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Abstract. We study the asymptotic behavior of an optimal distributed control problem where the state is given by the heat
equation with mixed boundary conditions. The parameter α intervenes in the Robin boundary condition and it represents the
heat transfer coefficient on a portion Γ1 of the boundary of a given regular n-dimensional domain. For each α, the distributed
parabolic control problem optimizes the internal energy g. It is proven that the optimal control ĝα with optimal state uĝαα
and optimal adjoint state pĝαα are convergent as α → ∞ (in norm of a suitable Sobolev parabolic space) to ĝ, uĝ and pĝ ,
respectively, where the limit problem has Dirichlet (instead of Robin) boundary conditions on Γ1. The main techniques used
are derived from the parabolic variational inequality theory.
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1. Introduction

Let Ω be a bounded domain in R
n with a regular boundary ∂Ω = Γ1 ∪ Γ2, which is the union of two

essentially disjoint (and regular) portions Γ1 and Γ2, where Γ1 has a positive (n−1)-Hausdorff measure.
Also suppose given a time interval [0, T ], for some T > 0. Consider the following two-state evolution
heat conduction problems with mixed boundary conditions,

∂tu − Δu = g in Ω, u|Γ1 = b, −∂nu|Γ2 = q, (1.1)

and, for a parameter α > 0,

∂tu − Δu = g in Ω, −∂nu|Γ1 = α(u − b), −∂nu|Γ2 = q, (1.2)

both with an initial condition

u(0) = vb, (1.3)

where g is the internal energy in Ω, b is the temperature (of the external neighborhood) on Γ1 for (1.1)
(for (1.2)), q is the heat flux on Γ2 and α is the heat transfer coefficient of Γ1 (Newton’s law on Γ1).
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All data, g, q, b, vb and the domain Ω with the boundary ∂Ω = Γ1 ∪ Γ2 are assumed to be sufficiently
smooth so that the problems (1.1) and (1.2) admit variational solutions in Sobolev spaces.

The data b, vb and q are fixed, sufficiently smooth and satisfy the compatibility condition vb = b on
Γ1, while g is taken as a control variable in L2(0, T ; L2(Ω)), and α as a (singular) parameter destined
to approaches infinite. Thus, denote by ug and ugα the solution of (1.1) and (1.2), respectively, with the
initial condition (1.3) in the following standard variational form

⎧⎨
⎩

ug − vb ∈ L2(0, T ; V0), ug(0) = vb and u̇g ∈ L2(0, T ; V ′
0 )

such that
〈
u̇g(t), v

〉
+ a

(
ug(t), v

)
= Lg(t, v), ∀v ∈ V0,

(1.4)

and
⎧⎨
⎩

ugα ∈ L2(0, T ; V ), ugα(0) = vb and u̇gα ∈ L2(0, T ; V ′)

such that
〈
u̇gα(t), v

〉
+ aα

(
ugα(t), v

)
= Lgα(t, v), ∀v ∈ V ,

(1.5)

where

V0 :=
{
v ∈ H1(Ω) : v|Γ1 = 0

}
,

H := L2(Ω), (g, h)H :=
∫

Ω
gh dx,

Lg(t, v) :=
(
g(t), v

)
H −

∫
Γ2

q(t)v dγ,

a(u, v) :=
∫

Ω
∇u · ∇v dx,

aα(u, v) := a(u, v) + α

∫
Γ1

uv dγ,

Lgα(t, v) := Lg(t, v) + α

∫
Γ1

bv dγ,

(1.6)

and 〈·, ·〉 denotes the duality bracket. Note that the dual space V ′
0 (and V ′) of V0 (and V ) is not an space

of distributions, since D(Ω) is not dense in V0 ⊂ V , due to the non-zero boundary conditions on Γ2.
The norm in V0 is given by v 	→ ‖∇v‖H , while the norm in V is (‖v‖2

H + ‖∇v‖2
H )1/2. Nevertheless,

v 	→ Lg(t, v) and v 	→ Lgα(t, v) are linear continuous functional satisfying

∥∥Lg(t, ·)
∥∥

V ′
0

�
∥∥g(t)

∥∥
V ′

0
+

∥∥q(t)
∥∥

H−1/2(Γ2), ∀v ∈ V0,
∥∥Lgα(t, ·)

∥∥
V �

∥∥g(t)‖V ′+
∥∥q(t)

∥∥
H−1/2(Γ2)+α‖b‖H1/2(Γ1), ∀v ∈ V ,

and a(·, ·) and aα(·, ·) are bilinear symmetric continuous forms on V0 and V , respectively. Also, it is clear
the compatibility assumption vb = b on Γ1 and that if b = 0 then Lg(t, ·) = Lg,α(t, ·).

One should remark that an element u of L2(0, T ; V ) such that u̇ belongs to L2(0, T ; V ′) then u can
be regarded as a continuous function from [0, T ] into H. This makes clear the meaning of the initial
condition at t = 0 (and idem with V0 replacing V ).
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On the space H := L2(Ω × ]0, T [) with norm ‖ · ‖H and inner product (·, ·)H, i.e.,

(u, v)H =
∫ T

0

(
u(t), v(t)

)
H dt, ∀u, v ∈ H,

consider the nonnegative functional costs J and Jα, defined by the expressions

J(g) :=
1
2
‖ug − zd‖2

H +
m

2
‖g‖2

H, (1.7)

and

Jα(g) :=
1
2
‖ugα − zd‖2

H +
m

2
‖g‖2

H, (1.8)

where zd is a given element in H = L2(Ω × ]0, T [) and m is a strictly positive constant.
Our interest is on the distributed parabolic (or evolution) optimal control problems

Find ĝ such that J(ĝ) � J(g), ∀g ∈ H (1.9)

and

Find ĝα such that Jα(ĝα) � Jα(g), ∀g ∈ H, (1.10)

as well as the asymptotic behavior as the parameter α approaches infinite.
This type of optimal distributed control problems have been extensively studied, e.g., see the book

Lions [10] among others. As point out early, our interest is the convergence as α → ∞, a parabolic
version of Gariboldi and Tarzia [8], which is related to Ben Belgacem et al. [4] and Tabacman and
Tarzia [11].

2. Parabolic equations with mixed conditions

Note that if via Riesz’ representation H = H ′ then one has V ⊂ H ⊂ V ′ and V0 ⊂ H ⊂ V ′
0 with a

continuous and dense inclusion.
As mentioned early the control parameter g belongs to H, and the data for the optimal control problems

are zd and m satisfying

zd ∈ H = L2(0, T ; L2(Ω)
)

and m > 0. (2.1)

The regularity of the domain Ω, the boundary Γ1 ∪ Γ2 and the regularity of the boundary data vb, b and
q are summarized on the assumption

there exists ψ ∈ L2(0, T ; H2(Ω)
)

with ψ̇ ∈ L2(0, T ; L2(Ω)
)

such that ψ(0) = vb, ψ|Γ1 = b, ∂nψ|Γ1 = 0, −∂nψ|Γ2 = q,
(2.2)
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with the standard notation of Sobolev and Lebesgue spaces and the compatibility assumption vb = b
on Γ1. Note the over conditioning for ψ on Γ1, which is not necessary but convenient in some way (e.g.,
the adjoint state has a very similar equation with homogeneous boundary conditions).

Thus, the change of unknown function u into u − ψ reduces to analysis the case where the boundary
data vb, b and q are all zero, and g is replaced by g− (∂t −Δ)ψ. However, for α > 0 a new term appears,
namely,

〈
gψ(t), v

〉
=

(
g(t), v

)
H +

∫
Γ1

v∂nψ(t) dγ, ∀v ∈ V , (2.3)

i.e., the new Robin boundary condition is non-homogeneous and

∥∥gψ(t)
∥∥

V ′ = sup
‖v‖V �1

∣∣〈gψ(t), v
〉∣∣ �

∥∥g(t)
∥∥

L2(Ω) +
∥∥∂nψ(t)

∥∥
H−1/2(Γ1).

Thus, because of the over conditioning on Γ1 one has gψ = g. Anyway, both problems, (1.4) and (1.5)
become

⎧⎨
⎩

ug ∈ L2(0, T ; V0), with ug(0) = 0 and u̇g ∈ L2(0, T ; V ′
0 )

such that
〈
u̇g(t), v

〉
+ a

(
ug(t), v

)
=

(
g(t), v

)
H , ∀v ∈ V0

(2.4)

and
⎧⎨
⎩

ugα ∈ L2(0, T ; V ), with ugα(0) = 0 and u̇gα ∈ L2(0, T ; V ′)

such that
〈
u̇gα(t), v

〉
+ aα

(
ugα(t), v

)
=

(
g(t), v

)
H , ∀v ∈ V ,

(2.5)

where (·, ·)H , a(·, ·) and aα(·, ·) are as in (1.6). Again V0 ⊂ V with inclusion continuous but not dense,
so that V ′ is not identifiable with a subset of V ′

0 . However, by Hahn–Banach Theorem, any element in
V ′

0 can be extended to an element in V ′ preserving its norm.
Recall that for any element u in L2(0, T ; V ) with u̇ in L2(0, T ; V ′) such that the distribution

(∂t − Δ)u belongs to L2(Ω × ]0, T [) one can integrate by parts to interpret ∂nu as an element in
L2(0, T ; H−1/2(∂Ω)), where H−1/2(∂Ω) is the dual space of H1/2(∂Ω) = γ(H1(Ω)) and γ is the
trace operator from H1(Ω) onto H1/2(∂Ω). Again, to simplify the arguments, one may assume that
∂Ω = Γ1 ∪ Γ2 such that for any vi in H1/2(Γi) there exists v in H1(Ω) satisfying v = vi on Γi, for
i = 1, 2, e.g., the two pieces of the boundary are strictly disjoint, Γ1 ∩ Γ2 = ∅ (i.e., Γi = ∂Ωi and
Ω1 ⊂ Ω2). Therefore, the parabolic equations (2.4) and (2.5) mean the following:

• space of the solution: ug in L2(0, T ; V0) with u̇g in L2(0, T ; V ′
0 ), and ugα in L2(0, T ; V ) with u̇gα in

L2(0, T ; V ′),
• initial condition: for either u = ug or u = ugα the solution u belongs to C0(0, T ; L2(Ω)) and so

u(0) = 0 in L2(Ω),
• equation in Ω × ]0, T [: for either u = ug or u = ugα the solution u is considered as a distribution

so that (∂t − Δ)u = g in D′(Ω×]0, T [),
• boundary condition on Γ2: for either u = ug or u = ugα the trace of the solution u is defined and

∂nu = 0 in L2(0, T ; H−1/2(Γ2)),
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• boundary condition on Γ1: ug = 0 in L2(0, T ; H1/2(Γ1)) and ∂nugα + αugα = 0 in
L2(0, T ; H−1/2(Γ1)).

Firstly, note that ugα|Γ1 belongs to L2(0, T ; H1/2(Γ1)) and

L2(0, T ; H1/2(Γ1)
)
⊂ L2(0, T ; L2(Γ1)

)
⊂ L2(0, T ; H−1/2(Γ1)

)
,

with continuous and dense inclusion. Secondly, when comparing the solutions ug and ugα one has both
in the larger space L2(0, T ; V ). However, the continuous inclusion V0 ⊂ V is not dense, and so the in-
clusion V ′ ⊂ V ′

0 is not injective, one has u̇g and u̇gα elements in L2(0, T ; V ′
0 ), which are not identifiable

as distributions.

3. State and adjoint state equations

To study the optimal control problem (1.9), denote by u0 the solution ug of the parabolic variational
equality either (1.4) or equivalently (2.4) corresponding to g = 0, and define the (linear) operator
C : H → L2(0, T ; V0), given by C(g) := ug − u0. We have

Proposition 3.1. With the previous notation and assumptions, the functional (1.7) can be expressed as

J(g) =
1
2
π(g, g) − �(g) +

1
2
‖zd − u0‖2

H, ∀g ∈ H,

where π(g, h) := (C(g), C(h))H + m(g, h)H is a symmetric, continuous and coercive bilinear form on
H and �(g) := (C(g), zd − u0)H is a linear continuous functional on H. Moreover, J is strictly convex
and its Gateaux derivative is given by 〈J ′(g), h〉 = (ug − zd, C(g))H + m(g, h)H. Furthermore, as a
consequence, the optimal control problem (1.9) has a unique minimizer ĝ in H, i.e., J(ĝ) � J(g), for
every g in H, any solution ḡ of the equation J ′(ḡ) = 0 is indeed a minimizer. Also, if pg is the adjoint
state defined by the parabolic variational equality with a terminal condition

⎧⎨
⎩

pg ∈ L2(0, T ; V0), with pg(T ) = 0 and ṗg ∈ L2(0, T ; V ′
0 )

such that −
〈
ṗg(t), v

〉
+ a

(
pg(t), v

)
= (ug − zd, v)H , ∀v ∈ V0,

(3.1)

then J ′(g) = mg + pg for every g in H and J ′(ĝ) = mĝ + pĝ = 0.

Proof. Note the boundary conditions for the adjoint state pg are

pg(t) = 0 on Γ1 and ∂npg(t) = 0 on Γ2

for almost every t in ]0, T [.
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First, we check the expression of J , if z′d := zd − u0 then

J(g) =
1
2

∥∥C(g) − z′d
∥∥2
H +

m

2
‖g‖2

H

=
1
2

[∥∥C(g)
∥∥2
H + ‖z′d‖2

H − 2
(
C(g), z′d

)
H

]
+

m

2
‖g‖2

H

=
1
2
π(g, g) − L(g) +

1
2
‖zd − u0‖2

H.

To verify that g 	→ C(g) is a linear application, one checks that the function r1ug1 + r2ug2 + (1 −
r1 − r2)u0 is a solution of the parabolic variational equality (1.4) with g = r1g1 + r2g2, for every real
numbers r1, r2; and by uniqueness one has

ur1g1+r2g2 = r1ug1 + r2ug2 + (1 − r1 − r2)u0, (3.2)

for every ri, r2 in R and g1, g2 in H. Hence,

C(r1g1 + r2g2) = ur1g1+r2g2 − u0 = r1ug1 + r2ug2 + (1 − r1 − r2)u0 − u0

= r1(ug1 − u0) + r2(ug2 − u0) = r1C(g1) + r2C(g2),

i.e., the operator C is linear.
Now to check the continuity of C, we note that since Γ1 has positive measure, Poincaré inequality

implies that the bilinear form a(·, ·) is coercive on V0, i.e., there exists λ0 > 0 such that

a(v, v) � λ0‖∇v‖2
H , ∀v ∈ V0. (3.3)

We have
(
u̇g(t) − u̇0(t), v

)
H + a

(
ug(t) − u0(t), v

)
=

(
g(t), v

)
H , ∀v ∈ V0,

and, in particular, for v = ug(t) − u0(t),

1
2

d
dt

(∥∥ug(t) − u0(t)
∥∥2

H

)
+ λ0

∥∥∇(
ug(t) − u0(t)

)∥∥2
H

�
(
g(t), ug(t) − u0(t)

)
H � 1

2λ0

∥∥g(t)
∥∥2

V ′
0

+
λ0

2

∥∥∇(
ug(t) − u0(t)

)∥∥2
H ,

where the dual norm is given by

‖v‖2
V ′

0
= sup

{
(v, ϕ)H : ϕ ∈ V0, ‖ϕ‖V0 � 1

}
.

This yields

∥∥∇C(g)
∥∥
H � 1

λ0

[∫ T

0

∥∥g(t)
∥∥2

V ′
0

dt

]1/2

,

sup
0�t�T

∥∥C(g)(t)
∥∥

H � 1√
λ0

[∫ T

0

∥∥g(t)
∥∥2

V ′
0

dt

]1/2

,
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and going back to the equation, we get

[∫ T

0

∥∥∥∥ d
dt

(
C(g)(t)

)∥∥∥∥
2

V ′
0

dt

]1/2

� 2
λ0

[∫ T

0

∥∥g(t)
∥∥2

V ′
0

dt

]1/2

.

Hence the operator

C : L2(0, T ; V ′
0 ) →

{
v ∈ L2(0, T ; V0) ∩ L∞(0, T ; H) : v̇ ∈ L2(0, T ; V ′

0 )
}

is actually continuous. As a consequence, the bilinear form π(·, ·) is symmetric, continuous and coercive
on H×H, since H ⊂ L2(0, T ; V ′

0 ).
To complete the argument, we choose v = C(h) in (3.1) and v = pg in (1.4) with g = 0 and g = h to

obtain, after integrating in t, the equalities

−
(
ṗg, C(h)

)
H +

∫ T

0
a
(
pg(t), C(h)(t)

)
dt =

(
ug − zd, C(h)

)
H

and

(u̇h − u̇0, pg)H +
∫ T

0
a
(
uh(t) − u0(t), pg(t)

)
dt = (h, pg)H.

Thus

−
∫ T

0

d
dt

(
pg(t), C(h)(t)

)
H dt + (h, pg)H =

(
ug − zd, C(h)

)
H,

and because pg(T ) = 0 and C(h)(0) = 0, we deduce J ′(g) = mg + pg.
To show that g 	→ J(g) is strictly convex, one makes use of (1.7) and (3.2) to check that

(1 − θ)J(g2) + θJ(g1) − J
(
(1 − θ)g1 + θg2

)
=

1
2
θ(1 − θ)

[
‖ug1 − ug2‖2

H + m‖g1 − g2‖2
H

]
,

for every θ in [0, 1] and any g1, g2 in H. �

Similarly, to study the optimal control problem (1.10), denote by u0α the solution ugα of the parabolic
variational equality either (1.5) or equivalently (2.5) corresponding to g = 0, and define the (linear)
operator Cα : H → L2(0, T ; V ), given by Cα(g) := ugα − u0α. We have

Proposition 3.2. With the previous notation and assumptions, the functional (1.8) can be expressed as

Jα(g) =
1
2
πα(g, g) − �α(g) +

1
2
‖zd − u0α‖2

H, g ∈ H,

where πα(g, h) := (Cα(g), Cα(h))H + m(g, h)H is a symmetric, continuous and coercive bilinear form
on H and �α(g) := (Cα(g), zd − u0α)H is a linear continuous functional on H. Moreover, Jα is strictly
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convex and its Gateaux derivative of Jα is given by 〈J ′
α(g), h〉 = (ug − zd, Cα(g))H + m(g, h)H. Fur-

thermore, as a consequence, the optimal control problem (1.10) has a unique minimizer ĝα in H, i.e.,
Jα(ĝα) � Jα(g), for every g in H, and any solution ḡα of the equation J ′(ḡα) = 0 is indeed a minimizer.
Also if pgα is the adjoint state defined by the parabolic variational equality with a terminal condition

⎧⎨
⎩

pgα ∈ L2(0, T ; V ), with pgα(T ) = 0 and ṗgα ∈ L2(0, T ; V ′)

such that −
〈
ṗgα(t), v

〉
+ aα

(
pgα(t), v

)
= (ugα − zd, v)H , ∀v ∈ V ,

(3.4)

then J ′
α(g) = mgα + pgα for every g in H and J ′

α(ĝα) = mĝα + pĝα = 0.

Proof. The calculations are similar to the previous proposition. We remark that the boundary conditions
for the adjoint state pgα are

−∂npgα(t) = αpgα on Γ1 and ∂npgα(t) = 0 on Γ2

for almost every t in ]0, T [. Moreover, we assume α > 0 so that the coerciveness (3.3) becomes

aα(v, v) � λ1 min{1, α}
[
‖∇v‖2

H + ‖v‖2
H

]
, ∀v ∈ V. (3.5)

Indeed, by contradiction one can show that a1(v, v) � c1‖v‖2
H for every v in V , which implies (3.5).

The continuity of a(·, ·) in V uses the continuity of the trace in H1(Ω), namely, for some Λ1 > 0 one has

aα(u, v) � Λ1 max{1, α}‖u‖V ‖v‖V , ∀v ∈ V , (3.6)

which depends on α > 0.
The operator Cα actually maps the space L2(0, T ; V ′) into the space

{
v ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) : v̇ ∈ L2(0, T ; V ′)

}

and the estimates

∥∥∇Cα(g)
∥∥
H � 1

λ1

[∫ T

0

∥∥g(t)
∥∥2

V ′ dt

]1/2

,

sup
0�t�T

∥∥Cα(g)(t)
∥∥

H � 1√
λ1

[∫ T

0

∥∥g(t)
∥∥2

V ′ dt

]1/2

,

[∫ T

0

∥∥∥∥ d
dt

(
Cα(g)(t)

)∥∥∥∥
2

V ′
0

dt

]1/2

� 2
λ1

[∫ T

0

∥∥g(t)
∥∥2

V ′ dt

]1/2

are independent of α > 1, but

[∫ T

0

∥∥∥∥ d
dt

(
Cα(g)(t)

)∥∥∥∥
2

V ′
dt

]1/2

� 1 + α

λ1

[∫ T

0

∥∥g(t)
∥∥2

V ′ dt

]1/2
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is depends on α. Certainly, also one deduces

α

∫ T

0

∣∣Cα(g)(t)
∣∣2
L2(Γ1) dt � ‖g‖L2(0,T ;V ′)

∥∥Cα(g)
∥∥

L2(0,T ;V ),

which is uniformly bounded in α > 1. On the other hand, note that the functions b and q (or ψ) intervene
to estimate u0α and u̇0α.

To show that g 	→ Jα(g) is strictly convex, one show that

(1 − θ)Jα(g2) + θJα(g1) − Jα

(
(1 − θ)g1 + θg2

)

=
1
2
θ(1 − θ)

[
‖ug1α − ug2α‖2

H + m‖g1 − g2‖2
H

]
,

for every θ in [0, 1] and any g1, g2 in H. �

Remark that one has nice estimates for the affine application g 	→ ugα, namely

‖∇ug1α −∇ug2α‖H � 1
λ1

‖g1 − g2‖L2(0,T ;V ′),

sup
0�t�T

∥∥ug1α(t) − ug2α(t)
∥∥

H � 1√
λ1

‖g1 − g2‖L2(0,T ;V ′),

‖u̇g1α − u̇g2α‖L2(0,T ;V ′
0 ) � 2

λ1
‖g1 − g2‖L2(0,T ;V ′),

‖u̇g1α − u̇g2α‖L2(0,T ;V ′) � 1 + α

λ1
‖g1 − g2‖L2(0,T ;V ′),

‖ug1α − ug2α‖L2(0,T ;L2(Γ1) � 1√
λ1α

‖g1 − g2‖L2(0,T ;V ′),

and similarly, for the adjoint state mapping g 	→ pgα, one obtain estimates as above replacing ugiα

with pgiα.
On the other hand, ug1α − ug2α is the unique solution of a parabolic variational equality (1.5) with

q = 0, b = 0 and g = g1 − g2, i.e., (∂t − Δ)(ug1α − ug2α) = g in L2(Ω × ]0, T [) with homogeneous
mixed (Robin on Γ1 and Neumann on Γ2) boundary conditions. Hence, regularity results implies that
ug1α − ug2α belongs to L2(0, T ; H2(Ω)) ∩ H1(0, T ; L2(Ω)). Similar arguments apply to ug1 − ug2 , i.e.,
(∂t − Δ)(ug1 − ug2) = g in L2(Ω × ]0, T [) with homogeneous mixed (Dirichlet on Γ1 and Neumann on
Γ2) boundary conditions. Note that some difficulties due to the mixed boundary conditions do arrives,
e.g., see Grisvard [9], but our interest is on the asymptotic behavior as α becomes infinite.

4. Asymptotic estimates

First one needs to obtain estimates on ugα and pgα uniformly in α > 1 and any given g.
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Proposition 4.1. Under the previous assumptions one has the estimate

‖ugα‖L∞(0,T ;H) + ‖ugα‖L2(0,T ;V ) +
√

(α − 1)‖ugα − b‖L2(Γ1×]0,T [) � C
(
1 + ‖gψ‖L2(0,T ;V ′)

)
, (4.1)

for every α > 1 and any g in H, where the constant C depends only on the norms ‖u̇g‖L2(0,T ;V ′),
‖∇ug‖L2(0,T ;H), and the coerciveness constant λ1 in (3.5). Moreover, as α → ∞ one has ugα → ug

strongly in L2(0, T ; V ) ∩ L∞(0, T ; H) and u̇gα → u̇g in norm L2(0, T ; V ′
0 ).

Proof. First note that V0 ⊂ V is a continuous (nondense) inclusion and the norms ‖v‖V0 = ‖∇v‖H is

equivalently to ‖v‖V =
√
‖v‖V0 + ‖v‖H on V0.

Let ϕ be a function in L2(0, T ; V ) such that ϕ̇ belongs to L2(0, T ; V ′), ϕ(0) = vb and ϕ = b on
Γ1, e.g., an extension of b and vb such as ψ in (2.2). Now, on the equality (1.5) defining ugα take
v = ugα(t) − ϕ(t) := zgα(t) to get

〈
u̇gα(t), zgα(t)

〉
+

(
∇ugα(t),∇zgα(t)

)
H + α

〈
ugα(t), zgα(t)

〉
Γ1

=
(
g(t), zgα(t)

)
H −

〈
q(t), zgα(t)

〉
Γ2

+ α
〈
b, zgα(t)

〉
Γ1

,

and because ϕ = b on Γ1 one deduces

1
2

d
dt

∥∥zgα(t)
∥∥2

H +
∥∥∇zgα(t)

∥∥2
H + α

∥∥zgα(t)
∥∥2

L2(Γ1)

=
(
g(t), zgα(t)

)
H −

〈
q(t), zgα(t)

〉
L2(Γ2) −

〈
ϕ̇(t), zgα(t)

〉
− (∇ϕ,∇zgα)H ,

(4.2)

which together with coerciveness (3.5) and the condition zgα(0) = 0 yield the bound (4.1). By means of
estimate (4.1), there exists a sequence αn → ∞ and z in L2(0, T ; V )∩L∞(0, T ; H) such that zgαn → z
weakly in L2(0, T ; V ) and weakly* in L∞(0, T ; H), and z = 0 on Γ1, i.e., z belongs to L2(0, T ; V0).

Hence, note that aα(u, v) = a(u, v) and Lgα(t, v) = Lg(t, v) if u belongs to V and v belongs to V0,
and take v in V0 in Eqs (1.4) and (1.5) defining ug and ugα to obtain 〈żgα, v〉 + a(zgα, v) = 0, for every
v ∈ V0. Therefore, żgαn → ż weakly in L2(0, T ; V ′

0 ) and because zgα(0) = 0 and z = 0 on Γ1, one
deduces z = 0 in L2(0, T ; V ).

Thus, as α → ∞ one has zgα → 0 weakly in L2(0, T ; V ) and weakly* in L∞(0, T ; H). It is clear
that the inclusion V0 ⊂ V is continuous and because the norm of V restricted to V0 is equivalent to the
norm of V0, Hahn–Banach Theorem implies that any element ϑ of V ′

0 can be extended to an element
in V ′ preserving its norm, in particular u̇g can be extended to be an element in L2(0, T ; V ′). Then,
take ϕ = ug in the equality (4.2) and considering u̇g an element in L2(0, T ; V ′), one deduces that the
convergence of ugα toward ug is indeed strongly in L2(0, T ; V ) ∩ L∞(0, T ; H). Moreover, zgα → 0 in
norm L2(Γ × ]0, T [) and żgα → 0 in norm L2(0, T ; V ′

0 ). �

Proposition 4.2. Under the previous assumptions one has the estimate

‖pgα‖L∞(0,T ;H) + ‖pgα‖L2(0,T ;V ) +
√

(α − 1)‖pgα‖L2(Γ1×]0,T [) � C
(
1 + ‖ugα‖L2(0,T ;V ′)

)
, (4.3)

for every α > 1 and any g in H, where the constant C depends only on the norms ‖zd‖H, ‖ṗg‖L2(0,T ;V ′),
‖∇pg‖L2(0,T ;H), and the coerciveness constant λ1 in (3.5). Moreover, as α → ∞ one has pgα → pg

strongly in L2(0, T ; V ) ∩ L∞(0, T ; H) and ṗgα → ṗg in norm L2(0, T ; V ′
0 ).
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Proof. Note that even when b �= 0 the (Robin) boundary condition of pg and pgα on Γ1 does not involve
b directly. Certainly, the norm ‖ugα‖L2(0,T ;V ′) is bounded by ‖ugα‖L2(0,T ;H), which is uniformly bounded
in α.

The technique used in Proposition 4.1 applies for the adjoint states pgα and pg. Perhaps the only point
to remark is the convergence as α → ∞. Indeed, one needs to make use of the weak (and later strong)
convergence ugα → ug in L2(0, T ; V ′), which is deduced for the convergence in L2(0, T ; H). �

5. Optimal control problems

We are now ready to consider the distributed control problems (1.9) and (1.10). Our purpose is to
establish

Theorem 5.1. Let assumptions (2.1) and (2.2) be hold, and ĝ and ĝα be the minimizers in H of problems
(1.9) and (1.10), respectively. Then, as the parameter α → ∞, the minimizers ĝα → ĝ strongly in
H. Moreover the corresponding optimal state and adjoint state satisfy (uĝαα, u̇ĝαα) → (uĝ, u̇ĝ) and
(pĝαα, ṗĝαα) → (pĝ, ṗĝ) strongly in L2(0, T ; V ) × L2(0, T ; V ′

0 ).

Proof. We make several steps. First, be means of the estimate (4.1) in Proposition 4.1 one has

‖u0α‖H � C, ∀α > 1

for some constant C. Now, from the inequality J(ĝα) � J(0) we deduce

‖ĝα‖H + ‖uĝαα‖H � C, ∀α > 1

for some constant independent of α > 1.
Again, estimate (4.1) in Proposition 4.1 and estimate (4.2) in Proposition 4.2 yield

‖uĝαα‖L2(0,T ;V ) + ‖u̇ĝαα‖L2(0,T ;V ′
0 ) +

√
(α − 1)‖uĝαα − b‖L2(0,T ;L2(Γ1)) � C, ∀α > 1

and

‖pĝαα‖L2(0,T ;V ) + ‖ṗĝαα‖L2(0,T ;V ′
0 ) +

√
(α − 1)‖pĝαα‖L2(0,T ;L2(Γ1)) � C, ∀α > 1.

Hence, there exist ḡ in H, û and p̂ in L2(0, T ; V0) with ˙̂u and ˙̂p in L2(0, T ; V ′
0 ) such that, for a convenient

subsequence as α → ∞ we has ĝα ⇀ ḡ weakly in H, uĝαα ⇀ û weakly in L2(0, T ; V ), u̇ĝαα ⇀ ˙̂u
weakly in L2(0, T ; V ′

0 ), pĝαα ⇀ p̂ weakly in L2(0, T ; V ), ṗĝαα ⇀ ˙̂p weakly in L2(0, T ; V ′
0 ).

By taking v in V0 in the parabolic variational equality (2.5) and letting α → ∞ we deduce that û
solves parabolic variational equality (2.4), and by uniqueness û = uĝ. In particular uĝαα ⇀ uĝ weakly
in L2(0, T ; V ′

0 ). Thus, by taking v in V0 in the parabolic variational equality defining the adjoint state
pĝαα in Proposition 3.2 and letting α → ∞ we deduce that p̂ = pḡ. On the other hand, taking limit in
the equality mĝα + pĝαα = 0 we deduce mḡ + pḡ = 0. Thus, by using Proposition 3.1, this proves that
ḡ is a minimizer for the control problem (1.9), and by uniqueness ĝ = ḡ.
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At this point, we have

(ĝα, uĝαα, u̇ĝαα, pĝαα, ṗĝαα) ⇀ (ĝ, uĝ, u̇ĝ, pĝ, ṗĝ)

weakly in the corresponding spaces, initially for a convenient subsequence as α → ∞, but in view of
the uniqueness of the limit, the weak convergence whole as α → ∞.

To prove the strong convergence we use the weak semicontinuity of the norm and the optimality of
ĝ, ĝα, namely,

J(ĝ) =
1
2
‖uĝ − zd‖2

H +
m

2
‖ĝ‖2

H � lim inf
α→∞

[
1
2
‖uĝαα − zd‖2

H +
m

2
‖ĝα‖2

H

]

� lim sup
α→∞

[
1
2
‖uĝαα − zd‖2

H +
m

2
‖ĝα‖2

H

]
� lim sup

α→∞
Jα(g),

for any g in H. In view of Proposition 4.1, ugα → ug strongly in L2(0, T ; V ) as α → ∞, which implies
that

lim sup
α→∞

Jα(g) = lim
α→∞

[
1
2
‖ugα − zd‖2

H +
m

2
‖g‖2

H

]
= J(g).

By taking infimum on g, all the above inequalities become equalities and therefore

1
2
‖uĝαα − zd‖2

H +
m

2
‖ĝα‖2

H → 1
2
‖uĝ − zd‖2

H +
m

2
‖ĝ‖2

H.

This and the weak convergence imply that (ĝα, uĝαα) → (ĝ, uĝ) strongly in H×H, as α → ∞.
Finally, if zα = uĝαα − uĝ then we deduce

∫ T

0

[〈
żα(t), zα(t)

〉
+ a1

(
zα(t), zα(t)

)
+ (α − 1)

∫
Γ1

∣∣zα(x, t)
∣∣2

dx

]
dt

�
∫ T

0

[
〈ĝα − u̇ĝ, zα〉 − a(uĝ, zα) −

∫
Γ2

q(x, t)zα(x, t) dx

]
dt.

Since zα → 0 weakly in L2(0, T ; V ) and ĝα → ĝ strongly in H, we obtain uĝαα → uĝ strongly in
L2(0, T ; V ), as α → ∞. Now, going back to the equation one has

〈
żα(t), v

〉
+ a

(
zα(t), v

)
=

〈
ĝα − ĝ, v

〉
.

Now, taking sup for v in V0 with ‖v0‖V0 � 1 and integrating in ]0, T [ one obtains the strong convergence
of the time derivative. Similarly, (pĝαα, ṗĝαα) → (pĝ, ṗĝ) strongly in L2(0, T ; V ) × L2(0, T ; V ′

0 ), as
α → ∞. This completes the proof. �

Also we have



J.-L. Menaldi and D.A. Tarzia / A distributed parabolic control with mixed boundary conditions 239

Proposition 5.2. If α2 � α1 � α0 > 0 then there exists a constant C = Cα0 such that for every g in H
one has

‖ugα1 − ugα2‖L2(0,T ;V ) � Cα0 (α2 − α1)‖b − ugα2‖L2(0,T ;H−1/2(Γ1)), (5.1)

and

‖pgα1 − pgα2‖L2(0,T ;V ) �Cα0 (α2 − α1)
(
‖pgα2‖L2(0,T ;H−1/2(Γ1))

+ ‖b − ugα2‖L2(0,T ;H−1/2(Γ1))

)
, (5.2)

i.e., the dependency in α is Lipschitz continuous.

Proof. For a fixed g and α2 � α1 � α0 > 0 set z = ugα2 − ugα1 to obtain from Eq. (1.5) with αi the
identity

〈
ż(t), v

〉
+ aα1

(
z(t), v

)
= (α2 − α1)

∫
Γ1

(b − ugα2)v dγ, ∀v ∈ V.

By taking v = z(t) and by means of the inequalities

∣∣∣∣
∫ T

0
dt

∫
Γ1

(b − ugα2)z dγ

∣∣∣∣ � C0‖b − ugα2‖L2(0,T ;H−1/2(Γ1))‖z‖L2(0,T ;V )

and

aα(v, v) � λ(α0)‖v‖2
V , ∀v ∈ V , α � α0,

we deduce the desired estimate with Cα0 = C0/λ(α0).
Similarly, for a fixed g and α2 � α1 � α0 > 0 set w = pgα2 − pgα1 to obtain from Eq. (3.5) with αi

the identity

〈
ẇ(t), v

〉
+ aα1

(
w(t), v

)
= (α1 − α2)

∫
Γ1

pgα2v dγ + (ugα2 − ugα1 , v)H ,

for every v in V. By taking v = w(t) and in view of the estimate (5.1), we conclude. �

Under some more restrict assumption we have monotonicity on α

Proposition 5.3. Let us assume the data b constant on Γ1, vb � b on Ω, g � 0 in Ω×]0, T [ and q � 0 on
Γ2 × ]0, T [. Then ugα � ug � b for every α > 0. Moreover, if 0 < α1 � α2 then ugα1 � ugα2 � ug � b
in Ω × ]0, T [. Furthermore, if b � zd in Ω × ]0, T [ then pgα1 � pgα2 � pg � 0 in Ω × ]0, T [, for every
α2 � α1 > 0.

Proof. First, the maximum principle implies that ugα � b. Indeed, if z = (ugα − b) then we have

〈
ż(t), z+(t)

〉
+ a

(
z(t), z+(t)

)
+ α

∫
Γ1

z(t)z+(t) dγ =
(
g(t), z+(t)

)
−

∫
Γ2

q(t)z+(t) dγ

after using the fact that b is constant, which implies z+ = 0.
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Similarly, if w = ugα2 − ugα1 with α2 > α1 then we get

〈
ẇ(t), w+(t)

〉
+ aα1

(
w(t), w+(t)

)
+ (α2 − α1)

∫
Γ1

(
b − ugα2(t)

)
z+(t) dγ = 0,

which yields w � 0, i.e., ugα2 � ugα1 .
Finally, if y = ugα − ug then we obtain

〈
ẏ(t), y+(t)

〉
+ a

(
y(t), y+(t)

)
+ α

∫
Γ1

(
b − ugα(t)

)
y+(t) dγ = 0,

which yields y � 0, i.e., ugα � ug.
The estimate on the adjoint state follows from a comparison with the solution r of the parabolic

variational equality with terminal condition

⎧⎨
⎩

r ∈ L2(0, T ; V ), r(T ) = 0 and ṙ ∈ L2(0, T ; V ′)

such that −
〈
ṙ(t), v

〉
+ a

(
r(t), v

)
= (b − zd, v)H , ∀v ∈ V.

(5.3)

Indeed, if b � zd in Ω × ]0, T [ then the maximum principle (as above) yields pg � r � 0. Next,
similarly to the state u with b = 0, one deduces that pgα1 � pgα2 � pg � r � 0 in Ω × ]0, T [, for every
α2 � α1 > 0. �

Certainly, the maximum principle yields ug1 � ug2 and ug1α � ug2α if g1 � g2, but a priori, it is not
clear when the minimizers satisfy ĝ � ĝα to deduce the monotonicity ugα1α1 � ugα2α2 � ugα � b.

6. Final comments

Variational inequalities was popular in the 70’s, most of the main techniques for parabolic variational
inequalities can be found in various classic books, e.g., Bensoussan and Lions [5], among other.

It is well known that the regularity of the mixed problem is problematic when both portions of the
boundary Γ1 and Γ2 have a nonempty intersection, e.g. see the book Grisvard [9]. Recently, sufficient
conditions (on the data) to obtain a H2 regularity for a (elliptic) mixed boundary conditions are given in
Bacuta et al. [3], see also Azzam and Kreyszig [1], among others.

Numerical analysis of a parabolic PDE with mixed boundary conditions (Dirichlet and Neumann) is
studied in Babuska and Ohnimus [2], while a parabolic control problem with Robin boundary conditions
is considered in Chrysafinos et al. [7] and Bergounioux and Troltzsch [6].

The state equation, i.e., a parabolic PDE with mixed boundary conditions (Robin and Neumann) has
been discussed in Ben Belgacem et al. [4] and Tarzia [12].

Certainly, there are several possible extensions, e.g., a state equation of the form

∂tu − div
(
A(x, t)∇u

)
+ b(t, x)u = f in Ω × ]0, T [,

with mixed boundary conditions. A carefully analysis is necessary, but the main techniques used to
let α → ∞ in the parabolic variational inequality seems to be very well adaptable to more general
situations.
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