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ABSTRACT: In this paper we obtain a generalized Lamé-Clapeyron solution for a one-
phase Stefan problem with a particular type of sources. Necessary and sufficient conditions
are given in order to characterize the source term which provides a unique solution. Some
estimates on the free boundary and the temperature are presented. In particular, asymp-
totic expansions are given for small Stefan number and source.

KEY WORDS: Stefan problem, similarity variable, Lamé-Clapeyron solution, phase-
change problem, free boundary problems, exact solutions, asymptotic expansions, quasi-
steady-state method.

RESUMO: SOLUCAO DE LAME-CLAPEYRON PARA O PROBLEMA DE STEFAN
COM FONTE MONOFASICA. Obtemos uma solugao de Lamé—Clapeyron generalizada
para o problema monofdsico de Stefan com tipo de fonte particular. Apresenta-se condi-
coes necessdrias e suficientes para caracterizar o termo de fonte que garante solugao inica.
Algumas estimativas na fronteira livre e na temperatura sido também apresentadas. Em
particular, expangées assintdticas sdo dadas para o caso quando o niimero de Stefan e a
fonte sdo pequenos.
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1. INTRODUCTION

An explicit solution for the one-phase Stefan problem corresponding to a semi-infinite
material with constant thermal coefficients is well known and referred to as the classic
Lamé-Clapeyron solution [1), [7], [13]. Without loss of generality, we suppose the phase-
change temperature is 0°C. We consider the following fusion problem: the material is
initially in solid phase at the melting temperature and for all possible instant we have a
constant temperature B > 0 on the fixed face x = 0. The problem consists in finding the
liquid-solid interface (free boundary) £ = s(t) > 0, defined for ¢t > 0 with s(0) = 0, and the
liquid temperature § = 8(z,t) > 0, defined for 0 < z < s(t), ¢t > 0, such that they satisfy
the following conditions:

(i) pcby — kb =0,0 <z < 38(t),t >0,
(1) 6(0,t) =B >0,t >0,
(144) 0(s(t),t) =0,t >0,
(iv) kO:(s(t),t) = —pls(t),t > 0,
®  s(0)=0, (1)
where k > 0 is the thermal conductivity, p > 0 the mass density, ¢ > 0 the specific heat
and £ > 0 the latent heat of fusion.
We denote by @ = £ > 0 the diffusion coefficient and Ste = ¢ > 0 the Stefan
number. We shall denote a = /a = \/—pi: > 0, for convenience in the notation.
The solution of problem (1) is given by [1], [2], [7], [9], [12]:

1 T
t) = 2a&oVt, Oo(z,t) = B[l — ——erf(——=)), 2
30() a{O 0(1 ) [ el'f(fo)er (20\/{)] ( )
where & > 0 is the unique solution of the following equation:
Ste
Fo(.'l) = -\/—1_‘_, z>0 (3)
with the notation
Fo(z) = z exp(z?) erf(z),
2 T
erf(z) = — / exp(—u?)du (error function). 4
@ == | exp(-ut)du ¢ ) )

In the present paper, we consider a generalization of the equation (1-i) by
pcly — kOzp = g(z,t), 0 <z < s(t), t>0, (1-i-bis)

where g = g(x,t) represents a source term for the heat equation. We shall denote with
(P) the problem corresponding to conditions (1-i-bis) and (1-ii --- v). In many physical
applications a volumetric heating/cooling term is considered. For the singular case

1 T
g(z,t) = pg?ﬂ(m): (5)
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where 8 = (n) is any function with appropriate regularity properties (for instance, 8 €

either CO(R*) or C'(R+)), we prove necessary and sufficient conditions for the function
f to have an exact solution for problem (P). This exact solution can be considered as a
generalized Lamé—Clapeyron solution for the one-phase Stefan problem (P) with 8 # 0.
Because of the singularity of the source, (P) can be regarded as an ill-posed problem. For
a general theory on one-phase Stefan problem we refer to [1], [4], [5], [9].

We shall denote by (N — n) the formula (n) of Section N and we shall omit N in the
same paragraph, similarly, for theorems, lemmas, corollaries, remarks and notes.

In Section 2, we characterize the set of function 3 for which a unique generalized
Lamé-Clapeyron solution exists, given by (2-10), (2-11) and (2-12). To that purpose, we
define a function Z by (2-30) or (2-33) to obtain a unique solution, and either several
solutions or no solutions at all for problem (1-i-bis). Similar situations have been recently
found in other similarity solutions for the Stefan problem (6].

In Section 3, we consider the problem for small Stefan number Ste <« 1 which is
characterized for the quasi-steady-state solution when function 3 is constant and given by
B(n) = p(0) < 1.

In Section 4, we give several estimates for the temperature and free boundary.

2. GENERALIZED LAME-CLAPEYRON SOLUTION

We consider the following free boundary problem for the heat equation: Find the free
boundary z = s(t) > 0, defined for ¢t > 0 and s(0) = 0, and the temperature 6 = 6(z,t) > 0,
defined for 0 < z < s(t), t > 0, such that they satisfy the following conditions:

(P) pcdy — kO, = g(z,t), 0 <z <s(t), t>0,
6(0,t)=B>0, t>0,
0(s(t),t) =0, t>0,
k0. (s(t),t) = —pls(t), t>0, s(0)=0,

for a given source function g = g(z, t), fixed face temperature B > 0 and constant thermal
coefficients k, p,c,£ > 0.

Since our interest is finding solutions of the Lamé-Clapeyron type for problem (P), we
apply the immobilization domain method [3], [8], [12], that is, we are looking for solutions
of the following type

0(z,t) = T(y) )

where the new independent spatial variable y is defined by
z
= e— 2
V=10 2)

In this case, the problem (P) is transformed as follows: Find functions T = T(y),
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defined for 0 < y < 1, and s = s(t), defined for t > 0 such that

o050 ¥ T'6) + ") = =~ Dg(y s(9,0), 0 <y <1, £,
T(©O)=B >0, T(l)=0, T(1) = -%‘s(t)s(t), >0, s(0)=0. 3)
We must have necessarily that s(¢)3(t) = Const., i.e.

(t) = 206 VA, ()

where the dimensionless parameter £ > 0 is unknown. Then, from (3) and (4), and for the
source term g, given by expression (1-5), we obtain the following problem:

" , 2
T () + 2% () = - £ p(en), 0 <y <1,
T(0)=B, T(1)=0, T'(1) = —2{52. (5)

If we define
R(n) = T(g) (or T(y) = R(¢y)), n= ¢y, (6)

problem (5) is equivalent to
” e
R (1) + 2R (n) = =2 8n), 0 <7<,
RO)=B, RE=0, RE=-2¢ "

After some elementary computations the solution R = R(n) and ¢ > 0 of problem (7)
is given explicitly by

R(n) = B~ ¢ exp(€?) ext(n)

3
+ 2 [ s exptP)abl exp(-rtyar, 0.<n <, ®)

where £ > 0 must verify the condition

R(§)=0. (9)

Taking into account (1-4), we can do an integration into condition R(£) = 0 and we obtain
that the number z = £ > 0 must satisfy the equation:

F(z,8) = S—\/t;, z >0, (10)
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where function F = F(z) = F(z,(3) is defined for z > 0 and # = 3(r) by the expression
F(a.6) = Fol@) -2 [ exp(s?) exf(r)B(r)ar. ()
0

Note 1. From now on we shall note with £ > 0 the dimensionless first variable of function
F and the spatial variable for the temperature 6.

Therefore, we have obtained the following abstract theorem in the case where equation
(10) has at least one solution £ > 0.

Theorem 1. An explicit solution of problem (P) with the source term g, defined by (1-5),
as a function of 3, is given by:
™
0@, t) = Bl — L £ exp(e?) enfln)+

n €
+§4t—e -/o [ / B(y) exp(y?)dy] exp(—r?)dr},

T

s(t) = 20{\/2, n= 2avt €(0,%), (12)

where the number £ > 0 is a solution of equation (10).
Remark 1. Function F satisfies the following properties:

F(0%,B) =0, (13)
g—i(z, B) = % + exp(z?) erf(z)[1 + 222 — 28(z)], (14)
%ﬁ;—(z,ﬂ) = %(1 + %) + 2Fy(z)(3 + 22?)

~ 4l7= + Fo@)}p(a) - 2exp(a?) eri(z)8 (). (15)

1t is clear that (14) and (15) are meaningful when 8 is continuous and continuous
differentiable, respectively. The space where §(:) will be considered has not been yet
defined.

Lemma 2. The function F satisfies the following properties:

6) o (2,6) > 0 = B(z) < o(a)
where function 1y = Yo(z) is defined by

Yo(z) = % . %G(z), G(z) = ei:;%ﬂ’)ﬁ, z>0. (16)
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(u) (a:, B) >0, Vz > 0 if and only if B verifies the following differential inequality:
g'(z) + M'(z)B(z) < N(z), Vz >0, amn
where functions M and N are defined by
M(z) = 22 + log(erf(z)), = >0,
- 2y, 2 1442
N(z) =z(3+2z°) + ﬁ(l +2%)G(z), > 0. (18)
(iii) The differential inequality (17) implies that function B necessarily satisfies the inequal-
ity B(x) < You(x), Yz >0, where function Yc is defined by
Yo(z) = Yo(z) + CG(z), > 0(C €R), (19)

and Cp is supposed to be a real number (finite) which is defined by Cp = lim,_p+ [B(z) erf(z)]
as a function of f.

Proof. By means of the following expressions,

M(@) =2 [l + Z-G(o)lds, exp(~M (=) = G(o),

/ zexp(z?) erf(z)dr = %exp(a?) erf(z) — %,

2 (z2-1)

/ 23 exp(z?) erf(z)dz = % v + exp(z?) erf(z),

[ V@ ex(M@)ds = 2= + G+ ) expla?) en(),

exp(~M(2)) [ N(@)exp(M(@))dz = o(c), (20
and with some elementary computation, the lemma can be established.
Lemma 3. If the function  verifies the inequality
B(z) < Yc(z), Yz >0, (21)

for some constant C € R, then we have the following estimates:
F(:t, ﬂ) 2 F(x»"/’C) = —2Cz, V>0,
oF oF
a_x(zi ﬂ) 2 _a;(xl 1!’0) =-2C, Vz > 0. (22)

Proof. From elementary computations and taking into account the following expressions:

/ erf(z)dz = z erf(z) + % exp(—z?),

Fo(x) x?

/ (+ ) epla?) exle)ds = 5 — T, (23)
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we can prove the lemma.

Remark 2. We have the following real functions

1 1
U(z) = 5 +z2 4+ -2-exp(—a:2), z>0,

V(z) = %exp(a:z) erf(z) = ;_C—v‘]:(-;j, z >0,
1, zG(z)
wel(r) = gtz + CG(z) = Yc(z) — v z>0,(C eR). (24)

In what follows, we will use the properties:

G(0%) = 400, G(+00) =0, G’ <0in R,
2
= = 4 3 +
v )_\/7?’ V(400) = 400, V' > 0in R,
U(0*) =1, U(+00) = 400, U'(0*) =0, U’ >0inR*,

Y0 (01) =1, o(+00) = +oo, ¥H(01) =0, ¥ > 0in R*,

% + 22 < U(z) < ¢o(z), Yz >0, (25)

pc(0%) = +00, wc(+00) = +00,
cl_ig_loo[min:>0(PC(z)] =+o00 (C> 0),

(PC(0+) = —o00, ‘PC(+°°) = +00, (PIC > 0in Rt (C < O)a

% + 22 < po(z) < Po(z), Yz > Cv/m (C > 0),

. 1
Jim_[o(z) - (5 +2%)] =0. (26)

Now we can prove the following first existence theorem.

Theorem 4. Let 3 be a real continuous function in Ry
(i) If B verifies the inequality

B(z) < Yo(z) —€, Y >0 for some € > 0, (27)

then there erists a unique number £ = £( Ste) > 0 which is the solution of the equation
(10) for each Ste > 0.

(ii) If B verifies the inequality 8 < ¢ in R for some constant C < 0 then we obtain
the same conclusion of part (i).

(iil) If B verifies the ineguality B < pc in RY for some constant C > 0 then there

erist a number £ = £ ( Ste) > 2C/m which is a solution of the equation (10) for all Ste
> 0.
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(iv) If B = pc in part (iii) we can also deduce the uniqueness of the number €.

Proof. (i) It is enough to apply part (i) of Lemma 2, (13) and the fact that F(+oc0, 8) = +o0
because

F(z,8) > F(z,%0 —€) = 2¢ / i exp(r?) erf(r)dr. (28)
(i
(ii) It is a consequence of Lemma 3.
(iii) We have
F(z,8) > %z(x —2CV7),Vz > 0, (29)

that is, we obtain at least a solution £ > 2C+/7 of the equation (10). This procedure can
be applled for all Ste > 0.
(iv) Since we have the equality in (29), we can also obtain the umqueness of €.

Corollary 5. (i) The inequality B(z) < & + z2,Yz > 0, is a sufficient condztzon to have a
unigue number £ > 0, solution of the equatzon (10).

(ii) If B is real function bounded from above by a constant My, then there exists at
least an element £ > 0 solution of the equation (10).

Proof. In view of (26) it is sufficient to choose C > 0 so large such that m>ig vel(z) = My
T
and then we can apply part (iii) of Theorem 4.

Corollary 6. For the particular and interesting case 8 < 0 in R} we have a unique
element £ > 0, the solution of the equation (10).

Remark 8. In parts (iii) of Theorem 4 and (ii) of Corollary 5 we cannot affirm the unique-
ness of the element &.

Remark 4. If B verifies condition (27) we have that 8(0%) < 1 and*fhe existence and
uniqueness of number £. We can also have 8(0%) > 1 by choosing a suitable constant
C > 0 (part (iii) of Theorem 4) but in this case we cannot assure the uniqueness of £.

We give now a general theorem which gives sufficient conditions on function 3 to have
a unique number £ > 0, the solution of equation (10).

Theorem 7. Let 3 be a continuous real function on RY such that z8(x) is locally integrable
on R*. Define the function Z by

Z = Zg(x) = exp(z?) erfz)[ho(z) — B(z)], = > O, (30)

which is continuous and locally integrable on R*. If the function Z satisfies the following

conditions
—+o00

Z >0 on (v,+0), Z(t)dt = +o0, (31)
0

where v > 0 is defined by

v=inf{z >0/ /: Z(t)dt > 0} (=vz), (32)
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then for any Ste > 0, there erists a unique number £ = £(Ste) > 0 which is the solution of
equation (10) for the given function B. Conversely, if for the given function 3, equation
(10) has a unique root £ = £(Ste) > 0 for any Ste > 0 then there erists a continuous and
locally integrable function Z on R satisfying (31) and (32) such that

B(z) = Yo(z) — Z(z)G(z) (= Pz(z)), = >0, (33)

where functions 1o and G are defined by (16). Moreover in any case the root £ > v.

Proof. Due to the definition of functions 1, and G, and the second equality in (23), we
obtain

F,62) = Foe) -2 | * exp(r?) ext(r) [o(r) — Z(r)G(r)]dr =
= 2/0 Z(r)dr, Vz > 0. (34)

From elementary consideration on function Z, the proof is achieved.
Conversely, if we define

v =inf{z > 0/F(z,0) >0}, Z(z)= %g—:(z,ﬂ), £>0, (35)

we get the thesis because of the relation (14), F is a strictly increasing function over (v, +00)
and verifies F((+00,3) = +0o0 (by uniqueness of number £, solution of the equation (10),
for all Ste > 0). By definition of number v in (35) we have £ > v.

Remark 5. Let Z be the function in Theorem 7. If Z(0%) > 0 (or Z(0%) < 0) then
Bz(0F) = ~o0 (or Bz(0%) = +00). On the other hand, if Z(0*) = 0 then

pa(0h) =1- YE tim 20 _y_ V¥ 71gm), (36)

2 zo0+t =z

when Z’(0%) exists.
Remark 6. We can improve Remark 4 by using appropriate conditions for the function Z
in Theorem 7. We have 3(0%) = +oo by taking Z(0*) < 0 and 8(0%) =1- AZEZ’(0+) >0
by taking Z(0%) = 0 and Z/(0*) < 0. We have also improved condition (27) to have a
unique £ > 0 because it is possible to have § > 1 in the internal (0,r) by choosing an
appropriate function Z such that Z < 0 in (0,v).
Remark 7.(i) If we choose function Z like Z(z) = Z¢(z) = W —C (C > 0), which satisfies
the hypotheses of Theorem 7, then we obtain 8z, = ¢¢ and v = 2C+/7 (c.f. Theorem 4).

(ii) On the other hand, if Z(z) = € > 0, Vz > 0, then we get 8z(z) = o(z) —
eG(z), Yz >0, and v = 0.

(i#i) Similarly, if Z(x) = ¢ exp(z?) erf(z), Yz > 0, for some constant £ > 0, then we
have fz(z) = to(z) — ¢,¥z > 0, and v = 0 (c.f. Theorem 4).
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Remark 8. If Z < 0 (Z > 0) in a right neighborhood of z = 0 under the hypotheses of
Theorem 7, then we have v > 0 (v = 0).
Remark 9. Under relations (30) and (33) we can deduce the following equivalences:

(i) B<YpinR* <= Z>0inRt.

() B(z) < Yo(z) - €, Yz > 0 <= Z(x) > cexp(z?) erf(z), Vz > 0 37
where ¢ is any positive real number.

Remark 10. (Example of the nonexistence solution of the equation (10)). We consider the
case Z(z) = exp(—x),z > 0, which gives

- exp(—z?)
Bla) = 5 +27+ 12 (-] 22D, 2>,
v=0, and F(z, ) = 2[1 — exp(—z)], = > 0. (38)

Therefore, for the physical situation 37‘,% = %‘:—r > 2, we have no explicit solution of

the type (12). This occurs because function Z does not verify the limit condition (31).
Moreover, others examples of nonexistence solution of the equation (10) can be constructed
by choosing functions Z with the property fo+°° Z(z)dz < +00.

Remark 11. (Example of multiple solutions of equation (10)). We consider the case Z(z) =
3(z — 1)(z — 3),z > 0, which gives

1 exp(—z?) 1.
B(z) = 3 +z2+ —m—(—:h:z +(12+ \/7—r)I 9),
F(z,8) =2z(z—3)?, >0, and v =0. (39)

Because the function F has a relative maximum F(1) = 8 in = 1, we deduce that the
equation (10) has: three Solutions if 0 < Ste < 8./m, two Solutions if Ste = 84/, one
Solution if Ste > 8y/m. This occurs because function Z is not always positive over the
interval (v, 4+00) (Z is negative over the interval (1,3)). Moreover, others examples of
multiple solutions of the equation (10) can be constructed by choosing suitable functions
Z.

Remark 12. (Chaotic example). We consider the case

Z(z) = cos z, F(:c B) =2sin z, >0,
exp(—z?)

B(z) = —+a: +[ — cos z] ort(z)

, and v =0, (40)

which gives for the equation (10) an infinity countable set of solutions if 0 < Ste < 24/7,
and the nonexistence of solutions if Ste > 2/x.

Note 2. It is important to remark that Theorem 7 is a constructive theorem to obtain
a large family of functions 8, that is a family of the source term g, which has an exact
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solution of the Lamé-Clapeyron type (12) (c.f. Theorem 1). Moreover, the hypotheses for
the function Z in Theorem 7 are optimal in order to have a unique solution £ of equation
(10) (c.f. the counterexamples given in the last remarks). On the other hand, the relation
(30) can be useful in several problems.

3. SOLUTION FOR A SMALL STEFAN NUMBER

We shall consider the behavior of the solution (2-10), (2-12) when the Stefan number
is small (classic approximation {3], [10], [11]), i.e. 0.< Ste = % < 1. If we suppose that
function S verifies the conditions (2-27) and (2-37i) then we have Zg > 0 in R*, ie. v =0.
Therefore, we can use the following first order approximations: exp(z?) ~ 1, erf(z) ~
7’;1:, B(z) = B(0) = Bp < 1 —¢€ < 1, in the definition (2-11) of function F to obtain the

first order approximation of the solution £ of the equation (2-10), i.e.

Ste
&ap = m (1)

Remark 1. It is important to remark that the first order approximation is only true when
the number v is zero. Moreover, we can also suppose that S5 < 1 to obtain (1).

We shall interpret the meaning of the formula (1).
Theorem 1. The solution of the quasi-steady state free boundary problem (P) where
g(z,t) = p_lt@ with By < 1, i.e.

— kb, = %plﬂo, O<z<s(t), t>0,

#(0,t)=B>0, t>0, ‘
0(s(t),t) =0, k8z(s(t),t) = —pli(t), t>0,
s(0) =0 @)

is given by

T

2@ o0 = 20kapVt 3

Bet) = T (1= 5L = ol -

where &,p is given by (1).

Proof. We propose a quadratic function in variable z for the temperature, that is 8(z,t) =
Ci(1 - ;F) + C2(1 - ;(’;5)2, where C; and C; are two unknown constants. Solving all
conditions given in (2), we obtain an ordinary differential equation for s = s(t), whose
solution is given by (3) and (1). Moreover, we have Cy = %;, Ce = ;—fgg— .
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We suppose that function # (or its corresponding function Z) verifies the hypotheses
(e.g. Theorem 2-7) to have a unique solution £ of the equation (2-10). We shall give a
general method to obtain &,, as function of Z = Z(z) and v > 0 when Z(v) > 0. Indeed,
in this case, we have F(v,8) =0, %E(v,B) = 2Z(v) > 0. Therefore, if we consider the
first order approximation in equation (2-10) then we obtain that £ > v > 0 is the solution
of the following linear equation

Ste

2Z(v)(z —v) = 7 z > v, 4)
which is given by S
te
Eap =v+ 2_ﬁ—Z(_l/) (5)

Thus, we have obtained the following lemma.

Lemma 2. If function Z verifies the hypotheses of Theorem 2-7 and Z(v) > 0 then we
obtain that the first order approzimation &4, of the solution £ of equation (2-10) for a small
_ Stefan number Ste is given by the ezpression (5).

Remark 2. If we consider the case Z = Z¢, where C > 0 is a given constant, then we get
(cf. also Remark 2-7)

%(z —20V7), B()=pc(z), >0, v=2Cy7>0, (6)

and therefore, the exact solution of the equation (2-10) is given by

F(z’ﬂ) =

fo=OvalL+1+ 5] ™

Remark 3. If we use the approximation v1+z =1+ %, |z| < 1, in (7) when Ste <« 1,
we obtain that {c =~ £ = 2C /7 + zg.%;, where we can verify that £, coincides with the
expression given by (5) because v = 2Cy/7m > 0 and Z(v) =C > 0.

Remark 4. When v > 0 and Z(v) = 0 we replace the linear equation (4) by

2 z<">(u)(’—;!")—" - S—\/t; >v, (8)

where n > 1 is the first order such that the n-derivative of function Z at the point v is
different from 0.
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4. TEMPERATURE AND FREE BOUNDARY ESTIMATES

In this paragraph we shall give some estimates of the temperature # and the free
boundary s(t), given by (2-12), in particular for the coefficient ¢ (solution of equation
(2-10)).

First, we can obtain the following result for the particular case 8 < 0 over Rg.

Lemma 1. If 8 < 0 over R; then we have

(i)0 <€ <& and 0 < s(t) < so(t),t >0,
(i§)0(z,t) < 60(=,£),0 < = < s(t),t > 0, (1)
where 6y, so, &y represents the solution (I-2)-(I-3) corresponding to the case § = 0.

Proof. Using Corollary (2-6) and the fact that F(z,8) > F(z,0) = Fp(z), we obtain
¢ < &, that is (1-i). Therefore, in the domain 0 < z < s(t),t > 0 we can apply the
maximum principle in order to obtain (1-ii).

Remark 1. We cannot obtain the inequality (1-ii} by using directly the definition of 6,
given by the expression (2-12) (c.f. Corollary 4 for an improvement of (1-ii}).

Let 85, = 0i,85, = 8i,2Zp, = Z;,vz, = v; > 0 and £(Bi) > 0 be the temperature
(defined by (2-12)), the free boundary (defined by (2-12)), Z-function (defined by (2-30)),
the numbers v (defined by (2-32)) and £ (solution of equation (2-10)) corresponding to the
data G; for i = 1,2. We have the following comparison result:

Theorem 2. (a) We have the following equivalence:
B2 < B over Rt <= Z; < Z, over R*. (2)
(b) If B2 < By over R then we obtain the following properties.
(1) vy <1y, (ll) n=0=2r=0. (3)
On the other hand, if Z, verifies the hypotheses of Theorem (2-7) and Z3 > 0 on (va,11],
then Z, also verifies the hypotheses of Theorem (2-7). Moreover, we obtain that there
exists a unique £(B2) which satisfies the inequalities
€(B2) <&(Br), s2(t) < s(t), t>0. (4)

(c) If in addition to the hypotheses of part (b) we have B > 0, over R, then we get

O2(z,t) < 61(z,t), 0<z <s2(t), t>0. (5)

Proof. The equivalence (2) follows from the definitions (2-30) and (2-33). We use the fact
Iy Za(t)dt > [ Z:1(t)dt > 0,Vz > 1, to get that v, < 14, ie. (3). By using (a), we obtain
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:°° Z3(t)dt = 400, ¥2 <1y, Z3 > 0 over (v1,+00) and F(z,B1) < F(z,B2) over R,
that is (4). We obtain (5) by means of #; > 0 and the maximum principle in the domain
0<z<s3(t), t>0.

Remark 2. The same consequence (4) of part (b) of Theorem 2 holds true if we replace
the condition “Z3 > 0 over (13,21]” by “y = 0”. This assertion makes use of (3-ii).

In order to obtain some others estimates of the temperature we can modify the third
term on the right hand size in (2-12) to have the following results.

Theorem 8. Let 8 be a real continuous function over Rt which satisfies the hypotheses
of Theorem 2-7 relative to the unique solution £ > 0 of equation (2-10). Then we obtain:

(i) The temperature 0 can be expressed by

0(a,t) = 0n) = B{1—~ L exp(€?) erf (m)+

+ 25 [ btr)expr?) enftr)ar

£
+ erfin) /,7 B(r) exp(r?)dr]}, for n = 2—:’$ € (0,£). (6)

dé
(ii) If n = n* is a critical point of the temperature @ = 0(n) (that is d—n(n*) =0,ie n*isa

mazimum, minimum or inflection point) then 1 = n* must satisfy the following equation:

3
[ Bty explrtyar = geexple®), 0<n<s ™

Moreover, in this case, we have

6(n*) = B[1 + gg{—f— /on B(r) exp(r?) erf(r)dr]

= B{1+ YL {R(") ~ Fer', ), ®
20 = 280", ©

Proof. (i) The third term on the right hand side for the temperature @ in (2-14) is a double
integral over a domain which can be expressed by the union of two subdomains as follows
O<n<&): {(ny)/r<y<é0<r<&}={(rny/o<r<nn<y<&}U{(ry/0<
r < 1,0 <y <n}. Therefore, we can deduce (6) after exchanging the order of integration
in the triangle.
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(ii) It follows from the expressions (0 < 7 < £):

) = 5 e(-)2 / B(r) exp(r?) dr — € expl(e?)], (10)
T =20 (1)~ &2 o). 1)

Remark 8. If n = n* is a critical point of & = 6(n) then we have a relative
maximum if 8(n*) > 0, minimum if 8(n*) < 0. (12)

As a direct consequence of the above Theorem we have:

Corollary 4. (i) If 8 < 0 over R* then the temperature 6 cannot have a critical point.
Moreover, we can improve (1-ii) by

0 < O(x,t) < Op(z,t), 0<z<s(t), t>0. (13)

(ii) Suppose B> 0 over RY and satisfies the hypotheses in order that equation (2-10) has a
unique solution. If the equation (7) has at least a solution then the critical point n = n* is
unique and we have 0 < 0(n) < 0(n*), 0<n <€, with 6(n*) > B, where 0(n*) is given
by (8). Moreover, if only 8 > 0 over R then we may have an whole interval of critical
points, but in any case we have 0(n) >0, 0 <n<E.

Lemma 5. If 8 > 0 over R and Z satisfies the hypotheses of Theorem 2-7, then we have

E 2 EO) 3(t) 2 3o(t), i 2 0’
0(z,t) = Op(z,t), 0 <z <sp(t), t>0. (14)

Proof. Tt follows from Theorem 2 and the maximum principle.

Corollary 6.(i) If B2 < B, over RY and Z, and Z, verify the hypotheses of Theorem 2-7
(we use the same notation of Theorem 2), then we have

0<E(B) < E(B), 0 < salt) < silt), £20. (15)

(ii) If B(z) < o(x) — € for some real constant € > 0 then 0 < £(B) < H0_1(2—f§;), where
Hy' is the inverse function of Hy which is defined by Ho(z) = [y exp(r?) erf{r)dr,z > 0,
and satisfies Hy(0%) =0, Hp(+00) = 400, Hj >0 over Rt.

(iii) If the function B satisfies the hypotheses of Theorem 2-7 and B < ¢ over R,
for some real constant C > 0, then we have

20V <€(B) < bo = OVl +4/1+ ],
otn) < 2T Ryee), 0 <n <é. (16)
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Remark 4. It is necessary to suppose that 3 satisfies the hypotheses of Theorem 2-7
(i.e. Zg > 0 over (v(Zg),2C+/7)) in Corollary 6 part (iii) because v(Z(p¢c)) = v(Z¢) =
2C/m > 0, that is we can not apply Remark 2. Moreover, if 3 does not satisfy the
hypotheses of Theorem 2-7, then in general we can not affirm the uniqueness of £(3), but
all these numbers satisfy the inequality (16) from part (ii) of Theorem 2-4 and the fact

that $2 = F(¢(8), 8) 2 F(£(8), #c) = £(B) (42 — 20), that is £(B) < éc.
Theorem 7. Let Z and Z, be two continuous real functions over R which satisfy the

hypotheses of Theorem 2-7. Let 3 and (3, be their corresponding (3-functions. Let H, be
the real function defined by

Ste

@ =57

T
+ | Z.(r)dr, z2>0. (17)
0

Then we have the following results:
(i) The number £(8) > 0 satisfies the inequality:

H,(§(B)) < Fo(&(B))- (18)

(ii) If, in addition, function Z, is such that there exists at least a solution to the following
equation
H.(z) = Fo(z), >0 (19)
then we have £€(8) > n9 > 0, where £ =1y > 0 is the first positive root of equation (19).
(iii) If the function Z, satisfies the inequality

H,(z) < Fy(z), for some z >0, (20)
then there ezists at least one number 19 > 0 which solves the equation (19).
(iv) If the function Z, satisfies the inequality

Z,(z) < —= +( + z2) exp(x?) erflx), = >0, (21)

f

then the condition (20) holds true. Moreover, in this case we have B, > 0 over Rt and
Z,(0)<o0.

Proof. (i) From (2-11) and (2-23), we get

£(8)
2% = FE®).H) < FE®-p) = 2REE) -2 [z @)

that is (18).
(ii) It follows from (18), (19) and the definition of 7y > 0.
(iii) This assertion follows from (19) and the fact that Fo(0) =0, H,(0%)= 3% >
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(iv) If the function Z, satisfies the inequality (21) then, by taking into account (2-23),
we obtain

H,(z) < st Fo(:z:), z2>0, (23)

f

that is, we get (20) for all z > & > 0. Moreover, using (2-33) we obtain 3, > 0 over R*.

Corollary 8. If the function Z, in Theorem 7 is given by Z,(z) = %=—-C, >0 (C>
0), then we obtain

Bi(z) =wc(z), >0 (cf Remark 2-9),
72

H(e)= 5 =~ Ozt y f >0,
H,(0) = ‘ije_>o HI(0) = —~C <0, H,y(+00) = oo,

H.(z) > H,(Cv7) = ‘/_(&3—02), z>0. (24)

Moreover, there exists at least one solution of the equation (19) whose first positive root 19
satisfies the inequalities
m<np <& (25)

where &y is the unique solution of equation (I-3) and m is given by

Cx/‘+S—t‘E \/(C\/'+—)2 Ste > 0. (26)

Ste

In the particular case where C > we also have

o <me=n(C— CZ—%). (27)

Proof. From elementary computations we get (24). Taking into account that function H,
is a parabola with properties (24), and F; is an exponential type function and satisfies
F5(0) = 0, we deduce that there exists at least one solution of the equation (19). The
number £ > 0 (unique solution of equation (1-3)) is also the unique solution of the
following equation

Fo(z) = & \/_a:, z>0. (28)
The equation
H(z)—ﬁz z>0 (29)
* bovm ’ :
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has two positives solutions. The first positive root of (29) is 7, > 0, given by (26), which is
well defined for all C > 0 because £ = 32 ;7 < 8¢, after using (1-3) and (2-25). Then

we can deduce the inequalities (25). In the particular case where C > \/g the function
H, has two positive roots, whose first positive root is given by 75, that is (27).

Remark 5. Let A be the positive real constant defined by A = A(Ste, &) = 3+&(1+3%) >
0, where & is the unique solution of equation (I-3). Then we have the following property
%—f(ﬁo, B) > 0, for all continuous real functions 3 over R such that B(z) < A(Ste, &),z >
0. This follows from (1-3) and (2-14). Moreover, we get A(Ste, &) < 1+ .

Now, let us mention some results concerning to the non-uniqueness of the solution to
the free boundary problem (P).

Lemma 9. Assume that 3 > 0 over Rt and that there are at least two roots £, < & of
the egquation (2-10) for the same function 8. Then we have

s1(t) < s2(t), 20,

0 S 01($,t) S 02(z)t)) 0 S T S 31(t), t 2 0; (30)
where 6; = 6;(z,t) denotes the temperature corresponding to & (i = 1,2) and 3. Moreover,

we have
02(z,t) 20, 0<z<s2t), t 20, (31)

Proof. We use twice the maximum principle for the functions 8, and 8, — 6,.

To conclude, for a function 8 = 0 we want to obtain a development of £(5) in a
neighborhood of £, given by the equation (1-3).

Lemma 10. Let 8, be a continuously differentiable real function over R%. Let B\ be
a function defined by Bi\(z) = ABi(z),z > 0 and we suppose there ezists two positives
constants Ao and g such that

Ba(z) = AB1(z) < Yo(z) —€o0, forall >0 and 0 < A < . (32)

Then the unique number £(8)) = €., solution of equation (2-10) for function B, can be
expressed as

& =£(Br) = Lo+ £ + £220% + o(2N?), (33)
with &

&H = i(')tﬁ exp(r?) erf(r)pa(r)dr, (34)

L= —[»31(&)) éo€1(1 et A)}, (35)

where & is the unique solution of equation (I1-3) and A = A(Ste, &) is given in Remark
5.
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Proof. By the assumption (32) we have a unique number £(83,) = £, > 0 which is the
solution of equation (2-10). Let I = I(x, A) be the real function defined by

I(z,\) = F(z,8) — \/_, >0, 0< A< (36)

Taking into account that 1(£0,0) = 0, §1(60,0) = 2% A > 0, we can apply the Dini

implicit function Theorem to deduce the existence of a rea.l function £ = £()), defined in
a right neighborhood of A = 0 which satisfies £(0) = £ and (33).
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