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Abstract

It is shown that there exists at least one exact solution of the Neumann type
for the binary alloy solidification problem, with a simple mushy zone model. Also,

some numerical results are presented.

Resumen

Se demuestra la existencia de al menos una solucién exacta del tipo Neumann
para el problema de solidificacién de una aleacién binaria, con un modelo simple con
zona pastosa. Se presentan también algunos resultados numéricos.
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I. Introduction

In Stefan problems [3, 9, 15], it is
generally assumed that the phase change
takes place at a unique temperature called
melting temperature and that there exists
a sharp phase change boundary called
freezing front. On one side of the freezing

Acto realizado con motivo de la entrega
del premio "Alberto Gonzdlez Dominguez" en
Matemdtica, el 22 de noviembre de 1996.

front there exists a stable solid phase and
on the other side exists a stable liquid
phase.

This assumption considerably sim-
plifies the problem, but it is true strictly for
pure metals. Generally, some impurities are
also present and so it seems more appro-
priate to consider solidification/liquidifica-
tion of alloys.

In the solidification of binary alloys
[6], both heat and mass diffusion take pla-
ce and solidification of dilute binary alloy
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is governed by the equilibrium phase dia-
gram as shown in fig. 1. The temperature
and concentration of any one phase can not
be independent of another at the freezing
front and they are governed by the phase
diagram.

Let the temperature and concen-
tration of a small volume element in the
concentration and temperature plane be
denoted by (C, T). If the point (C, T) lies to
the right of the liquidus line, then the
volume element is in a stable liquid phase.
If the point (C, T) lies to the left of the
solidus line then the volume element is in
a stable solid phase. If the point (C, T) lies
in between the solidus and liquidus lines
then the volume element is supposed to be
in the mushy phase and for the stability of
the mushy phase it is essential that the
volume element contains both solid and
liquid phases. The temperature and con-
centration of this volume element in the
mushy phase can be determined from the
knowledge of the phase diagram [6].

The occurrence of mushy region is
commonly observed during alloy solidifica-
tion and sometimes mushy region develops
after a short time itself.

In [10, 14, 15, 16] an exact similarity
solution has been obtained for a binary alloy
solidification problem by assuming that a
sharp freezing front separating the solid
and liquid regions exists.

;- Liquidus: T, = T,-m C

Temperature
~a, /

0 1.0
Concentration

Fig. 1: Equilibrium phase diagram for a dilute
binary alloy

In [4, 8, 15] it has been recently
shown that for the sharp freezing front
model of alloy solidification, in the so called
liquid region, there are volume elements for
which the points (C, T) lie in the mushy
phase. A review on the mathematical for-
mulation of the mushy zone is given in [5].

In the present study an exact
similarity solution for a one-dimensional
alloy solidification has been constructed.
The solid and liquid regions are separated
by a mushy region, following the simple
model developed for the one-phase [11, 12]
and two-phase [7, 13] Stefan problems. As
far as we know, no exact solution in which
all the three regions are present exists in
the literature. It is hoped that this type of
analytical solutions may provide some
guidelines. These solutions can be used for
checking analytical and numerical solutions
of more complicated problems of alloy
solidification.

II. Model of the problem

We shall consider the following
problem: find the boundaries x = s(t) and x
= r(t), defined for t > 0 with s(t) < r(t) and
s(0) = r(0) = 0, the temperature 6 = 6(x, t)
and the concentration C = C(x, t), defined
for x > 0 and t > 0, by the expressions

0,(x,t) >T_(t) if 0 <x <s(t), t>0,

ox,t) = T_(t) ifs(t) <x<r(t),t >0,
0,(x,t) > T_(t) if rt) <x,t>0,
(1)
and
Ckxt) if 0O0<x<st),t>0
Cxt) = C (xt) if st)<x<rt),t>0
Cxt) if rt)<x,t>0,

(2)

respectively, such that they satisfy the
following conditions (the subscripts 1, 2 and
m refer to solid, liquid and mushy regions,
respectively):

0401,
D,C =

Ixx

0y, 0<x<s(t),t>0,
Clt, 0 <x<st),t>0,

3 -
“4)
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8,00,t) = T, t>0, (5
C,04t = 0 t>0, (6
8,(s(t),t) = T.(t) t >0, (7
o8, 0y, Tt) <x,t>0, (8)
D,C,, = Cy, 1) <xt>¢ 9)
0,(x,0) =0,(+e0,t) =T, x>0, (10)
C,(x,0)=C,(+,t)=C,, x > 0, (11)
0,(r(t),t)=T,(t)  t>0, (12)
k8, (s(t),t)-k,0, (r(t),t)=

=pA[(1-e)F (t) +eS(D)], t>0, (13)
0, (s(t), t) (r(t) - s(t)) =¥y, t>0, (14)
D,C,, (s(t),t)-D,C, (r(t),t)=

=[C,(x(t),t)- C,(s (1), )]

[(1-e) i) +e5t)], t>0, (15)
T,(t)=T, -m,C,(s(t),t) t>0, (16)
T, (t) =T, -m,C,(r(t),t) t>0, a7
s(0)=r(0)=0, (18)

where A > 0 is the latent heat of fusion, p >
0 is the mass density which is taken equal
in both solid and liquid phases, k. > 0, ¢, >
Q a = al= :Ti’ D, are the thermal
conductivity, the specific heat, the thermal
diffusion coefficient and the mass diffusion
coefficient for the phase i (i = 1: solid phase,
1 = 2: liquid phase) respectively. Coefficients
€ and y are real numbers (0 < e <1, y> 0)
which characterizes the mushy zone [9, 10,
11]. Further, the initial temperature T, the
boundary temperature T, and the critical
temperature T_ satisfy the relation T, <
T, (t) < T, for all t > 0. Without loss of
generality, we suppose that T, > 0.
Moreover, T=T, - mCand T =T, - m,C
are the solidus and liquidus curve (see fi-
gure 1) and we assume that C_ = C, + &(C,

— C,). The concentration C_ of the mushy
region is obtained by using law of mixtures
and the fact that for the equilibrium of any

volume element in the mushy phase, it

must contain both solid and liquid phases

with their concentrations as C, and C,.
Following the Neumann method we

propose the functions

0,(x,t)=A, +B, {ﬁ}
O0<x<st), t>0, (19)
8,(x,t)=A, +B, {LJ
2a2\/E
r(t) < x, t>0, - (20)
C,(x,t) =M, +N, r(z—’];—lt}
O0<x<s(t), t>0, (21)
C,(x,t) =M, +N, {LJ
2Dt
r(t) < x, t>0, (22)
st)=20,a,Jt, t>0, (23)
r(t)=2o0,a, Jt, t>0, (24)

which satisfy conditions (3), (4), (8) and (9),

“where

fix) = erf(x) =

(-t*)at (25)

‘/—.‘- exp

is the error function.

If we impose conditions (5)-(7), (10)-
(12) and (16)-(17) we obtain that the
coefficients A,, B, M,, N, (i = 1, 2) are given,
as functions of parameters o, and o,, as
follows:

T_ -T
A =T, =« B
1 B 1 fo,) (26)
T, -T
M,=—A "« N, =
1 m, ’ 1 27
T, - T f6c,) T,-T
A, =—a "0 2 I
27 1-f80,) " 1-f6c, @8
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T, -T, +m,C,

M, =G, m,(1- flve,))

_T,-T, +m,G,
27 m,(1 - fivey))

a k,c a o
where8=——1-=} L2 v=—21 =’—1 and
a, ¢k, VD2 D,

T (t) results a constant, i.e. T (t) = T, for
allt > 0.

Taking into account conditions (13)-
(15) we obtain the following system of three
equations for the unknowns o,, 6, and T :

(29)

1
G, =0+ TY{ET flo,) exp(olz), (30)
er B
Tu' —'B _ a2
1 \/Eal fo,) p( 01)
T, - T 2
- o -
2 b4 82(1—f(502)) exp[ ( 02) ] =

= pAa,[(1 - €)o, + €0,] (31)

D, T,-T, +m,C, _ 2] _
J ~fvep exp[ (ve,) ]_

n
T -T, (m, - m,) a,[(1 - €)o, +€0,](39)

m,

In order to facilitate the calculations
we combine the several constants of the
problem into the following dimensionless
parameters:

po Mmoo _(-oydn
m, Ty, 2
(33)
K. = kT _cTs
' opralyn AVm’
k,T Ty |kycc
K. = 218 - 1B 2%1%
2 pkalazﬁ A ﬂ',kl (34)

s Iy
P 1-¢ 2 T’ (35)
m,C D 1
TB oL, V\[7_T, (36)
Let the real functions
exp(-x?) exp(—x?)
Fx=—/——, F,x)=""—
(%) -0 5 (X) ) 37
defined for x = 0 and
(T, -Tg)
© = "T—B‘ Fy(a)), (38)
B

then we can rewrite equations (30)-(31)-(32)
as:

°2=01+%: (39)
T, o B)
Ko-K,|=2-1- F1 & =)=
10 2 l:TB Fz(ol)] 1( (01+0.))
=0, +2, (40)
o _T, By
l:FZ(Ul) TB+1+E}F1(V(01+ ))__
yf Ta 4@ s
—u(TB 1 Fz(cl)J(ol+m) (41)

Equations (40) and (41) are equiva-
lent to: .

G(w,0)=0

(42)
G w,0)=0

where functions G, and G, are defined by
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G(x, y) =

= D[F::y) —’;—: +1+ E]Fl (v(y+ g)) +
+“(i‘f%§ - % + 1] (y + %)

S_

X

Kz[%— ~1- F:zy)} Fl(S(y + g)) @

In the next section we prove that
system (42) has at least one solution and as
a consequence we can assert that problem
(1), (18) has at least one solution.

(43)

G,(x,y)=y+ Kx+

III Existence of an exact solution

The analytical solution of this pro-
blem is complete if the unknowns coeffi-
cients o, and ® can be determined with the
help of the equations (40) and (41). 6, can
be determined from equation (39) and the
critical temperature T, from equation (38),
as follows

()]
T, -TB(1+ 3 (OI)J (45)

Taking into account that functions
F, and F, verify the following properties:

F,(0') =1, LmF,(x) = oo,

F,'x) > 0, vx > 0, (46)
F,(0") =400, lim F,(x)=0,
F,'(x)<0 vx>0 47)

we can easily prove:

T
Lemma 1: If T_: > 1 + E then we have

a) for each fixed y > 0,

lim G,(x,y) = —° (48)
x—0%
}_i_'IBHGl(x, y) = +oo, (49)
moreover
G,(x, 0*) = H(x) (50)
where
H,x)= —D[—TA -1- E] Fl(v E) -
Ty X
-5-(3\_-1) <0,x>0
x|\ Ty
is an increasing function and
lim H,(x) =—o ,
x>0+
. T,
limH ®=-D-2-1-E| <0
X—+oo TB
b) for each fixed x > 0,
lim G,(x,y) =H,(x) (51)
y—>0+
Jim Gy (x,y) =~ (52)

where

H,x)=2-Kx+ Kz[ﬁ - 1}F1(59), x>0
X T, X

B

is a decreasing function and
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lin}( Hy(x) =+ lim H,(x)=—o
x—0 . Lind ol

o  G,xy) >0, Vx>0, Vy > 0, (53)

G,(x,¥y) <0, Vx>0, Vy >0, (54)
so it is possible to define implicitly the
functions y = y,(x) from G,(x, y) = 0 and x
= x,(y) from G(x, y) = 0.

Lemma 2: The curve y = y,(x) defined
implicitly from G (x, y) = 0, verifies:

i) Lim y,(x) = +e0 (55)

Moreover
d,

y.(® = Jlo ) as8x— 0+

with d, =
["?_A -1- E] DvB/m + p.g|:$—" - 1]

_ L' B 150 (56
DVBVn + g (56)

ii) limy,(x)=0 (57)

Proof:

i) From F,(z) = Jnzasz - + = [1], we
obtain (55) by contradiction. Moreover,
since (F,(z) = exp(- z?) as z — + « [1], after
some manipulation, from G,(x, y) = 0, we
obtain that,

lim xy,(x)=0, limx exp(yl(x)2 ) =d, (58)

x—0t x—0

and therefore [56]

ii) When x — + 0 in the expresion G (x, y)
= 0 we obtain

D[% - 1—E} F (vy) + [:?—"— 1];,1 y
E E FZ(Y))

D Fy(vy) +py

X =

for x - + < and y = y,(x). (59)

From (59) we can easily obtain that
lim y (x) is not a finite positive number.

If we suppose that lim y (x) = + « then we

have a contradiction because F (+) = 0
and

L 1-E|R o+ Ta-1lpy
lim —=—-8 T =
yo+ee DF,(vy)+py
D[',?—AA—E]JE +E['£—A-1}
= B Vi's > 0.
DJE+%

Therefore we have necessarily (57).

Lemma 3: The curve x = x,(y), defined
implicitly from G,(x, y) = 0, verifies:

i) ylgg x,(y) =%, >0,

(60)
where x, is the unique solution of the
equation
1 T,
x=—(§+K2(T—:—1) Fl(Sg)), x> 0. (g1)
K(T_))
Kl TB ’

ii) lim x,(y) =0.
y—rtoo

Moreover x, >

(62)
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Proof:
Jn 1

— =,as z = 0* and G,(x,
2 z
y) = 0 we obtain (60).

ii) Taking into account that F (z) = exp(- z?)

i) From F,(z) =

and F (z) = Jnz asz - + o, from G,(x, y) =
0 we obtain necessarily (62) to avoid any
contradiction.

T
Theorem 4: If T_A > 1 + E then there is at
B

least one solution for the binary alloy
solidification model (1)-(18).

Proof: By contradiction, we suppose that
there is not any solution for system (42).
Then, as a consequence of Lemma 1,
Lemma 2 and Lemma 3 it must occur that
for all (x, y) where G,(x, y) > 0 it would be
G,(x, y) < 0. If we choose (x*, y*) so that x*

Ty
=T F,(y*) then we have G,(x*, y*) >
B

0, for all y* > 0 and G,(x*, y*) > O for all y*
> ¥, where ¥ is the unique solution of the
equation

Hkx) = K(T, - Ty) F(x), x> 0,
where function H is defined by
HO) = x+ 24

T
(TB DF, (%)

+K, To .‘TA F,| 8(x P B |
Ty ($—A- DF, (x)
B

which is an absurd. So, we can infer that
there is at least one solution for system (42)
and therefore the thesis holds.

III. Numerical results and discussion

The equations (40) and (41) are
highly nonlinear and can be solved only
numerically. For solving system of nonli-
near equations, several iterative methods
and their modifications are available in the
literature [2]. The major difficulty with
most of them is that we must know some
good approximate value of the root. It is
extremely difficult to find such an
approximate root in the present problem.
Further, iterative methods for non linear
systems require complicated computer
programs. In the absence of availability of
such computer programs/packages a simple
numerical procedure was adopted, which
was found very effective also.

For a fixed value of 5,, equation (40)
can be solved for . By giving different
values to ©,, a curve in the (5, w) plane can
be plotted. Similarly, another curve can be
plotted for the equation (41). The inter-
section of these two curves gives the root of
the nonlinear system consisting of equa-
tions (40) and (41). It may be noted F,(a))
could be very large if o, is small and
therefore it is advisable to multiply both the

AN
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Fig. 2: g, vs B. The parameters values are 8 =
001, e=01,v=10,m =04, m, =06, C, =
0.1, D = 0.001, K, = 0.012, K, = 0.02, T, = 1.1,
T, =0.8

-81-



0.08

0.075

0.07

0.065
1

N

® 0.06 )

0.065 |

0.05 .
0.05 04

0.25
(L -
Fig. 3: o, vs p. All parameters values as in fig.
2

015 0.2 0.3

1.074

1072
1

Ter

1.07 +

1.068 |

0.2 025
[l -

1.066 .
0.05 041

0.15 03

Fig. 4: T_vs B. All parameters values as in fig.
9 .

equations by F,(c,) before finding the roots.
For finding the root of a single nonlinear
equation, once again several iterative meth-
ods are available [2]. In the present work
bisection method [2] was found to be very
effective.

In figures 2, 3 and 4 we plot o, 0,
and T_ as a function of the parameter

Jn

B=Y7-

decreasing and increasing functions of the

We observe that o, and o, are

variable B respectively, i.e. the width of the
mushy region is an increasing function of
the variable B (or ¥y).
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