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ON SIMILARITY SOLUTIONS FOR THAWING
PROCESSES*

Ariel L. LOMBARDI and Domingo A. TARZIA

Abstract

We review some recent results for a mathematical model for thawing in a saturated semi-infinite
porous medium when change of phase induces a density jump and a heat flux condition of the type
-qot~ 2 is imposed on the fixed face x=0. Different cases depending on physical parameters are
analysed and the explicit solution of the similarity type is obtained when a given condition for the
thermal coeflicient qo is verified.

Key words. Stefan probiem, free boundary problems, phase change process, similarity solution, density
jump, thawing processes, freezing, solidification.
Resumen. Se realiza una revisién de recientes resultados sobre un modelo matematico de descongelacién

en un medio poroso semi-infinito saturado cuando un cambio de fase induce un salto de densidad y cuando
1

se impone una condicién de flujo de calor del tipo -qot~% en el borde fijo x=0. Se analizan diferentes
casos que dependen de diversos parametros fisicos y se obtiene la solucién explicita de tipo similaridad
cuando una cierta condicién sobre el coeficiente térmico qg es satisfecha.

Palabras Claves. Problema de Stefan, problemas de frontera libre, procesos de cambio de fase, solucién
de similaridad, salto de densidad, procesos de descongelacion, congelacién, solidificacion.

AMS subject clasification. 35R35, 80A22, 35C05.

1 Introduction

Phase-change problems appear frequently in industrial processes and other problems of technological
interest [8]. A large bibliography on the subject was given in [11]. In this paper, we consider the problem
of thawing of a partially frozen porous media, saturated with an incompressible liquid, with the aim of
constructing similarity solutions.

We have in mind the following physical assumptions (see [2], [4], [5]):

1. A sharp interface between the frozen part and the unfrozen part of the domain exists (sharp, in the
macroscopic sense}.

2. The frozen part is at rest with respect to the porous skeleton, which will be considered to be
indeformable.

3. Due to density jump between the liquid and solid phase, thawing can induce either desaturation or
water movement in the unfrozen region. We will consider the latter situation assuming that liquid
is continuously supplied to keep the medium saturated.

Although thawing has received less attention than freezing, our investigation is in the same spirit as
[3], and [9], with the simplification due to the absence of ice lenses and frozen fringes.
We will study a one-dimensional model of the problem, using the following notation:

*MAT - Serie A, 3 (2001), 7-12.
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e>0 : porosity,

p>0 : density; p,, and pr: density of water and ice (g/cma)
c>0 :  specific heat at constant density ( g,,C)

k>0 . conductivity (=2

u . temperature of unfrozen zone (°C)

v : temperature of frozen zone (°C)

u=v=0 : being the melting point at atmospheric pressure
A>0 : latent heat at u = 0 (cal/g)

¥ :  coefficient in the Clausius-Clapeyron law (s?cm°C/g)
p>0 :  viscosity of liquid (g/ cma)

and subscripts F, U, I and W refer to the frozen medium, unfrozen medium, pure ice and pure water,
respectively, while S refers to the porous skeleton.

The unknowns of the problem are a function £ = s(t), representing the free boundary separating
Q1 ={(z,t): 0 <z < s(t),t >0} and Q2 = {(=,t) : s(t) < z, t > 0}, and the two functions u(z,t) and
v(z,t) defined in @Q; and @2, respectively. Besides standard requirements, s(t), u(z,t) and v(z,t) fulfil
the following conditions (we refer to [4] for a detailed explanation of the model):

U = Q1Ugg — bps(t) ug in @ (1)
v = GUpy, D Q, ()
u(s(t),t) = wv(s(t),t) =dps(t)s(t), t>0 3)
krvs(s(t),t) — kuus(s(t),t) = as(t) +Bps(t)s2(t), t>0 (4)
v(2,0) = wv(400,t)=—-A<0, z,t>0 (5)
s(0) = 0 (6)
do
kyus(0,t -, t>0 7
vl ( ) \/i > ( )
with
4 = al= ky 4y = ol = kr Epw cw
pucu PFCF pucy
_ ew _ pw —PI _
d = K’ p= oW ) a 5P1’\:
2 —-
g = & pI(CWK W _ edpr (ew —cr) .

Problem I consists of equations (1)-(7), while by problem II we mean the system and (1)-(6) and (8)
respectively, where
u(0,t) =B > 0, t>0. (8)

Problem II was previously studied in [5].

We will look for similarity solutions of Problem I in different cases according to the value of parameters
p, By d, following the methods introduced in [5],[10].

First of all, we note that the function u(z,t) = ®(n), with = ﬁ?t" is a solution of (1) if and only
if @ satisfies the following equation

1 b .
30 + (1= Vi) /() =0
2 Qay
and similarly, the function v(z,t) = ¥(n) is solution of (2) if and only if ¥ satisfies the equation

1
5‘1'”(17) +1¥'(n) = 0.

Therefore, we obtain the following result
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Theorem 1 The free boundary problem I has the sz'mz'lafity solutions

s(t) = 2{01\/5

PVl
2qpa 2qpa
u(z,t) = ,,,€2+§{0_Ulg(p,£)__‘1f{9;i / exp(pyr — r?) dr

0

mé? 4+ A erf (vof) _ meg? erf( z )
erfc (Yo€) erfc (of) 2a:V1

if and only if the coefficient € satisfies the equation

v(z,t) =

goexp ((p— 1)¢?) — K2F(m,y) =dy+vy®, y>0

where

_ 2 exp(—10 ) _ f 2
F(m,y) = (A+my )————erfc(%y) , 9(p,€) = O/eXP(pyr r¥)dr

erf(z) = —?ﬁ/exp(—rz) dr, erfc(z) = 1 — erf(z),

and the constants Ko, m, 4, v,y are defined as follows

KF 2 Q1
K, ar/r m pay Yo . >
§d = ac; >0 v =2Bpa’ p=2bp.

In order to analize (10) we need some preliminary results.

(10)

(11)

(12)

Lemma 2 (a) If m > 0, then F grows from A to +oo, when y grows from 0 to +oo. If m < 0, then F
has a unique positive marimum, from which it decreases to —oo. In both cases, F(m,y) ~ \/myomy®

when y — +o0.
(b) For all p > 0, we have

(i) 9(p.y) > L (exp (P— 1) 9?)) —exp (—97), y>0

(i) 9y(p,y) > exp (-1 y?) + 5§ (1 —exp(-4*)) >0, y>0
(i) g(p,0) =0,  gy(p,0)=1,  g(p, +00) = +o0.
(iv) limy_, 400 ﬂ:—l’;—yl =0ifp<0 andlimy, o ﬂg;—yl =400 if p> 0.

1 .
; vapy)  _ = ifp>2
(v) limy, yoo sy = { Yoo ifp<2
(c) If m > 0 and v > —m+/7y K2, then the function
v
H(y) = F(m,y) + B_’ya
2

1s strictly increasing.

Proof. The assertions (a) and (b) (i)-(iii) were proved in [5], and (b) (iv) and (v) easily follow from

the identity (see [1])
—\3—_;9(]), y) = exp (#) (erf (%”) + erf ((2__2,1)_3,)) .

_yep(-¥H)
®y(y) = 7 ertc(y) Y

is increasing (see [6],[7]) the assertion (c) holds. m

Owing to function

\

In Section 2 we prove the existence and the uniqueness of the similarity solution for different values
of the physical parameters p, 8 and d. In Section 3, we dicuss the equivalence of the problems I and II,

and we extend some existence results for problem II obtained in [5].
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2 Existence and Uniqueness of Similarity Solutions
In order to solve equation (10) we introduce the following function

_ dy+ v+ KyF(m,y)
Q) = =1y

(13)
defined for y > 0 which verifies @o(0) = K24 > 0.

Theorem 3 Let m be a positive real number. We define the following sets in the plane v, p:
Ri={(v,p) €ER*: —/rK3yom <v, p<1}, R;=R’-Ri.
We have:
(a) If (v,p) € Ry then the problem I has a unique similarity solution if and only if g0 > f%A )

(b) If (v,p) € Ry then the problem I has a similarity solution if and only if 0 < go < m)abeo(y) .
y>

Proof. To prove the existence (and uniqueness) of similarity solution to problem I, it is necessary
and sufficient to verify that the equation (10) has a (unique) solution. The equation (10) has a solution
€ if and only if g0 = Qo(£). The proof is splitted in four cases [7]:

)m>0,vr>0andp<1; (ii)m>0,vr>0andp>1;
(i) ¥ < —/mKayom; (ivym > 0,~/7Kayym<v<0and p<1l.®m

Remark 4 For m = 0, i.e. dp = 0, there erist a unique solution of equation (10) if and only if the
inequality g0 > K2 A 1s verified. This result has already been found in [10].

Remark 5 We note that in the case p > 1, if maxy>0Qo(y) > qo > K2A there exist at least two
solutions. On the other hand, if qo is sufficiently small, then there exists a unique solution. The situation
is a bit different in the problem II, studied in [5], where it was proved the ezistence and uniqueness of
similarity solutions in the case m > 0,v > 0,p < 2.

Similarly, we can obtain the following results.

Theorem 6 Let m < 0. We define the sets
R3={(v,p) ER? : v > —\/TKsyom, p< 1}, Ry =R?— Rj.
Then
(a) If (v,p) € R3, there exists a solution when g9 > KA.

(b) If (v,p) € R4, there exists a solution when 0 < go < maxyso Qo(y) .

Proof. By using Proposition 2 we have, §y+vy® + K2 F (m,y) ~ v+ Ka/Tyomy® when y = +o0o and
it follows that if (v, p) € Rs then limy_, 4o Qo(y) = +00, from which we have [K3A, +00) C Range(Qo).
This proves part (a).

If (v,p) € Ry, it is easy to see that the function @ has a positive finite maximum, and then the
second part is also proved. ®

Remark 7 In [7] it was studied the physical acceptability of the similarity solution as a function of the
thermal coefficients.
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3 Relationship between Problems I and 11

Let (s, u,v) be given by (9), for some constant £ > 0. Then u(0,1) is a constant given by
2
u(0,1) = mé? + 2L29(p,£) > 0. (14)
Ky

Then, we can consider the problem II, by imposing this new temperature as u(0,t) at the fixed face ¢ = 0.

Theorem 8 Let m > 0, v > 0, p < 1 and qo > KaA. If (s,u,v) is the unique similarity solution of
Problem I, then (s,u,v) is the unigue similarity solution of Problem II, provided the constant B in the
condition (8) is given by

2q901

B=n1,£2+ KU

9(p, &) (15)

where £ is the unigue solution of equation (10).

Proof. We know that (s,u,v) is given by (9) where £ is the unique solution of (10), which can be
written as
Qo(¥) = g0, y>0 (16)
By the results obtained in [5], there exists a unique solution to Problem II, with B defined by (15), given
by

5(t) = 201Vt

_ e
a(z,t) = B~ %E)E 0/ exp(pér — r2) dr (17)
) _ merfc(527) + A orf (v08) - erf (52))
vet) = erfc (0€)

where £ is the unique solution of the equation

-1 2
YTk, (B — my?) exp((P-1)y*) _ KaF(m,y) =8y +vi®, y>0 (18)
2 9(p,y)

and K; = aﬁl‘# It is easy to see that the solutions given by (9) and (17) are coincident if and only if

€ =£. Then, it is sufficient to see that £ is a solution of (18) [7]. =

Suppose that (s,u,v) is a solution to problem I, with the boundary condition (7). By the results
of Section 1, we know that (s, u,v) are given by (9), where £ must satisfy the equation (10). For this
solution, the temperature in the fixed boundary is constant and equal to B = u(0,t) = Ty(qo,&), where
To is the real function defined by

2
To(g,y) =my2+ﬁKily(p,y), g>0,y>0. (19)

Assuming that ¢ > 0, we will describe some properties of function Tj. First of all, we note that
To(¢9,0) = 0. Besides, it follows from the proposition 2 that if m > 0 and p > 0, then To(q,y) is
an increasing function in both of its arguments, with T(g, +00) = +oo. If m < 0 and p > 0, then
To(g, +00) = +00, and if m < 0 and p < 0, then Ty(g, +00) = —oo. Finally, if m > 0 and p < 0 then
To(g, +00) = +o0.

Suppose that m > 0. For each £ > 0 let

do = Qo() (20)

where Q is the function defined by (13). Let B = Ty(go,&) = mE? + 72?% (p,£), then a solution to

problem I with go = §o, which is given by (9) with £ = £ because of (20), corresponds to a solution to
Problem Il with B = B. Then, given B > 0, we can show the existence of solution to Problem II, by
proving that B belongs to the image set of the function J(-) = To (Qo (+) , ). For different values of the
physical parameters, we study function J and we obtain the following results [7].



12 A.L. Lombardi - D.A. Tarzia, On Thawing Processes ..., MAT - Serie A, 3 (2001), 7-12

Theorem 9 Let m > 0. If v > —/TKamvy,, then there exists a similarity solution to Problem II. If,
in addition, 0< p < 1, then the similarily solution is unique. For the case v < —\/TKamyo, a sufficient
condition in order to have the existence of a solution to Problem II, is that B verifies the inequality

B<m6+ 2 M §
T A \PV )

Remark 10 The last Theorem, extends a result of [5], where it was proved that if m > 0,v < 0, then

there exists a solution to Problem Il when P
m

vl
Proposition 11 Suppose m < 0 and v > /TK2 |m| v, then:

B <«

(a) If p < 2 the problem II has a similarity solution if
B > max (0, J(y)) (21)

b) If p> 2 the problem II has a similarity solution if m + 2yEiKamyo) ~  gnd (21) are verified.
pK1(p-2)
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