)

@Y

@t
(x; t) = ¡ 1

2t

µ
Y (x; t) +

D1p
¼

exp (¡Y 2(x; t))
£(x; t)

¶
; 0 < x < s(t) ; t > 0 (45)

Y (s(t); t) = ¤1 ¡ w ; t > 0 (46)

(ii) Conversely, if £ is a solution of the integral equation (41) with s given by (33)
and function Y , de¯ned by (42) satis¯es the conditions (43)¡ (46), and w;D1 and C1 are
de¯ned by (17) ; (36) and (37) respectively, and ¤1 is the unique solution of the Eq. (38)
then (£; s) is a solution of the free boundary problem (12)¡ (16) :
(iii) The integral equation (41) has a unique solution for t ¸ t0 > 0 with t0 is an

arbitrary positive time.
(iv) The free boundary problem (2) ¡ (6) satisfying the hypothesis (10) has a unique

similarity type solution (µ; s) for t ¸ t0 > 0 (with t0 an arbitrary positive time) which is
given by

µ(x; t) =
1

b

·
1

£(x; t)
¡ a

¸
; 0 < x < s(t); t ¸ t0 > 0 (47)

s(t) =
2 (¤1 ¡ w)
a+ bµf ¡ bl

c

p
t ; t ¸ t0 > 0 (48)

where £ is the unique solution of the integral Eq. (41) where ¤1 is the unique solution of
the Eq. (38), and w;D1 and C1 are de¯ned by (17) ; (36) and (37) respectively.
Proof.
(i) From the previous computation we have

£(x; t) = '(») = C1 +D1 erf (» ¡ w) = C1 +D1 erf
ÃR x

0
d´

£(´;t)

2
p
t

¡w
!

that is £ is a solution of the integral equation (41) : Function Y , de¯ned by (42) ; satis¯es
the conditions (43) ; (44) by elementary computations, and

@Y

@t
(x; t) = ¡ 1

4t
p
t

xZ
0

d´

£(´; t)
¡ 1

2
p
t

xZ
0

£xx(´; t)d´ =

= ¡ 1

2
p
t

µ
Y (x; t)p

t
+£x(x; t)

¶
= ¡ 1

2
p
t

µ
Y (x; t)p

t
+
D1p
¼t

exp (¡Y 2(x; t))
£(x; t)

¶

that is (45) : Finally we get

Y (s(t); t) =
1

2
p
t

s(t)Z
0

d´

£(´; t)
¡ w = Â (s(t); t)

2
p
t

¡w = S (t)

2
p
t
¡ w = ¤1 ¡ w

that is (46) :
(ii) In order to proof that (£; s) is a solution of the free boundary problem (12)¡ (16)

we get:
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a)

£xx(x; t) =

µ
D1p
¼t

exp (¡Y 2(x; t))
£(x; t)

¶
x

=

= ¡ D1p
¼t

exp (¡Y 2(x; t))
£2(x; t)

µ
Y (x; t) +

D1p
¼

exp (¡Y 2(x; t))
£(x; t)

¶
;

b)

£t(x; t) =
2D1p
¼
exp

¡¡Y 2(x; t)¢Yt(x; t) =
= ¡ D1p

¼t
exp

¡¡Y 2(x; t)¢µY (x; t) + D1p
¼

exp (¡Y 2(x; t))
£(x; t)

¶

that is Eq. (12) ;
c)

£(0; t) = C1 ¡D1 erf(w) =
D1p

¼w exp(w2)
;

d)

£x(0; t) =
D1p
¼t

exp (¡Y 2(0; t))
£(0; t)

=
wp
t
; that is (13) ;

e)

£(s(t); t) = C1 +D1 erf(¤1 ¡ w) = 1

a+ bµf
; that is (15) ;

f)

£x(s(t); t) =
D1p
¼t

exp (¡Y 2(s(t); t))
£(s(t); t)

=
(a+ bµf )D1p

¼t
exp

¡¡(¤1 ¡ w)2¢ =

=
1p
t
W1 (¤1) =

1p
t
W2 (¤1) =

=
1p
t

bl

c(a+ bµf )¡ bl (¤1 ¡ w) =
bl¸1

c
p
t
=
bl

c

²
s (t) ; that is (14)

(iii) Now in order to complete the proof, we just have to proof the existence of a
solution of the integral equation (41) : If we de¯ne Y (x; t) by (42) then, Eq. (41) is
equivalent to the following Cauchy di®erential problem

@Y

@x
(x; t) =

1

2
p
t

1

(C1 +D1 erf (Y (x; t)))
´ G1 (x; t; Y (x; t)) ; 0 < x < s(t) ; t > 0

Y (0; t) = ¡w ;
(49)

with a positive parameter t > 0. We have
¯̄
@G1
@Y

¯̄ · D1
C21
p
¼t
which is bounded for all
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t > t0 > 0; 0 · x · s(t), for an arbitrary positive time t0: Then, problem (49) (i.e. the
integral Eq. (41)) has a unique solution for t ¸ t0 > 0; for an arbitrary positive time t0.
(iv) It follows from elementary but tedious computation.¥

Remark 1. Y (x; t) dos not possess a limit at (0; 0) because Y (0; t) = ¡w = ¡ bq0
½c
< 0

for t > 0 and lim
t 7!0

Y (s(t); t) = ¤1 ¡ w > 0 for all t > 0:
If £ is the solution of the integral equation (41) then £ is strictly monotone in variable

x. We obtain that µ(x; t) = (1=£(x; t)¡ a) =b does not have limit when (x; t) ! (0; 0)
but µ(x; t) is bounded in a neighborhood of (0; 0) checking that

µf = lim
(´;¿ ) 7!(0;0)

inf µ(´; ¿ ) · µ(x; t) · lim
(´;¿) 7!(0;0)

sup µ(´; ¿ ) =

= µf +
a+ bµf
b

p
¼w exp(w2) (erf (w) + erf (¤1 ¡ w))

When the hypothesis (10) is not satis¯ed we can follow an analogous method to the
one described before in order to obtain the following result.

Theorem 2.

(i) The result of the Theorem 1 is also true if we replace the condition (10) by a+bµf =
bl

c
: Furthermore, in this case, the solution of the free boundary problem (2)¡ (6) is given

by

µ(x; t) =
1

b

·
1

£(x; t)
¡ a

¸
; s(t) = 2D0

r
t

¼
(50)

where £ is the unique solution of the following integral equation

£(x; t) = D0 erf

ÃR x
0

d´
£(´;t)

2
p
t

¡ w
!
+
c

bl
; 0 · x · s(t) ; (51)

with

D0 =
q0
p
¼ exp(w2)

½l (1 +
p
¼w exp(w2) erf(w))

for t ¸ t0 > 0; 0 · x · s(t) for any arbitrary positive time t0 and w de¯ned by (17) :
(ii) There does not exist any solution to the free boundary problem (2)¡ (6) for the

case a+ bµf <
bl

c
:¥

Amore complete version of these results and the corresponding study for the analogous
problem with a temperature condition on the ¯xed face x = 0 instead of the heat °ux
condition (3) will be given in a forthcoming paper.
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